Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

BRCA1 and GATA3 corepress FOXC1 to inhibit the pathogenesis of basal-like breast cancers

Abstract

In this study we describe a novel interaction between the breast/ovarian tumor suppressor gene BRCA1 and the transcription factor GATA3, an interaction, which is important for normal breast differentiation. We show that the BRCA1–GATA3 interaction is important for the repression of genes associated with triple-negative and basal-like breast cancer (BLBCs) including FOXC1, and that GATA3 interacts with a C-terminal region of BRCA1. We demonstrate that FOXC1 is an essential survival factor maintaining the proliferation of BLBCs cell lines. We define the mechanistic basis of this corepression and identify the GATA3-binding site within the FOXC1 distal promoter region. We show that BRCA1 and GATA3 interact on the FOXC1 promoter and that BRCA1 requires GATA3 for recruitment to this region. This interaction requires fully functional BRCA1 as a mutant BRCA1 protein is unable to localize to the FOXC1 promoter or repress FOXC1 expression. We demonstrate that this BRCA1–GATA3 repression complex is not a FOXC1-specific phenomenon as a number of other genes associated with BLBCs such as FOXC2, CXCL1 and p-cadherin were also repressed in a similar manner. Finally, we demonstrate the importance of our findings by showing that loss of GATA3 expression or aberrant FOXC1 expression contributes to the drug resistance and epithelial-to-mesenchymal transition-like phenotypes associated with aggressive BLBCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Ademuyiwa FO, Thorat MA, Jain RK, Nakshatri H, Badve S . (2010). Expression of Forkhead-box protein A1, a marker of luminal A type breast cancer, parallels low Oncotype DX 21-gene recurrence scores. Mod Pathol 23: 270–275.

    Article  CAS  Google Scholar 

  • Albergaria A, Paredes J, Sousa B, Milanezi F, Carneiro V, Bastos J et al. (2009). Expression of FOXA1 and GATA-3 in breast cancer: the prognostic significance in hormone receptor-negative tumours. Breast Cancer Res 11: R40.

    Article  Google Scholar 

  • Anderson SF, Schlegel BP, Nakajima T, Wolpin ES, Parvin JD . (1998). BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A. Nat Genet 19: 254–256.

    Article  CAS  Google Scholar 

  • Arnold JM, Choong DY, Thompson ER, Waddell N, Lindeman GJ, Visvader JE et al. (2010). Frequent somatic mutations of GATA3 in non-BRCA1/BRCA2 familial breast tumors, but not in BRCA1-, BRCA2- or sporadic breast tumors. Breast Cancer Res Treat 119: 491–496.

    Article  CAS  Google Scholar 

  • Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC et al. (2007). Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 9: 201–209.

    Article  CAS  Google Scholar 

  • Berry FB, Skarie JM, Mirzayans F, Fortin Y, Hudson TJ, Raymond V et al. (2008). FOXC1 is required for cell viability and resistance to oxidative stress in the eye through the transcriptional regulation of FOXO1A. Hum Mol Genet 17: 490–505.

    Article  CAS  Google Scholar 

  • Bierie B, Stover DG, Abel TW, Chytil A, Gorska AE, Aakre M et al. (2008). Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment. Cancer Res 68: 1809–1819.

    Article  CAS  Google Scholar 

  • Bloushtain-Qimron N, Yao J, Snyder EL, Shipitsin M, Campbell LL, Mani SA et al. (2008). Cell type-specific DNA methylation patterns in the human breast. Proc Natl Acad Sci USA 105: 14076–14081.

    Article  CAS  Google Scholar 

  • Bochar DA, Wang L, Beniya H, Kinev A, Xue Y, Lane WS et al. (2000). BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell 102: 257–265.

    Article  CAS  Google Scholar 

  • Buckley NE, Conlon SJ, Jirstrom K, Kay EW, Crawford NT, O'Grady A et al. (2011). The {Delta}Np63 proteins are key allies of BRCA1 in the prevention of basal-like breast cancer. Cancer Res 71: 1933–1944.

    Article  CAS  Google Scholar 

  • Buckley NE, Hosey AM, Gorski JJ, Purcell JW, Mulligan JM, Harkin DP et al. (2007). BRCA1 regulates IFN-gamma signaling through a mechanism involving the type I IFNs. Mol Cancer Res 5: 261–270.

    Article  CAS  Google Scholar 

  • Campora E, Colloca G, Ratti R, Addamo G, Coccorullo Z, Venturino A et al. (2008). Docetaxel for metastatic breast cancer: two consecutive phase II trials. Anticancer Res 28: 3993–3995.

