Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Rack1 promotes epithelial cell–cell adhesion by regulating E-cadherin endocytosis

Abstract

E-cadherin and its cytoplasmic partners, catenins, mediate epithelial cell–cell adhesion. Disruption of this adhesion allows cancer cells to invade and metastasize. Aberrant activation of the Src tyrosine kinase disrupts cell–cell contacts through an E-cadherin/catenin-dependent mechanism. Previously we showed that Rack1 regulates the growth of colon cells by suppressing Src activity at G1 and mitotic checkpoints, and in the intrinsic apoptotic and Akt cell survival pathways. Here we show that Rack1, partly by inhibiting Src, promotes cell–cell adhesion and reduces the invasive potential of colon cancer cells. Rack1 stabilizes E-cadherin and catenins at cell–cell contacts by inhibiting the Src phosphorylation of E-cadherin, the ubiquitination of E-cadherin by the E3 ligase Hakai and the endocytosis of E-cadherin. Upon depletion and restoration of extracellular calcium, Rack1 facilitates the re-assembly of E-cadherin-containing cell–cell contacts. Rack1 also blocks HGF-induced endocytosis of E-cadherin, disruption of cell–cell contacts and cell scatter. Our results uncover a novel function of Rack1 in maintaining the junctional homeostasis of intestinal epithelial cells by regulation of the Src- and growth factor-induced endocytosis of E-cadherin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Avizienyte E, Fincham VJ, Brunton VG, Frame MC . (2004). Src SH3/2 domain-mediated peripheral accumulation of Src and phospho-myosin is linked to deregulation of E-cadherin and the epithelial–mesenchymal transition. Mol Biol Cell 15: 2794–2803.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Avizienyte E, Frame MC . (2005). Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition. Curr Opin Cell Biol 17: 542–547.

    Article  CAS  PubMed  Google Scholar 

  • Avizienyte E, Wyke AW, Jones RJ, McLean GW, Westhoff MA, Brunton VG et al. (2002). Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signalling. Nat Cell Biol 4: 632–638.

    Article  CAS  PubMed  Google Scholar 

  • Behrens J, Vakaet L, Friis R, Winterhager E, Van Roy F, Mareel MM et al. (1993). Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/beta-catenin complex in cells transformed with a temperature-sensitive v-SRC gene. J Cell Biol 120: 757–766.

    Article  CAS  PubMed  Google Scholar 

  • Bertotti A, Bracco C, Girolami F, Torti D, Gastaldi S, Galimi F et al. (2010). Inhibition of Src impairs the growth of met-addicted gastric tumors. Clin Cancer Res 16: 3933–3943.

    Article  CAS  PubMed  Google Scholar 

  • Berx G, van Roy F . (2009). Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol 1: a003129.

    Article  PubMed Central  PubMed  Google Scholar 

  • Brady-Kalnay SM, Mourton T, Nixon JP, Pietz GE, Kinch M, Chen H et al. (1998). Dynamic interaction of PTPmu with multiple cadherins in vivo. J Cell Biol 141: 287–296.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brady-Kalnay SM, Rimm DL, Tonks NK . (1995). Receptor protein tyrosine phosphatase PTPmu associates with cadherins and catenins in vivo. J Cell Biol 130: 977–986.

    Article  CAS  PubMed  Google Scholar 

  • Bryant DM, Stow JL . (2004). The ins and outs of E-cadherin trafficking. Trends Cell Biol 14: 427–434.

    Article  CAS  PubMed  Google Scholar 

  • Chang BY, Chiang M, Cartwright CA . (2001). The interaction of Src and RACK1 is enhanced by activation of protein kinase C and tyrosine phosphorylation of RACK1. J Biol Chem 276: 20346–20356.

    Article  CAS  PubMed  Google Scholar 

  • Chang BY, Conroy KB, Machleder EM, Cartwright CA . (1998). RACK1, a receptor for activated C kinase and a homolog of the beta subunit of G proteins, inhibits activity of src tyrosine kinases and growth of NIH 3T3 cells. Mol Cell Biol 18: 3245–3256.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang BY, Harte RA, Cartwright CA . (2002). RACK1: a novel substrate for the Src protein-tyrosine kinase. Oncogene 21: 7619–7629.

