Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A role for caveolin-1 in desmoglein binding and desmosome dynamics

Abstract

Desmoglein-2 (Dsg2) is a desmosomal cadherin that is aberrantly expressed in human skin carcinomas. In addition to its well-known role in mediating intercellular desmosomal adhesion, Dsg2 regulates mitogenic signaling that may promote cancer development and progression. However, the mechanisms by which Dsg2 activates these signaling pathways and the relative contribution of its signaling and adhesion functions in tumor progression are poorly understood. In this study we show that Dsg2 associates with caveolin-1 (Cav-1), the major protein of specialized membrane microdomains called caveolae, which functions in both membrane protein turnover and intracellular signaling. Sequence analysis revealed that Dsg2 contains a putative Cav-1-binding motif. A permeable competing peptide resembling the Cav-1 scaffolding domain bound to Dsg2, disrupted normal Dsg2 staining and interfered with the integrity of epithelial sheets in vitro. Additionally, we observed that Dsg2 is proteolytically processed; resulting in a 95-kDa ectodomain shed product and a 65-kDa membrane-spanning fragment, the latter of which localizes to lipid rafts along with full-length Dsg2. Disruption of lipid rafts shifted Dsg2 to the non-raft fractions, leading to the accumulation of these proteins. Interestingly, Dsg2 proteolytic products are elevated in vivo in skin tumors from transgenic mice overexpressing Dsg2. Collectively, these data are consistent with the possibility that accumulation of truncated Dsg2 protein interferes with desmosome assembly and/or maintenance to disrupt cell–cell adhesion. Furthermore, the association of Dsg2 with Cav-1 may provide a mechanism for regulating mitogenic signaling and modulating the cell-surface presentation of an important adhesion molecule, both of which could contribute to malignant transformation and tumor progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Allen E, Yu QC, Fuchs E . (1996). Mice expressing a mutant desmosomal cadherin exhibit abnormalities in desmosomes, proliferation, and the epidermal differentiation. J Cell Biol 133: 1367–1382.

    Article  CAS  PubMed  Google Scholar 

  • Andl CD, Stanley JR . (2001). Central role of the plakoglobin-binding domain for desmoglein 3 incorporation into desmosomes. J Invest Dermatol 117: 1068–1074.

    Article  CAS  PubMed  Google Scholar 

  • Arribas J, Bech-Serra JJ, Santiago-Josefat B . (2006). ADAMs, cell migration and cancer. Cancer Metastasis Rev 25: 57–68.

    Article  PubMed  Google Scholar 

  • Bech-Serra JJ, Santiago-Josefat B, Esselens C, Saftig P, Baselga J, Arribas J et al. (2006). Proteomic identification of desmoglein 2 and activated leukocyte cell adhesion molecule as substrates of ADAM17 and ADAM10 by difference gel electrophoresis. Mol Cell Biol 26: 5086–5095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biedermann K, Vogelsang H, Becker I, Plaschke S, Siewert JR, Hofler H et al. (2005). Desmoglein 2 is expressed abnormally rather than mutated in familial and sporadic gastric cancer. J Pathol 207: 199–206.

    Article  CAS  PubMed  Google Scholar 

  • Brennan D, Hu Y, Joubeh S, Choi YW, Whitaker-Menezes D, O'Brien T et al. (2007). Suprabasal Dsg2 expression in transgenic mouse skin confers a hyperproliferative and apoptosis-resistant phenotype to keratinocytes. J Cell Sci 120: 758–771.

    Article  CAS  PubMed  Google Scholar 

  • Brennan D, Mahoney MG . (2009). Increased expression of Dsg2 in malignant skin carcinomas: a tissue-microarray based study. Cell Adh Migr 3: 148–154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown DA, London E . (1998). Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14: 111–136.

    Article  CAS  PubMed  Google Scholar 

  • Capozza F, Williams TM, Schubert W, McClain S, Bouzahzah B, Sotgia F et al. (2003). Absence of caveolin-1 sensitizes mouse skin to carcinogen-induced epidermal hyperplasia and tumor formation. Am J Pathol 162: 2029–2039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ST, Lin SY, Yeh KT, Kuo SJ, Chan WL, Chu YP et al. (2004). Mutational, epigenetic and expressional analyses of caveolin-1 gene in breast cancers. Int J Mol Med 14: 577–582.