    CAS  PubMed  Google Scholar 

  • D'Anello L, Sansone P, Storci G, Mitrugno V, D'Uva G, Chieco P et al. (2010). Epigenetic control of the basal-like gene expression profile via Interleukin-6 in breast cancer cells. Mol Cancer 9: 300.

    Article  CAS  Google Scholar 

  • Dejeux E, Ronneberg JA, Solvang H, Bukholm I, Geisler S, Aas T et al. (2010). DNA methylation profiling in doxorubicin-treated primary locally advanced breast tumours identifies novel genes associated with survival and treatment response. Mol Cancer 9: 68.

    Article  Google Scholar 

  • Dydensborg AB, Rose AA, Wilson BJ, Grote D, Paquet M, Giguere V et al. (2009). GATA3 inhibits breast cancer growth and pulmonary breast cancer metastasis. Oncogene 28: 2634–2642.

    Article  CAS  Google Scholar 

  • Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB et al. (2005). Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434: 917–921.

    Article  CAS  Google Scholar 

  • Fedele CG, Ooms LM, Ho M, Vieusseux J, O'Toole SA, Millar EK et al. (2010). Inositol polyphosphate 4-phosphatase II regulates PI3K/Akt signaling and is lost in human basal-like breast cancers. Proc Natl Acad Sci USA 107: 22231–22236.

    Article  CAS  Google Scholar 

  • Geyer FC, Lacroix-Triki M, Savage K, Arnedos M, Lambros MB, Mackay A et al. (2011). Beta-Catenin pathway activation in breast cancer is associated with triple-negative phenotype but not with CTNNB1 mutation. Mod Pathol 24: 209–231.

    Article  CAS  Google Scholar 

  • Gorski JJ, James CR, Quinn JE, Stewart GE, Staunton KC, Buckley NE et al. (2010). BRCA1 transcriptionally regulates genes associated with the basal-like phenotype in breast cancer. Breast Cancer Res Treat 122: 721–731.

    Article  CAS  Google Scholar 

  • Hannenhalli S, Kaestner KH . (2009). The evolution of Fox genes and their role in development and disease. Nat Rev Genet 10: 233–240.

    Article  CAS  Google Scholar 

  • Hosey AM, Gorski JJ, Murray MM, Quinn JE, Chung WY, Stewart GE et al. (2007). Molecular basis for estrogen receptor alpha deficiency in BRCA1-linked breast cancer. J Natl Cancer Inst 99: 1683–1694.

    Article  CAS  Google Scholar 

  • Hoshino Y, Katsuno Y, Ehata S, Miyazono K . (2011). Autocrine TGF-beta protects breast cancer cells from apoptosis through reduction of BH3-only protein, Bim. J Biochem 149: 55–65.

    Article  CAS  Google Scholar 

  • Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF et al. (2006). The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7: 96.

    Article  Google Scholar 

  • Jacquemier J, Charafe-Jauffret E, Monville F, Esterni B, Extra JM, Houvenaeghel G et al. (2009). Association of GATA3, P53, Ki67 status and vascular peritumoral invasion are strongly prognostic in luminal breast cancer. Breast Cancer Res 11: R23.

    Article  Google Scholar 

  • Kalluri R, Weinberg RA . (2009). The basics of epithelial-mesenchymal transition. J Clin Invest 119: 1420–1428.

    Article  CAS  Google Scholar 

  • Kouros-Mehr H, Bechis SK, Slorach EM, Littlepage LE, Egeblad M, Ewald AJ et al. (2008). GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell 13: 141–152.

    Article  CAS  Google Scholar 

  • Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z . (2006). GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 127: 1041–1055.

    Article  CAS  Google Scholar 

  • Kouroussis C, Xydakis E, Potamianou A, Giannakakis T, Kakolyris S, Agelaki S et al. (1999). Front-line treatment of metastatic breast cancer with docetaxel and epirubicin: a multicenter dose-escalation study. The Greek Breast Cancer Cooperative Group (GBCCG). Ann Oncol 10: 547–552.

    Article  CAS  Google Scholar 

  • Laakso M, Loman N, Borg A, Isola J . (2005). Cytokeratin 5/14-positive breast cancer: true basal phenotype confined to BRCA1 tumors. Mod Pathol 18: 1321–1328.

    Article  CAS  Google Scholar 

  • Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH et al. (2009). Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15: 907–913.

    Article  CAS  Google Scholar 

  • Mani SA, Yang J, Brooks M, Schwaninger G, Zhou A, Miura N et al. (2007). Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc Natl Acad Sci USA 104: 10069–10074.