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay N, Wang Z, Ashman LK, Brady-Kalnay SM, Kreidberg JA . (2003). alpha3beta1 Integrin–CD151, a component of the cadherin–catenin complex, regulates PTPmu expression and cell–cell adhesion. J Cell Biol 163: 1351–1362.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cox EA, Bennin D, Doan AT, O'Toole T, Huttenlocher A . (2003). RACK1 regulates integrin-mediated adhesion, protrusion, and chemotactic cell migration via its Src-binding site. Mol Biol Cell 14: 658–669.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Delva E, Kowalczyk AP . (2009). Regulation of cadherin trafficking. Traffic 10: 259–267.

    Article  CAS  PubMed  Google Scholar 

  • Doan AT, Huttenlocher A . (2007). RACK1 regulates Src activity and modulates paxillin dynamics during cell migration. Exp Cell Res 313: 2667–2679.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Emaduddin M, Bicknell DC, Bodmer WF, Feller SM . (2008). Cell growth, global phosphotyrosine elevation, and c-Met phosphorylation through Src family kinases in colorectal cancer cells. Proc Natl Acad Sci USA 105: 2358–2362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan S, Meng Q, Laterra JJ, Rosen EM . (2009). Role of Src signal transduction pathways in scatter factor-mediated cellular protection. J Biol Chem 284: 7561–7577.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fomenkov A, Zangen R, Huang YP, Osada M, Guo Z, Fomenkov T et al. (2004). RACK1 and stratifin target DeltaNp63alpha for a proteasome degradation in head and neck squamous cell carcinoma cells upon DNA damage. Cell Cycle 3: 1285–1295.

    Article  CAS  PubMed  Google Scholar 

  • Frame MC . (2004). Newest findings on the oldest oncogene; how activated src does it. J Cell Sci 117: 989–998.

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Krause G, Scheffner M, Zechner D, Leddy HE, Behrens J et al. (2002). Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol 4: 222–231.

    Article  CAS  PubMed  Google Scholar 

  • Gumbiner BM . (2005). Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6: 622–634.

    Article  CAS  PubMed  Google Scholar 

  • Hartsock A, Nelson WJ . (2008). Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta 1778: 660–669.

    Article  CAS  PubMed  Google Scholar 

  • Hellberg CB, Burden-Gulley SM, Pietz GE, Brady-Kalnay SM . (2002). Expression of the receptor protein-tyrosine phosphatase, PTPmu, restores E-cadherin-dependent adhesion in human prostate carcinoma cells. J Biol Chem 277: 11165–11173.

    Article  CAS  PubMed  Google Scholar 

  • Herynk MH, Zhang J, Parikh NU, Gallick GE . (2007). Activation of Src by c-Met overexpression mediates metastatic properties of colorectal carcinoma cells. J Exp Ther Oncol 6: 205–217.

    CAS  PubMed  Google Scholar 

  • Irby RB, Yeatman TJ . (2002). Increased Src activity disrupts cadherin/catenin-mediated homotypic adhesion in human colon cancer and transformed rodent cells. Cancer Res 62: 2669–2674.

    CAS  PubMed  Google Scholar 

  • Janda E, Nevolo M, Lehmann K, Downward J, Beug H, Grieco M . (2006). Raf plus TGFbeta-dependent EMT is initiated by endocytosis and lysosomal degradation of E-cadherin. Oncogene 25: 7117–7130.

    Article  CAS  PubMed  Google Scholar 

  • Jeanes A, Gottardi CJ, Yap AS . (2008). Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 27: 6920–6929.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kiely PA, Leahy M, O'Gorman D, O'Connor R . (2005). RACK1-mediated integration of adhesion and insulin-like growth factor I (IGF-I) signaling and cell migration are defective in cells expressing an IGF-I receptor mutated at tyrosines 1250 and 1251. J Biol Chem 280: 7624–7633.

    Article  CAS  PubMed  Google Scholar 

  • Kim JB, Islam S, Kim YJ, Prudoff RS, Sass KM, Wheelock MJ et al. (2000). N-cadherin extracellular repeat 4 mediates epithelial to mesenchymal transition and increased motility. J Cell Biol 151: 1193–1206.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kowalczyk AP, Reynolds AB . (2004). Protecting your tail: regulation of cadherin degradation by p120-catenin. Curr Opin Cell Biol 16: 522–527.

