Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The oncogenic phosphatase PPM1D confers cisplatin resistance in ovarian carcinoma cells by attenuating checkpoint kinase 1 and p53 activation

Abstract

Cisplatin (CDDP: cis-diamminedichloroplatinum) resistance is a major hurdle in the treatment of human ovarian cancer (OVCA). A better understanding of the mechanisms of CDDP resistance can greatly improve therapeutic outcome for patients. A determinant of CDDP sensitivity in OVCA, p53, is activated by checkpoint kinase 1 (Chk1) in response to DNA damage. Although the oncogenic phosphatase protein phosphatase magnesium-dependent 1 (PPM1D) can deactivate both p53 and Chk1 through site-specific dephosphorylation, whether PPM1D has a role in CDDP resistance is unknown. Here, using pair-matched wild-type p53 CDDP-sensitive (OV2008) and -resistant (C13*) cells, and p53-compromised CDDP-resistant cells (A2780cp, OCC-1, OVCAR-3 and SKOV3), we have demonstrated (i) the existence of site-specific differences in phospho-Ser-Chk1 content between sensitive and resistant cells in response to CDDP; (ii) PPM1D, but not phosphoinositide-3-kinase-related kinase Ataxia Telangiectasia and Rad3 related protein (ATR), is important in the regulation of CDDP-induced Chk1 activation and OVCA cell chemosensitivity; (iii) PPM1D downregulation sensitizes resistant cells to CDDP primarily by activating Chk1 and p53. Our findings establish for the first time that PPM1D confers CDDP resistance in OVCA cells through attenuating CDDP-induced, Chk1-mediated, p53-dependent apoptosis. These findings extend the current knowledge on the molecular and cellular basis of cisplatin resistance and offer the rationale for PPMID as a potential target for treatment of chemoresistant OVCA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abedini MR, Muller EJ, Bergeron R, Gray DA, Tsang BK . (2010). Akt promotes chemoresistance in human ovarian cancer cells by modulating cisplatin-induced, p53-dependent ubiquitination of FLICE-like inhibitory protein. Oncogene 29: 11–25.

    Article  CAS  PubMed  Google Scholar 

  • Abedini MR, Muller EJ, Brun J, Bergeron R, Gray DA, Tsang BK . (2008). Cisplatin induces p53-dependent FLICE-like inhibitory protein ubiquitination in ovarian cancer cells. Cancer Res 68: 4511–4517.

    Article  CAS  PubMed  Google Scholar 

  • Bulavin DV, Demidov ON, Saito S, Kauraniemi P, Phillips C, Amundson SA et al. (2002). Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat Genet 31: 210–215.

    Article  CAS  PubMed  Google Scholar 

  • Bunch RT, Eastman A . (1996). Enhancement of cisplatin-induced cytotoxicity by 7-hydroxystaurosporine (UCN-01), a new G2-checkpoint inhibitor. Clin Cancer Res 2: 791–797.

    CAS  PubMed  Google Scholar 

  • Busby EC, Leistritz DF, Abraham RT, Karnitz LM, Sarkaria JN . (2000). The radiosensitizing agent 7-hydroxystaurosporine (UCN-01) inhibits the DNA damage checkpoint kinase hChk1. Cancer Res 60: 2108–2112.

    CAS  PubMed  Google Scholar 

  • Canadian Cancer Society 2009. Canadian Cancer Statistics. Available from: www.cancer.ca.

  • Capasso H, Palermo C, Wan S, Rao H, John UP, O'Connell MJ et al. (2002). Phosphorylation activates Chk1 and is required for checkpoint-mediated cell cycle arrest. J Cell Sci 115: 4555–4564.

    Article  CAS  PubMed  Google Scholar 

  • Carrassa L, Broggini M, Erba E, Damia G . (2004). Chk1, but not Chk2, is involved in the cellular response to DNA damaging agents: differential activity in cells expressing or not p53. Cell Cycle 3: 1177–1181.

