Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Twist2 contributes to breast cancer progression by promoting an epithelial–mesenchymal transition and cancer stem-like cell self-renewal

Abstract

The epithelial to mesenchymal transition (EMT) is a highly conserved cellular programme that has an important role in normal embryogenesis and in cancer invasion and metastasis. We report here that Twist2, a tissue-specific basic helix-loop-helix transcription factor, is overexpressed in human breast cancers and lymph node metastases. In mammary epithelial cells and breast cancer cells, ectopic overexpression of Twist2 results in morphological transformation, downregulation of epithelial markers and upregulation of mesenchymal markers. Moreover, Twist2 enhances the cell migration and colony-forming abilities of mammary epithelial cells and breast cancer cells in vitro and promotes tumour growth in vivo. Ectopic expression of Twist2 in mammary epithelial cells and breast cancer cells increases the size and number of their CD44high/CD24low stem-like cell sub-populations, promotes the expression of stem cell markers and enhances the self-renewal capabilities of stem-like cells. In addition, exogenous expression of Twist2 leads to constitutive activation of STAT3 (signal transducer and activator of transcription 3) and downregulation of E-cadherin. Thus, the overexpression of Twist2 may contribute to breast cancer progression by activating the EMT programme and enhancing the self-renewal of cancer stem-like cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA . (2009). Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 119: 1438–1449.

    Article  CAS  Google Scholar 

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . (2003). Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100: 3983–3988.

    Article  CAS  Google Scholar 

  • Ansieau S, Bastid J, Doreau A, Morel AP, Bouchet BP, Thomas C et al. (2008). Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 14: 79–89.

    Article  CAS  Google Scholar 

  • Ansieau S, Morel AP, Hinkal G, Bastid J, Puisieux A . (2010). TWISTing an embryonic transcription factor into an oncoprotein. Oncogene 29: 3173–3184.

    Article  CAS  Google Scholar 

  • Bao S, Ouyang G, Bai X, Huang Z, Ma C, Liu M et al. (2004). Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell 5: 329–339.

    Article  CAS  Google Scholar 

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444: 756–760.

    CAS  Google Scholar 

  • Battula VL, Evans KW, Hollier BG, Shi Y, Marini FC, Ayyanan A et al. (2010). Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem Cells 28: 1435–1445.

    Article  CAS  Google Scholar 

  • Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T . (2005). Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer 5: 744–749.

    Article  CAS  Google Scholar 

  • Bromberg J . (2002). Stat proteins and oncogenesis. J Clin Invest 109: 1139–1142.

    Article  CAS  Google Scholar 

  • Chan KS, Sano S, Kiguchi K, Anders J, Komazawa N, Takeda J et al. (2004). Disruption of Stat3 reveals a critical role in both the initiation and the promotion stages of epithelial carcinogenesis. J Clin Invest 114: 720–728.

    Article  CAS  Google Scholar 

  • Chen ZF, Behringer RR . (1995). Twist is required in head mesenchyme for cranial neural tube morphogenesis. Genes Dev 9: 686–699.

    Article  CAS  Google Scholar 

  • Cheng GZ, Zhang WZ, Sun M, Wang Q, Coppola D, Mansour M et al. (2008). Twist is transcriptionally induced by activation of STAT3 and mediates STAT3 oncogenic function. J Biol Chem 283: 14665–14673.

    Article  CAS  Google Scholar 

  • Debnath J, Muthuswamy SK, Brugge JS . (2003). Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30: 256–268.

    Article  CAS  Google Scholar 

  • Dimri GP, Martinez JL, Jacobs JJ, Keblusek P, Itahana K, Van Lohuizen M et al. (2002). The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res 62: 4736–4745.

    CAS  PubMed  Google Scholar 

  • Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al. (2003). In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17: 1253–1270.

    Article  CAS  Google Scholar 

  • Evdokimova V, Tognon C, Ng T, Ruzanov P, Melnyk N, Fink D et al. (2009). Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition. Cancer Cell 15: 402–415.

    Article  CAS  Google Scholar 

  • Fernando RI, Litzinger M, Trono P, Hamilton DH, Schlom J, Palena C . (2010). The T-box transcription factor Brachyury promotes epithelial-mesenchymal transition in human tumor cells. J Clin Invest 120: 533–544.