    Article  CAS  PubMed  Google Scholar 

  • Lai AZ, Abella JV, Park M . (2009). Crosstalk in Met receptor oncogenesis. Trends Cell Biol 19: 542–551.

    Article  CAS  PubMed  Google Scholar 

  • Leroy C, Fialin C, Sirvent A, Simon V, Urbach S, Poncet J et al. (2009). Quantitative phosphoproteomics reveals a cluster of tyrosine kinases that mediates SRC invasive activity in advanced colon carcinoma cells. Cancer Res 69: 2279–2286.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Peart MJ, Prives C . (2009). Stxbp4 regulates DeltaNp63 stability by suppression of RACK1-dependent degradation. Mol Cell Biol 29: 3953–3963.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lipsich LA, Lewis AJ, Brugge JS . (1983). Isolation of monoclonal antibodies that recognize the transforming proteins of avian sarcoma viruses. J Virol 48: 352–360.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YV, Baek JH, Zhang H, Diez R, Cole RN, Semenza GL . (2007). RACK1 competes with HSP90 for binding to HIF-1alpha and is required for O(2)-independent and HSP90 inhibitor-induced degradation of HIF-1alpha. Mol Cell 25: 207–217.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lu Z, Ghosh S, Wang Z, Hunter T . (2003). Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell 4: 499–515.

    Article  CAS  PubMed  Google Scholar 

  • Mamidipudi V, Cartwright CA . (2009). A novel pro-apoptotic function of RACK1: suppression of Src activity in the intrinsic and Akt pathways. Oncogene 28: 4421–4433.

    Article  CAS  PubMed  Google Scholar 

  • Mamidipudi V, Dhillon NK, Parman T, Miller LD, Lee KC, Cartwright CA . (2007). RACK1 inhibits colonic cell growth by regulating Src activity at cell cycle checkpoints. Oncogene 26: 2914–2924.

    Article  CAS  PubMed  Google Scholar 

  • Mamidipudi V, Zhang J, Lee KC, Cartwright CA . (2004). RACK1 regulates G1/S progression by suppressing Src kinase activity. Mol Cell Biol 24: 6788–6798.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCahill A, Warwicker J, Bolger GB, Houslay MD, Yarwood SJ . (2002). The RACK1 scaffold protein: a dynamic cog in cell response mechanisms. Mol Pharmacol 62: 1261–1273.

    Article  CAS  PubMed  Google Scholar 

  • Mosesson Y, Mills GB, Yarden Y . (2008). Derailed endocytosis: an emerging feature of cancer. Nat Rev Cancer 8: 835–850.

    Article  CAS  PubMed  Google Scholar 

  • Mourton T, Hellberg CB, Burden-Gulley SM, Hinman J, Rhee A, Brady-Kalnay SM . (2001). The PTPmu protein-tyrosine phosphatase binds and recruits the scaffolding protein RACK1 to cell–cell contacts. J Biol Chem 276: 14896–14901.

    Article  CAS  PubMed  Google Scholar 

  • Ohgaki R, Fukura N, Matsushita M, Mitsui K, Kanazawa H . (2008). Cell surface levels of organellar Na+/H+ exchanger isoform 6 are regulated by interaction with RACK1. J Biol Chem 283: 4417–4429.

    Article  CAS  PubMed  Google Scholar 

  • Orlichenko L, Weller SG, Cao H, Krueger EW, Awoniyi M, Beznoussenko G et al. (2009). Caveolae mediate growth factor-induced disassembly of adherens junctions to support tumor cell dissociation. Mol Biol Cell 20: 4140–4152.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Owens DW, McLean GW, Wyke AW, Paraskeva C, Parkinson EK, Frame MC et al. (2000). The catalytic activity of the Src family kinases is required to disrupt cadherin-dependent cell–cell contacts. Mol Biol Cell 11: 51–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palacios F, Tushir JS, Fujita Y, D'Souza-Schorey C . (2005). Lysosomal targeting of E-cadherin: a unique mechanism for the downregulation of cell–cell adhesion during epithelial to mesenchymal transitions. Mol Cell Biol 25: 389–402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parent A, Laroche G, Hamelin E, Parent JL . (2008). RACK1 regulates the cell surface expression of the G protein-coupled receptor for thromboxane A(2). Traffic 9: 394–407.