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Xiao Z, Gu WZ, Xue J, Bui MH, Kovar P et al. (2006). Selective Chk1 inhibitors differentially sensitize p53-deficient cancer cells to cancer therapeutics. Int J Cancer 119: 2784–2794.

    Article  CAS  PubMed  Google Scholar 

  • Chew J, Biswas S, Sheeram S, Humaidi M, Wong ET, Dhillion MK et al. (2009). WIP1 phosphatase is a negative regulator of NF-kappaB signalling. Nat Cell Bio 11: 659–666.

    Article  CAS  Google Scholar 

  • Choi J, Appella E, Donehower L . (2000). The structure and expression of the murine wildtype p53-induced phosphatase 1 (Wip1) gene. Genomics 64: 298–306.

    Article  CAS  PubMed  Google Scholar 

  • Chuman Y, Yagi H, Fukuda T, Nomura T, Matsukizono M, Shimohigashi Y et al. (2008). Characterization of the active site and a unique uncompetitive inhibitor of PPM1-type protein phosphatase PPM1D. Protein Pept Lett 15: 938–948.

    Article  CAS  PubMed  Google Scholar 

  • Damia G, Filiberti L, Vikhanskaya F, Carrassa L, Taya Y, D'incalci M et al. (2001). Cisplatinum and taxol induce different patterns of p53 phosphorylation. Neoplasia 3: 10–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser M, Bai T, Tsang BK . (2008). Akt promotes cisplatin resistance in human ovarian cancer cells through inhibition of p53 phosphorylation and nuclear function. Int J Cancer 22: 534–546.

    Article  Google Scholar 

  • Graves PR, Yu L, Schwarz JK, Gales J, Sausville EA, O'Connor PM et al. (2000). The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J Biol Chem 275: 5600–5605.

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa A, Saito-Ohara F, Inoue J, Aoki D, Susumu N, Yokoyama T et al. (2003). Association of 17q21-q24 gain in ovarian clear cell adenocarcinomas with poor prognosis and identification of PPM1D and APPBP2 as likely amplification targets. Clin Cancer Res 9: 1995–2004.

    CAS  PubMed  Google Scholar 

  • Honda R, Tanaka H, Yasuda H . (1997). Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420: 25–27.

    Article  CAS  PubMed  Google Scholar 

  • Jekunen AP, Hom DK, Alcaraz JE, Eastman A, Howell SB . (1994). Cellular pharmacology of dichloro(ethylenediamine)platinum (II) in cisplatin-sensitive and resistant human ovarian carcinoma cells. Cancer Res 54: 2680–2687.

    CAS  PubMed  Google Scholar 

  • Jiang K, Pereira E, Maxfield M, Russell B, Goudelock DM, Sanchez Y . (2003). Regulation of Chk1 includes chromatin association and 14-3-3 binding following phosphorylation on Ser-345. J Biol Chem 278: 25207–25217.

    Article  CAS  PubMed  Google Scholar 

  • Jurvansuu J, Fragkos M, Ingemarsdotter C, Beard P . (2007). Chk1 instability is coupled to mitotic cell death of p53-deficient cells in response to virus-induced DNA damage signaling. J Mol Biol 372: 397–406.

    Article  CAS  PubMed  Google Scholar 

  • Ko LJ, Prives C . (1996). p53: puzzle and paradigm. Genes Dev 10: 1054–1072.

    Article  CAS  PubMed  Google Scholar 

  • Lakin ND, Jackson SP . (1999). Regulation of p53 in response to DNA damage. Oncogene 18: 7644–7655.

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ . (1997). p53, the cellular gatekeeper for growth and division. Cell 88: 323–331.

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Ma O, Nguyen TA, Jones SN, Oren M, Donehower A . (2007). The Wip1 phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop. Cancer Cell 12: 342–354.

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Nguyen T, Donehower L . (2005). Reversal of the ATM/ATR-mediated DNA damage response by the oncogenic phosphatase PPM1D. Cell Cycle 4: 1060–1064.