    Article  CAS  Google Scholar 

  • Franco HL, Casasnovas J, Rodríguez-Medina JR, Cadilla CL . (2011). Redundant or separate entities?—Roles of Twist1 and Twist2 as molecular switches during gene transcription. Nucleic Acids Res 39: 1177–1186.

    Article  CAS  Google Scholar 

  • Gong XQ, Li L . (2002). Dermo-1, a multifunctional basic helix-loop-helix protein, represses MyoD transactivation via the HLH domain, MEF2 interaction, and chromatin deacetylation. J Biol Chem 277: 12310–12317.

    Article  CAS  Google Scholar 

  • Gupta PB, Chaffer CL, Weinberg RA . (2009a). Cancer stem cells: mirage or reality? Nat Med 15: 1010–1012.

    Article  CAS  Google Scholar 

  • Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA et al. (2009b). Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138: 645–659.

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA . (2011). Hallmarks of cancer: the next generation. Cell 144: 646–674.

    Article  CAS  Google Scholar 

  • Iliopoulos D, Polytarchou C, Hatziapostolou M, Kottakis F, Maroulakou IG, Struhl K et al. (2009). MicroRNAs differentially regulated by Akt isoforms control EMT and stem cell renewal in cancer cells. Sci Signal 2: ra62.

    Article  Google Scholar 

  • Isenmann S, Arthur A, Zannettino AC, Turner JL, Shi S, Glackin CA et al. (2009). TWIST family of basic helix-loop-helix transcription factors mediate human mesenchymal stem cell growth and commitment. Stem Cells 27: 2457–2468.

    Article  CAS  Google Scholar 

  • Kalluri R, Weinberg RA . (2009). The basics of epithelial-mesenchymal transition. J Clin Invest 119: 1420–1428.

    Article  CAS  Google Scholar 

  • Lee MS, Lowe G, Flanagan S, Kuchler K, Glackin CA . (2000). Human Dermo-1 has attributes similar to twist in early bone development. Bone 27: 591–602.

    Article  CAS  Google Scholar 

  • Levy DE, Darnell Jr JE . (2002). Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3: 651–662.

    Article  CAS  Google Scholar 

  • Li L, Cserjesi P, Olson EN . (1995). Dermo-1: a novel twist-related bHLH protein expressed in the developing dermis. Dev Biol 172: 280–292.

    Article  CAS  Google Scholar 

  • Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW et al. (2006). Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66: 6063–6071.

    Article  CAS  Google Scholar 

  • Liu S, Dontu G, Wicha MS . (2005). Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res 7: 86–95.

    Article  CAS  Google Scholar 

  • Lo HW, Hsu SC, Xia W, Cao X, Shih JY, Wei Y et al. (2007). Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res 67: 9066–9076.

    Article  CAS  Google Scholar 

  • Maeda M, Johnson KR, Wheelock MJ . (2005). Cadherin switching: essential for behavioral but not morphological changes during an epithelium-to-mesenchyme transition. J Cell Sci 118: 873–887.

    Article  CAS  Google Scholar 

  • Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133: 704–715.

    Article  CAS  Google Scholar 

  • McCoy EL, Iwanaga R, Jedlicka P, Abbey NS, Chodosh LA, Heichman KA et al. (2009). Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial-mesenchymal transition. J Clin Invest 119: 2663–2677.

    Article  CAS  Google Scholar 

  • Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A . (2008). Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3: e2888.

    Article  Google Scholar 

  • Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA . (2008). Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 68: 3645–3654.

    Article  CAS  Google Scholar 

  • Ouyang G, Wang Z, Fang X, Liu J, Yang CJ . (2010). Molecular signaling of the epithelial to mesenchymal transition in generating and maintaining cancer stem cells. Cell Mol Life Sci 67: 2605–2618.

    Article  CAS  Google Scholar 

  • Peinado H, Olmeda D, Cano A . (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7: 415–428.

    Article  CAS  Google Scholar 

  • Polyak K, Weinberg RA . (2009). Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9: 265–273.

    Article  CAS  Google Scholar 

  • Ruan K, Bao S, Ouyang G . (2009). The multifaceted role of periostin in tumorigenesis. Cell Mol Life Sci 66: 2219–2230.

    Article  CAS  Google Scholar 

  • Singh A, Settleman J . (2010). EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29: 4741–4751.