    Article  CAS  PubMed  Google Scholar 

  • Rengifo-Cam W, Konishi A, Morishita N, Matsuoka H, Yamori T, Nada S et al. (2004). Csk defines the ability of integrin-mediated cell adhesion and migration in human colon cancer cells: implication for a potential role in cancer metastasis. Oncogene 23: 289–297.

    Article  CAS  PubMed  Google Scholar 

  • Saitoh M, Shirakihara T, Miyazono K . (2009). Regulation of the stability of cell surface E-cadherin by the proteasome. Biochem Biophys Res Commun 381: 560–565.

    Article  CAS  PubMed  Google Scholar 

  • Schechtman D, Mochly-Rosen D . (2001). Adaptor proteins in protein kinase C-mediated signal transduction. Oncogene 20: 6339–6347.

    Article  CAS  PubMed  Google Scholar 

  • Schill NJ, Anderson RA . (2009). Out, in and back again: PtdIns(4,5)P(2) regulates cadherin trafficking in epithelial morphogenesis. Biochem J 418: 247–260.

    Article  CAS  PubMed  Google Scholar 

  • Serrels B, Sandilands E, Serrels A, Baillie G, Houslay MD, Brunton VG et al. (2010). A complex between FAK, RACK1, and PDE4D5 controls spreading initiation and cancer cell polarity. Curr Biol 20: 1086–1092.

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Hirsch DS, Sasiela CA, Wu WJ . (2008). Cdc42 regulates E-cadherin ubiquitination and degradation through an epidermal growth factor receptor to Src-mediated pathway. J Biol Chem 283: 5127–5137.

    Article  CAS  PubMed  Google Scholar 

  • Skoudy A, Llosas MD, Garcia de Herreros A . (1996). Intestinal HT-29 cells with dysfunction of E-cadherin show increased pp60src activity and tyrosine phosphorylation of p120-catenin. Biochem J 317 (Part 1): 279–284.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Varghese B, Barriere H, Carbone CJ, Banerjee A, Swaminathan G, Plotnikov A et al. (2008). Polyubiquitination of prolactin receptor stimulates its internalization, postinternalization sorting, and degradation via the lysosomal pathway. Mol Cell Biol 28: 5275–5287.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vomastek T, Iwanicki MP, Schaeffer HJ, Tarcsafalvi A, Parsons JT, Weber MJ . (2007). RACK1 targets the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway to link integrin engagement with focal adhesion disassembly and cell motility. Mol Cell Biol 27: 8296–8305.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wadhawan A, Smith C, Nicholson RI, Barrett-Lee P, Hiscox S . (2010). Src-mediated regulation of homotypic cell adhesion: implications for cancer progression and opportunities for therapeutic intervention. Cancer Treat Rev 37: 234–241.

    Article  Google Scholar 

  • Woodcock SA, Rooney C, Liontos M, Connolly Y, Zoumpourlis V, Whetton AD et al. (2009). SRC-induced disassembly of adherens junctions requires localized phosphorylation and degradation of the rac activator tiam1. Mol Cell 33: 639–653.

    Article  CAS  PubMed  Google Scholar 

  • Yap AS, Crampton MS, Hardin J . (2007). Making and breaking contacts: the cellular biology of cadherin regulation. Curr Opin Cell Biol 19: 508–514.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yeatman TJ . (2004). A renaissance for SRC. Nat Rev Cancer 4: 470–480.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Toufan Parman for performing initial preliminary experiments. We are grateful to Jenny Cheng, James Nelson, Anson Lowe and Manuel Amieva for helpful discussions and reagents. We thank James Nelson for the gift of MDCK cells and the members of the Lipsick laboratory for help with confocal imaging. We thank Jenny Cheng for critical review of the data and the manuscript. This work was supported by the NIH Grant DK43743 (CAC) and the NIH Digestive Disease Center Grant DK56339.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C A Cartwright.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swaminathan, G., Cartwright, C. Rack1 promotes epithelial cell–cell adhesion by regulating E-cadherin endocytosis. Oncogene 31, 376–389 (2012). https://doi.org/10.1038/onc.2011.242

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.242

Keywords

This article is cited by

Search

Quick links