    CAS  PubMed  Google Scholar 

  • Cheng X, Koch PJ . (2004). In vivo function of desmosomes. J Dermatol 31: 171–187.

    Article  PubMed  Google Scholar 

  • Cirillo N, Lanza M, De Rosa A, Cammarota M, La Gatta A, Gombos F et al. (2008). The most widespread desmosomal cadherin, desmoglein 2, is a novel target of caspase 3-mediated apoptotic machinery. J Cell Biochem 103: 598–606.

    Article  CAS  PubMed  Google Scholar 

  • Del Galdo F, Lisanti MP, Jimenez SA . (2008). Caveolin-1, transforming growth factor-beta receptor internalization, and the pathogenesis of systemic sclerosis. Curr Opin Rheumatol 20: 713–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delva E, Jennings JM, Calkins CC, Kottke MD, Faundez V, Kowalczyk AP . (2008). Pemphigus vulgaris IgG-induced desmoglein-3 endocytosis and desmosomal disassembly are mediated by a clathrin- and dynamin-independent mechanism. J Biol Chem 283: 18303–18313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denault JB, Salvesen GS . (2008). Apoptotic caspase activation and activity. Methods Mol Biol 414: 191–220.

    CAS  PubMed  Google Scholar 

  • Denning MF, Guy SG, Ellerbroek SM, Norvell SM, Kowalczyk AP, Green KJ . (1998). The expression of desmoglein isoforms in cultured human keratinocytes is regulated by calcium, serum, and protein kinase C. Exp Cell Res 239: 50–59.

    Article  CAS  PubMed  Google Scholar 

  • Engelman JA, Wykoff CC, Yasuhara S, Song KS, Okamoto T, Lisanti MP . (1997). Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth. J Biol Chem 272: 16374–16381.

    Article  CAS  PubMed  Google Scholar 

  • Eshkind L, Tian Q, Schmidt A, Franke WW, Windoffer R, Leube RE . (2002). Loss of desmoglein 2 suggests essential functions for early embryonic development and proliferation of embryonal stem cells. Eur J Cell Biol 81: 592–598.

    Article  CAS  PubMed  Google Scholar 

  • Fielding PE, Fielding CJ . (1995). Plasma membrane caveolae mediate the efflux of cellular free cholesterol. Biochemistry 34: 14288–14292.

    Article  CAS  PubMed  Google Scholar 

  • Fra AM, Williamson E, Simons K, Parton RG . (1994). Detergent-insoluble glycolipid microdomains in lymphocytes in the absence of caveolae. J Biol Chem 269: 30745–20748.

    CAS  PubMed  Google Scholar 

  • Furuchi T, Anderson RG . (1998). Cholesterol depletion of caveolae causes hyperactivation of extracellular signal-related kinase (ERK). J Biol Chem 273: 21099–21104.

    Article  CAS  PubMed  Google Scholar 

  • Galbiati F, Volonte D, Brown AM, Weinstein DE, Ben-Ze'ev A, Pestell RG et al. (2000). Caveolin-1 expression inhibits Wnt/beta-catenin/Lef-1 signaling by recruiting beta-catenin to caveolae membrane domains. J Biol Chem 275: 23368–23377.

    Article  CAS  PubMed  Google Scholar 

  • Garrod DR, Merritt AJ, Nie Z . (2002). Desmosomal cadherins. Curr Opin Cell Biol 14: 537–545.

    Article  CAS  PubMed  Google Scholar 

  • Gassmann MG, Werner S . (2000). Caveolin-1 and -2 expression is differentially regulated in cultured keratinocytes and within the regenerating epidermis of cutaneous wounds. Exp Cell Res 258: 23–32.

    Article  CAS  PubMed  Google Scholar 

  • Harada H, Iwatsuki K, Ohtsuka M, Han G, Kaneko F . (1996). Abnormal desmoglein expression by squamous cell carcinoma cells. Acta Derm Venereol 16: 417–420.

