Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Differential regulation of the two RhoA-specific GEF isoforms Net1/Net1A by TGF-β and miR-24: role in epithelial-to-mesenchymal transition

Abstract

In the present study we analyzed the regulation of the two isoforms of the RhoA-specific guanine nucleotide exchange factor Net1 by transforming growth factor-β (TGF-β) in keratinocytes. We report that short-term TGF-β treatment selectively induced Net1 isoform2 (Net1A) but not Net1 isoform1. This led to upregulation of cytoplasmic Net1A protein levels that were necessary for TGF-β-mediated RhoA activation. Smad signaling and the MAPK/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway were involved in Net1A upregulation by TGF-β. Interestingly, long-term TGF-β treatment resulted in Net1 mRNA downregulation and Net1A protein degradation by the proteasome. Furthermore, we identified the microRNA miR-24 as a novel post-transcriptional regulator of Net1A expression. Silencing of Net1A resulted in disruption of E-cadherin- and zonula occludens-1 (ZO-1)-mediated junctions, as well as expression of the transcriptional repressor of E-cadherin, Slug and the mesenchymal markers N-cadherin, plasminogen activator inhibitor-1 (PAI-1) and fibronectin, indicating that late TGF-β-induced downregulation of Net1A is involved in epithelial-to-mesenchymal transition (EMT). Finally, miR-24 was found to be implicated in the regulation of the EMT program in response to TGF-β and was shown to be directly involved in the TGF-β-induced breast cancer cell invasiveness through Net1A regulation. Our results emphasize the importance of Net1 isoform2 in the short- and long-term TGF-β-mediated regulation of EMT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Baum B, Georgiou M . (2011). Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. J Cell Biol 192: 907–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr HS, Cai C, Keinanen K, Frost JA . (2009). Interaction of the RhoA exchange factor Net1 with discs large homolog 1 protects it from proteasome-mediated degradation and potentiates Net1 activity. J Biol Chem 284: 24269–24280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derynck R, Akhurst RJ . (2007). Differentiation plasticity regulated by TGF-beta family proteins in development and disease. Nat Cell Biol 9: 1000–1004.

    Article  CAS  PubMed  Google Scholar 

  • Fujii M, Takeda K, Imamura T, Aoki H, Sampath TK, Enomoto S et al. (1999). Roles of bone morphogenetic protein type I receptors and Smad proteins in osteoblast and chondroblast differentiation. Mol Biol Cell 10: 3801–3813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Mata R, Burridge K . (2007). Catching a GEF by its tail. Trends Cell Biol 17: 36–43.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Mata R, Dubash AD, Sharek L, Carr HS, Frost JA, Burridge K . (2007). The nuclear RhoA exchange factor Net1 interacts with proteins of the Dlg family, affects their localization, and influences their tumor suppressor activity. Mol Cell Biol 27: 8683–8697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10: 593–601.

    Article  CAS  PubMed  Google Scholar 

  • Ikushima H, Miyazono K . (2010). TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 10: 415–424.

    Article  CAS  PubMed  Google Scholar 

  • Inoue Y, Imamura T . (2008). Regulation of TGF-beta family signaling by E3 ubiquitin ligases. Cancer Sci 99: 2107–2112.

    Article  CAS  PubMed  Google Scholar 

  • Izzi L, Attisano L . (2004). Regulation of the TGFbeta signalling pathway by ubiquitin-mediated degradation. Oncogene 23: 2071–2078.

    Article  CAS  PubMed  Google Scholar 

  • Javelaud D, Mauviel A . (2005). Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: implications for carcinogenesis. Oncogene 24: 5742–5750.

    Article  CAS  PubMed  Google Scholar 

  • Kardassis D, Murphy C, Fotsis T, Moustakas A, Stournaras C . (2009). Control of transforming growth factor beta signal transduction by small GTPases. FEBS J 276: 2947–2965.

    Article  CAS  PubMed  Google Scholar 

  • Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS et al. (2008). MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 28: 6773–6784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurisaki K, Kurisaki A, Valcourt U, Terentiev AA, Pardali K, Ten Dijke P et al. (2003). Nuclear factor YY1 inhibits transforming growth factor beta- and bone morphogenetic protein-induced cell differentiation. Mol Cell Biol 23: 4494–4510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, O'Day E et al. (2009). miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements. Mol Cell 35: 610–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Moon HJ, Lee JM, Joo CK . (2010). Smad3 regulates Rho signaling via NET1 in the TGF-{beta}-induced epithelial-mesenchymal transition of human retinal pigment epithelial cells. J Biol Chem 285: 26618–26627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SC, Liu CJ, Lin JA, Chiang WF, Hung PS, Chang KW . (2011). miR-24 up-regulation in oral carcinoma: positive association from clinical and in vitro analysis. Oral Oncol 46: 204–208.

    Article  Google Scholar 

  • Massague J . (2008). TGFbeta in cancer. Cell 134: 215–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moustakas A, Heldin CH . (2005). Non-Smad TGF-beta signals. J Cell Sci 118: 3573–3584.

    Article  CAS  PubMed  Google Scholar 

  • Moustakas A, Heldin CH . (2008). Dynamic control of TGF-beta signaling and its links to the cytoskeleton. FEBS Lett 582: 2051–2065.

    Article  CAS  PubMed  Google Scholar 

  • Moustakas A, Heldin CH . (2009). The regulation of TGFbeta signal transduction. Development 136: 3699–3714.