    Article  CAS  Google Scholar 

  • Marchini C, Montani M, Konstantinidou G, Orru R, Mannucci S, Ramadori G et al. (2010). Mesenchymal/stromal gene expression signature relates to basal-like breast cancers, identifies bone metastasis and predicts resistance to therapies. PLoS One 5: e14131.

    Article  CAS  Google Scholar 

  • Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S et al. (1994). A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266: 66–71.

    Article  CAS  Google Scholar 

  • Molyneux G, Geyer FC, Magnay FA, McCarthy A, Kendrick H, Natrajan R et al. (2010). BRCA1 Basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 7: 403–417.

    Article  CAS  Google Scholar 

  • Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al. (2006). A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10: 515–527.

    Article  CAS  Google Scholar 

  • Perou CM, Jeffrey SS, van de Rijn M, Rees CA, Eisen MB, Ross DT et al. (1999). Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci USA 96: 9212–9217.

    Article  CAS  Google Scholar 

  • Rasbridge SA, Gillett CE, Sampson SA, Walsh FS, Millis RR . (1993). Epithelial (E-) and placental (P-) cadherin cell adhesion molecule expression in breast carcinoma. J Pathol 169: 245–250.

    Article  CAS  Google Scholar 

  • Ray PS, Wang J, Qu Y, Sim MS, Shamonki J, Bagaria SP et al. (2010). FOXC1 is a potential prognostic biomarker with functional significance in basal-like breast cancer. Cancer Res 70: 3870–3876.

    Article  CAS  Google Scholar 

  • Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98: 10869–10874.

    Article  CAS  Google Scholar 

  • Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100: 8418–8423.

    Article  CAS  Google Scholar 

  • Tao L, Roberts AL, Dunphy KA, Bigelow C, Yan H, Jerry DJ . (2011). Repression of mammary stem/progenitor cells by P53 is mediated by Notch and separable from apoptotic activity. Stem Cells 29: 119–127.

    Article  CAS  Google Scholar 

  • Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J et al. (2010). Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA 107: 15449–15454.

    Article  CAS  Google Scholar 

  • Turner N, Tutt A, Ashworth A . (2004). Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 4: 814–819.

    Article  CAS  Google Scholar 

  • Usary J, Llaca V, Karaca G, Presswala S, Karaca M, He X et al. (2004). Mutation of GATA3 in human breast tumors. Oncogene 23: 7669–7678.

    Article  CAS  Google Scholar 

  • Wang HQ, Qian ZZ, Liu XM, Zhang HL, Li LF, Qiu LH et al. (2010). Capecitabine combined with weekly docetaxel in Chinese patients >65 years with anthracycline-resistant metastatic breast cancer. Chin Med J (Engl) 123: 3212–3216.

    CAS  Google Scholar 

  • Wang Q, Zhang H, Kajino K, Greene MI . (1998). BRCA1 binds c-Myc and inhibits its transcriptional and transforming activity in cells. Oncogene 17: 1939–1948.

    Article  CAS  Google Scholar 

  • Yan W, Cao QJ, Arenas RB, Bentley B, Shao R . (2010). GATA3 inhibits breast cancer metastasis through the reversal of epithelial-mesenchymal transition. J Biol Chem 285: 14042–14051.

    Article  CAS  Google Scholar 

  • Yang Q, Sakurai T, Mori I, Yoshimura G, Nakamura M, Nakamura Y et al. (2001). Prognostic significance of BRCA1 expression in Japanese sporadic breast carcinomas. Cancer 92: 54–60.

    Article  CAS  Google Scholar 

  • Yoon NK, Maresh EL, Shen D, Elshimali Y, Apple S, Horvath S et al. (2010). Higher levels of GATA3 predict better survival in women with breast cancer. Hum Pathol 41: 1794–1801.

    Article  CAS  Google Scholar 

  • Zhang H, Somasundaram K, Peng Y, Tian H, Bi D, Weber BL et al. (1998). BRCA1 physically associates with p53 and stimulates its transcriptional activity. Oncogene 16: 1713–1721.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the kind gift of mouse anti-human fibronectin antibody from Professor Philip Rudland (University of Liverpool). This work was supported by grants from the Action Cancer Northern Ireland (DT) and the Breast Cancer Campaign (NTC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P B Mullan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tkocz, D., Crawford, N., Buckley, N. et al. BRCA1 and GATA3 corepress FOXC1 to inhibit the pathogenesis of basal-like breast cancers. Oncogene 31, 3667–3678 (2012). https://doi.org/10.1038/onc.2011.531

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.531

Keywords

This article is cited by

Search

Quick links