    Google Scholar 

  • Keim SA, Johnson KR, Wheelock MJ, Wahl JK . (2008). Generation and characterization of monoclonal antibodies against the proregion of human desmoglein-2. Hybridoma 27: 249–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenny PA, Bissell MJ . (2007). Targeting TACE-dependent EGFR ligand shedding in breast cancer. J Clin Invest 117: 337–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klessner JL, Desai BV, Amargo EV, Getsios S, Green KJ . (2009). EGFR and ADAMs cooperate to regulate shedding and endocytic trafficking of the desmosomal cadherin desmoglein 2. Mol Biol Cell 20: 328–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurzchalia TV, Parton RG . (1999). Membrane microdomains and caveolae. Curr Opin Cell Biol 11: 424–431.

    Article  CAS  PubMed  Google Scholar 

  • Kurzen H, Munzing I, Hartschuh W . (2003). Expression of desmosomal proteins in squamous cell carcinomas of the skin. J Cutan Pathol 30: 621–630.

    Article  PubMed  Google Scholar 

  • Lajoie P, Nabi IR . (2010). Lipid rafts, caveolae, and their endocytosis. Int Rev Cell Mol Biol 282: 135–163.

    Article  CAS  PubMed  Google Scholar 

  • Laughlin RC, McGugan GC, Powell RR, Welter BH, Temesvari LA . (2004). Involvement of raft-like plasma membrane domains of Entamoeba histolytica in pinocytosis and adhesion. Infect Immun 72: 5349–5357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SW, Reimer CL, Oh P, Campbell DB, Schnitzer JE . (1998). Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene 16: 1391–1397.

    Article  CAS  PubMed  Google Scholar 

  • Lisanti MP, Scherer PE, Tang Z, Sargiacomo M . (1994). Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol 4: 231–235.

    Article  CAS  PubMed  Google Scholar 

  • Lorch JH, Thomas TO, Schmoll HJ . (2007). Bortezomib inhibits cell–cell adhesion and cell migration and enhances epidermal growth factor receptor inhibitor-induced cell death in squamous cell cancer. Cancer Res 67: 727–734.

    Article  CAS  PubMed  Google Scholar 

  • Mahoney MG, Hu Y, Brennan D, Bazzi H, Christiano AM, Wahl III JK . (2006). Delineation of diversified desmoglein distribution in stratified squamous epithelia: implications in diseases. Exp Dermatol 15: 101–109.

    Article  CAS  PubMed  Google Scholar 

  • Mahoney MG, Simpson A, Aho S, Uitto J, Pulkkinen L . (2002). Interspecies conservation and differential expression of mouse desmoglein gene family. Exp Derm 11: 115–125.

    Article  CAS  PubMed  Google Scholar 

  • Nava P, Laukoetter MG, Hopkins AM, Laur O, Gerner-Smidt K, Green KJ et al. (2007). Desmoglein-2: a novel regulator of apoptosis in the intestinal epithelium. Mol Biol Cell 18: 4565–4578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto CT . (1998). Endocytosis and transcytosis. Adv Drug Deliv Rev 29: 215–228.

    Article  CAS  PubMed  Google Scholar 

  • Okamoto T, Schlegel A, Scherer PE, Lisanti MP . (1998). Caveolins, a family of scaffolding proteins for organizing ‘preassembled signaling complexes’ at the plasma membrane. J Biol Chem 273: 5419–5422.

    Article  CAS  PubMed  Google Scholar 

  • Orlichenko L, Huang B, Krueger E, McNiven MA . (2006). Epithelial growth factor-induced phosphorylation of caveolin 1 at tyrosine 14 stimulates caveolae formation in epithelial cells. J Biol Chem 281: 4570–4579.

    Article  CAS  PubMed  Google Scholar 

  • Park DS, Lee H, Frank PG, Razani B, Nguyen AV, Parlow AF et al. (2002). Caveolin-1-deficient mice show accelerated mammary gland development during pregnancy, premature lactation, and hyperactivation of the Jak-2/STAT5a signaling cascade. Mol Biol Cell 13: 3416–3430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rupinder SK, Gurpreet AK, Manjeet S . (2007). Cell suicide and caspases. Vascul Pharmacol 46: 383–393.

    Article  CAS  PubMed  Google Scholar 

  • Santiago-Josefat B, Esselens C, Bech-Serra JJ, Arribas J . (2007). Post-transcriptional upregulation of ADAM17 upon epidermal growth factor receptor activation and in breast tumors. J Biol Chem 282: 8325–8331.