    Article  CAS  Google Scholar 

  • Song G, Ouyang G, Mao Y, Ming Y, Bao S, Hu T . (2009a). Osteopontin promotes gastric cancer metastasis by augmenting cell survival and invasion through Akt-mediated HIF-1alpha up-regulation and MMP9 activation. J Cell Mol Med 13: 1706–1718.

    Article  Google Scholar 

  • Song LB, Li J, Liao WT, Feng Y, Yu CP, Hu LJ et al. (2009b). The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J Clin Invest 119: 3626–3636.

    Article  CAS  Google Scholar 

  • Sullivan NJ, Sasser AK, Axel AE, Vesuna F, Raman V, Ramirez N et al. (2009). Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene 28: 2940–2947.

    Article  CAS  Google Scholar 

  • Thiery JP, Acloque H, Huang RY, Nieto MA . (2009). Epithelial-mesenchymal transitions in development and disease. Cell 139: 871–890.

    Article  CAS  Google Scholar 

  • Thiery JP, Sleeman JP . (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7: 131–142.

    Article  CAS  Google Scholar 

  • Thisse B, el Messal M, Perrin-Schmitt F . (1987). The twist gene: isolation of a Drosophila zygotic gene necessary for the establishment of dorsoventral pattern. Nucleic Acids Res 15: 3439–3453.

    Article  CAS  Google Scholar 

  • Tsuji T, Ibaragi S, Shima K, Hu MG, Katsurano M, Sasaki A et al. (2008). Epithelial-mesenchymal transition induced by growth suppressor p12CDK2-AP1 promotes tumor cell local invasion but suppresses distant colony growth. Cancer Res 68: 10377–10386.

    Article  CAS  Google Scholar 

  • Vesuna F, Lisok A, Kimble B, Raman V . (2009). Twist modulates breast cancer stem cells by transcriptional regulation of CD24 expression. Neoplasia 11: 1318–1328.

    Article  CAS  Google Scholar 

  • Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A et al. (2009). The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11: 1487–1495.

    Article  CAS  Google Scholar 

  • Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117: 927–939.

    Article  CAS  Google Scholar 

  • Yang J, Weinberg RA . (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14: 818–829.

    Article  CAS  Google Scholar 

  • Yang MH, Hsu DS, Wang HW, Wang HJ, Lan HY, Yang WH et al. (2010). Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol 12: 982–992.

    Article  Google Scholar 

  • Yang Y, Pan X, Lei W, Wang J, Shi J, Li F et al. (2006). Regulation of transforming growth factor-beta 1-induced apoptosis and epithelial-to-mesenchymal transition by protein kinase A and signal transducers and activators of transcription 3. Cancer Res 66: 8617–8624.

    Article  CAS  Google Scholar 

  • Yin G, Chen R, Alvero AB, Fu HH, Holmberg J, Glackin C et al. (2010). TWISTing stemness, inflammation and proliferation of epithelial ovarian cancer cells through MIR199A2/214. Oncogene 29: 3545–3553.

    Article  CAS  Google Scholar 

  • Yu M, Smolen GA, Zhang J, Wittner B, Schott BJ, Brachtel E et al. (2009). A developmentally regulated inducer of EMT, LBX1, contributes to breast cancer progression. Genes Dev 23: 1737–1742.

    Article  CAS  Google Scholar 

  • Zhou J, Wulfkuhle J, Zhang H, Gu P, Yang Y, Deng J et al. (2007). Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci USA 104: 16158–16163.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Kunxin Luo (Department of Molecular and Cell Biology, University of California, Berkeley), Professor Shideng Bao (Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic) and reviewers for critical comments. This work was supported by grants from the National Nature Science Foundation of China (no. 30871242, 31071302), National Basic Research Program of China (no. 2009CB941601, 2010CB732402), the Fundamental Research Funds for the Central Universities (no. 2010121095), the Science Planning Program of Fujian Province (2009J1010), the Outstanding Young Science Foundation of Fujian Province (no. 2010J06013) and the 985 Project grant from Xiamen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Ouyang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, X., Cai, Y., Liu, J. et al. Twist2 contributes to breast cancer progression by promoting an epithelial–mesenchymal transition and cancer stem-like cell self-renewal. Oncogene 30, 4707–4720 (2011). https://doi.org/10.1038/onc.2011.181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.181

Keywords

This article is cited by

Search

Quick links