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Nguyen T, Moon S, Darlington Y, Sommer M, Donehower L . (2008). The type 2C phosphatase Wip1: an oncogenic regulator of tumor suppressor and DNA damage response pathways. Cancer Metastasis Rev 27: 123–135.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu X, Nguyen TA, Appella E, Donehower LA . (2004). Homeostatic regulation of base excision repair by a p53-induced phosphatase. Cell Cycle 3: 1363–1366.

    Article  CAS  PubMed  Google Scholar 

  • Mistry P, Kelland LR, Loh SW, Abel G, Murrer BA, Harrap KR . (1992). Comparison of cellular accumulation and cytotoxicity of cisplatin with that of tetraplatin and amminedibutyratodichloro(cyclohexylamine)platinum(IV) (JM221) in human ovarian carcinoma cell lines. Cancer Res 52: 6188–6193.

    CAS  PubMed  Google Scholar 

  • Ouyang G, Yao L, Ruan K, Song G, Mao Y, Bao S . (2009). Genistein induces G2/M cell cycle arrest and apoptosis of human ovarian cancer cells via activation of DNA damage checkpoint pathways. Cell Biol Int 33: 1237–1244.

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Ren KH, He HW, Shao RG . (2009). Knockdown of Chk1sensitizes human colon carcinoma HCT116 cells in a p53-dependent manner to lidamycin through abrogation of a G2/M checkpoint and induction of apoptosis. Cancer Biol Ther 8: 1559–1566.

    Article  CAS  PubMed  Google Scholar 

  • Perego P, Gatti L, Righetti SC, Beretta GL, Carenini N, Corna E et al. (2003). Development of resistance to a trinuclear platinum complex in ovarian carcinoma cells. Int J Cancer 105: 617–624.

    Article  CAS  PubMed  Google Scholar 

  • Perego P, Giarola M, Righetti SC, Supino R, Caserini C, Delia D et al. (1996). Association between cisplatin resistance and mutation of p53 gene and reduced Bax expression in ovarian carcinoma cell systems. Cancer Res 56: 556–562.

    CAS  PubMed  Google Scholar 

  • Playle LC, Hicks DJ, Qualtrough D, Paraskeva C . (2002). Abrogation of the radiation-induced G2 checkpoint by the staurosporine derivative UCN-01 is associated with radiosensitisation in a subset of colorectal tumour cell lines. Br J Cancer 87: 352–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu YH, Chung PH, Sun TP, Shieh SY . (2005). p53 C-terminal phosphorylation by CHK1 and CHK2 participates in the regulation of DNA-damage-induced C-terminal acetylation. Mol Biol Cell 16: 1684–1695.

    Article  Google Scholar 

  • Rauta J, Alarmo EL, Kauraniemi P, Karhu R, Kuukasjarvi T, Kallioniemi A . (2006). The serine-threonine protein phosphatase PPM1D is frequently activated through amplification in aggressive primary breast tumours. Breast Cancer Res Treat 95: 257–263.

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB . (2007). p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 11: 175–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rong JJ, Hu R, Song XM, Ha J, Lu N, Qi Q et al. (2010). Gambogic acid triggers DNA damage signaling that induces p53/p21(Waf1/CIP1) activation through the ATR-Chk1 pathway. Cancer Lett 296: 55–64.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki H, Sheng Y, Kotsuji F, Tsang BK . (2000). Down-regulation of X-linked inhibitor of apoptosis protein induces apoptosis in chemoresistant human ovarian cancer cells. Cancer Res 60: 5659–5666.

    CAS  PubMed  Google Scholar 

  • Shao RG, Cao CX, Shimizu T, O'Connor PM, Kohn KW et al. (1997). Abrogation of an S-phase checkpoint and potentiation of camptothecin cytotoxicity by 7-hydroxystaurosporine (UCN-01) in human cancer cell lines, possibly influenced by p53 function. Cancer Res 57: 4029–4035.

    CAS  PubMed  Google Scholar 

  • Shaw TJ, Senterman MK, Dawson K, Crane CA, Vanderhyden BC . (2004). Characterization of intraperitoneal, orthotopic and metastatic xenografts models of human ovarian cancer. Mol Ther 10: 1032–1042.