    Article  CAS  PubMed  Google Scholar 

  • Nakaya Y, Sukowati EW, Wu Y, Sheng G . (2008). RhoA and microtubule dynamics control cell-basement membrane interaction in EMT during gastrulation. Nat Cell Biol 10: 765–775.

    Article  CAS  PubMed  Google Scholar 

  • Pardali K, Moustakas A . (2007). Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta 1775: 21–62.

    CAS  PubMed  Google Scholar 

  • Piek E, Moustakas A, Kurisaki A, Heldin CH, ten Dijke P . (1999). TGF-(beta) type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J Cell Sci 112 (Pt 24): 4557–4568.

    CAS  PubMed  Google Scholar 

  • Qin H, Carr HS, Wu X, Muallem D, Tran NH, Frost JA . (2005). Characterization of the biochemical and transforming properties of the neuroepithelial transforming protein 1. J Biol Chem 280: 7603–7613.

    Article  CAS  PubMed  Google Scholar 

  • Qin W, Shi Y, Zhao B, Yao C, Jin L, Ma J et al. (2010). miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS One 5: e9429.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajasekaran SA, Palmer LG, Moon SY, Peralta Soler A, Apodaca GL, Harper JF et al. (2001). Na,K-ATPase activity is required for formation of tight junctions, desmosomes, and induction of polarity in epithelial cells. Mol Biol Cell 12: 3717–3732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossman KL, Der CJ, Sondek J . (2005). GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6: 167–180.

    Article  CAS  PubMed  Google Scholar 

  • Sahai E, Marshall CJ . (2002). ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nat Cell Biol 4: 408–415.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A, Hall A . (2002). The Rho exchange factor Net1 is regulated by nuclear sequestration. J Biol Chem 277: 14581–14588.

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Li J, Hu PP, Waddell D, Zhang J, Wang XF . (2001). The activity of guanine exchange factor NET1 is essential for transforming growth factor-beta-mediated stress fiber formation. J Biol Chem 276: 15362–15368.

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Massague J . (2003). Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113: 685–700.

    Article  CAS  PubMed  Google Scholar 

  • Shirakihara T, Horiguchi K, Miyazawa K, Ehata S, Shibata T, Morita I et al. (2011). TGF-beta regulates isoform switching of FGF receptors and epithelial-mesenchymal transition. EMBO J 30: 783–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun F, Wang J, Pan Q, Yu Y, Zhang Y, Wan Y et al. (2009). Characterization of function and regulation of miR-24-1 and miR-31. Biochem Biophys Res Commun 380: 660–665.

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Zhang Y, Yang G, Chen X, Cao G, Wang J et al. (2008). Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res 36: 2690–2699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaezi A, Bauer C, Vasioukhin V, Fuchs E . (2002). Actin cable dynamics and Rho/Rock orchestrate a polarized cytoskeletal architecture in the early steps of assembling a stratified epithelium. Dev Cell 3: 367–381.

    Article  CAS  PubMed  Google Scholar 

  • Vardouli L, Moustakas A, Stournaras C . (2005). LIM-kinase 2 and cofilin phosphorylation mediate actin cytoskeleton reorganization induced by transforming growth factor-beta. J Biol Chem 280: 11448–11457.

    Article  CAS  PubMed  Google Scholar 

  • Vardouli L, Vasilaki E, Papadimitriou E, Kardassis D, Stournaras C . (2008). A novel mechanism of TGFbeta-induced actin reorganization mediated by Smad proteins and Rho GTPases. FEBS J 275: 4074–4087.

    Article  CAS  PubMed  Google Scholar 

  • Vasilaki E, Papadimitriou E, Tajadura V, Ridley AJ, Stournaras C, Kardassis D . (2010). Transcriptional regulation of the small GTPase RhoB gene by TGF{beta}-induced signaling pathways. FASEB J 24: 891–905.

    Article  CAS  PubMed  Google Scholar 

  • Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH et al. (2003). Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302: 1775–1779.

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Huang Z, Xue H, Jin C, Ju XL, Han JD et al. (2008). MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood 111: 588–595.

    Article  CAS  PubMed  Google Scholar 

  • Xie L, Wang T, Yu S, Chen X, Wang L, Qian X et al. (2011). Cell-free miR-24 and miR-30d, potential diagnostic biomarkers in malignant effusions. Clin Biochem 44: 216–220.

    Article  CAS  PubMed  Google Scholar 

  • Zaidi SK, Dowdy CR, van Wijnen AJ, Lian JB, Raza A, Stein JL et al. (2009). Altered Runx1 subnuclear targeting enhances myeloid cell proliferation and blocks differentiation by activating a miR-24/MKP-7/MAPK network. Cancer Res 69: 8249–8255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YE . (2009). Non-Smad pathways in TGF-beta signaling. Cell Res 19: 128–139.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the PENED program of the Greek Secretariat for Research and Technology (Grant no. PENED03-688). We thank Dr EA Papakonstanti for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Stournaras.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papadimitriou, E., Vasilaki, E., Vorvis, C. et al. Differential regulation of the two RhoA-specific GEF isoforms Net1/Net1A by TGF-β and miR-24: role in epithelial-to-mesenchymal transition. Oncogene 31, 2862–2875 (2012). https://doi.org/10.1038/onc.2011.457

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.457

Keywords

This article is cited by

Search

Quick links