    Article  CAS  PubMed  Google Scholar 

  • Schäfer S, Koch PJ, Franke WW . (1994). Identification of the ubiquitous human desmoglein, Dsg2, and the expression catalogue of the desmoglein subfamily of desmosomal cadherins. Exp Cell Res 211: 391–399.

    Article  PubMed  Google Scholar 

  • Scherer PE, Tang ZL, Chun M, Sargiacomo M, Lodish HF, Lisanti MP . (1995). Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution. J Biol Chem 270: 16395–16401.

    Article  CAS  PubMed  Google Scholar 

  • Schnitzer JE, Oh P . (1996). Aquaporin-1 in plasma membrane and caveolae provides mercury-sensitive water channels across lung endothelium. Am J Physiol 270: H416–H422.

    CAS  PubMed  Google Scholar 

  • Sedding DG, Hermsen J, Seay U, Eickelberg O, Kummer W, Schwencke C et al. (2005). Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo. Circ Res 96: 635–642.

    Article  CAS  PubMed  Google Scholar 

  • Severs NJ . (1988). Caveolae: static inpocketings of the plasma membrane, dynamic vesicles or plain artifact? J Cell Sci 90: 341–348.

    PubMed  Google Scholar 

  • Shaul PW, Anderson RG . (1998). Role of plasmalemmal caveolae in signal transduction. Am J Physiol 275: L843–L851.

    CAS  PubMed  Google Scholar 

  • Simons K, Ikonen E . (1997). Functional rafts in cell membranes. Nature 387: 569–572.

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Toomre D . (2000). Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1: 31–39.

    Article  CAS  Google Scholar 

  • Singer SJ, Nicolson GL . (1972). The fluid mosaic model of the structure of cell membranes. Science 175: 720–731.

    Article  CAS  PubMed  Google Scholar 

  • Smart EJ, Ying Y, Donzell WC, Anderson RG . (1996). A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J Biol Chem 271: 29427–29435.

    Article  CAS  PubMed  Google Scholar 

  • Song J, Dohlman HG . (1996). Partial constitutive activation of pheromone responses by a palmitoylation-site mutant of a G protein alpha subunit in yeast. Biochemistry 35: 14806–14817.

    Article  CAS  PubMed  Google Scholar 

  • Tang Z, Scherer PE, Okamoto T, Song KS, Chu C, Kohtz DS et al. (1996). Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 271: 2255–2261.

    Article  CAS  PubMed  Google Scholar 

  • Trojan L, Schaaf A, Steidler A, Haak M, Thalmann G, Knoll T et al. (2005). Identification of metastasis-associated genes in prostate cancer by genetic profiling of human prostate cancer cell lines. Anticancer Res 25: 183–191.

    CAS  PubMed  Google Scholar 

  • Troyanovsky SM, Eshkind LG, Troyanvsky RB, Leube RE, Franke WW . (1993). Contributions of cytoplasmic domains of desmosomal cadherins to desmosome assembly and intermediate filament anchorage. Cell 72: 561–574.

    Article  CAS  PubMed  Google Scholar 

  • Wang PY, Liu P, Weng J, Sontag E, Anderson RG . (2003). A cholesterol-regulated PP2A/HePTP complex with dual specificity ERK1/2 phosphatase activity. EMBO J 22: 2658–2667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittock NV . (2003). Genomic sequence analysis of the mouse desmoglein cluster reveals evidence for six distinct genes: characterization of mouse DSG4, DSG5, and DSG6. J Invest Dermatol 120: 970–980.

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Ray S, Bollag WB . (2003). Modulation of phospholipase D-mediated phosphatidylglycerol formation by differentiating agents in primary mouse epidermal keratinocytes. Biochim Biophys Acta 1643: 25–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Abhilasha Gupta for critically reading the paper and insightful discussions. This work was supported by grants from the National Institutes of Health to M Mahoney (R01 AR47938), J Wahl (R01 DE01905) and K Green (R01 CA122151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M G Mahoney.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brennan, D., Peltonen, S., Dowling, A. et al. A role for caveolin-1 in desmoglein binding and desmosome dynamics. Oncogene 31, 1636–1648 (2012). https://doi.org/10.1038/onc.2011.346

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.346

Keywords

This article is cited by

Search

Quick links