    Article  CAS  PubMed  Google Scholar 

  • Shieh SY, Ahn J, Tamai K, Taya Y, Prives C . (2000). The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 14: 289–300. Erratum in: Genes Dev (2000) 14(6): 750.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shieh SY, Ikeda M, Taya Y, Prives C . (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91: 325–334.

    Article  CAS  PubMed  Google Scholar 

  • Shieh SY, Taya Y, Prives C . (1999). DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization. EMBO J 18: 1815–1823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiyama K, Shimizu M, Akiyama T, Tamaoki T, Yamaguchi K, Takahashi R et al. (2000). UCN-01 selectively enhances mitomycin C cytotoxicity in p53 defective cells which is mediated through S and/or G2 checkpoint abrogation. Int J Cancer 85: 703–709.

    Article  CAS  PubMed  Google Scholar 

  • Tan DS, Lambros MB, Rayter S, Natrajan R, Vatcheva R, Gao Q et al. (2009). PPM1D is a potential therapeutic target in ovarian clear cell carcinomas. Clin Cancer Res 15: 2269–2280.

    Article  CAS  PubMed  Google Scholar 

  • Traven A, Heierhorst J . (2005). SQ/TQ cluster domains: concentrated ATM/ATR kinase phosphorylation site regions in DNA-damage-response proteins. Bioassays 27: 397–407.

    Article  CAS  Google Scholar 

  • Wagner JM, Karnitz LM . (2009). Cisplatin-induced DNA damage activates replication checkpoint signaling components that differentially affect tumor cell survival. Mol Pharmacol 76: 208–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilsker D, Petermann E, Helleday T, Bunz F . (2008). Essential function of Chk1 can be uncoupled from DNA damage checkpoint and replication control. Proc Natl Acad Sci USA 105: 20752–20757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi H, Durell SR, Chatterjee DK, Anderson CW, Apella E . (2007). The Wip1 phosphatase PPM1D dephosphorylates SQ/TQ motifs in checkpoint substrates phosphorylated by PI3K-like kinases. Biochemistry 46: 12594–12603.

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Fraser M, Abedini MR, Bai T, Tsang BK . (2008). Regulation of apoptosis-inducing factor-mediated, cisplatin-induced apoptosis by Akt. Br J Cancer 98: 803–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Fraser M, Moll UM, Basak A, Tsang BK . (2006). Akt-mediated cisplatin resistance in ovarian cancer: modulation of p53 action on caspase-dependent mitochondrial death pathway. Cancer Res 66: 3126–3136.

    Article  CAS  PubMed  Google Scholar 

  • Yazlovitskaya EM, Persons DL . (2003). Inhibition of cisplatin-induced ATR activity and enhanced sensitivity to cisplatin. Anticancer Res 23 (3B): 2275–2279.

    CAS  PubMed  Google Scholar 

  • Zhang WH, Poh A, Fanous AA, Eastman A . (2008). DNA damage-induced S phase arrest in human breast cancer depends on Chk1, but G2 arrest can occur independently of Chk1, Chk2, or MAPKAPK2. Cell Cycle 7: 1668–1677.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Lin L, Guo H, Yang J, Jones SN, Jochemsen A et al. (2009). Phosphorylation and degradation of MdmX is inhibited by Wip1 phosphatase in the DNA damage response. Cancer Res 69: 7960–7968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Piwnica-Worms H . (2001). ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol 21: 4129–4139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Canadian Institutes of Health Research (MOP-15691), the World Class University (WCU) program (R31-10056) through the National Research Foundation of Korea, funded by the Ministry of Education, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B K Tsang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, A., Abedini, M. & Tsang, B. The oncogenic phosphatase PPM1D confers cisplatin resistance in ovarian carcinoma cells by attenuating checkpoint kinase 1 and p53 activation. Oncogene 31, 2175–2186 (2012). https://doi.org/10.1038/onc.2011.399

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.399

Keywords

This article is cited by

Search

Quick links