Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Estrogenic regulation of S6K1 expression creates a positive regulatory loop in control of breast cancer cell proliferation

Abstract

The 40S ribosomal S6 kinase 1 (S6K1) is an important regulator of cell growth. Expression of S6K1 is often elevated in breast cancer cells. However, the transcriptional mechanism of S6K1 overexpression is not understood. In this report, we demonstrate that estrogen activates expression of S6K1 via estrogen receptor (ER)α in ER-positive breast cancer cells. We also show that estrogen acts on the proximal promoter of the S6K1 gene in a mechanism involving the transcriptional factor GATA-3. Finally, we provide data that support the importance of estrogenic regulation of S6K1 expression in breast cancer cell proliferation. S6K1 directly phosphorylates and regulates ligand-independent activity of ERα, while ERα upregulates S6K1 expression. This S6K1–ERα relationship creates a positive feed-forward loop in control of breast cancer cell proliferation. Furthermore, the co-dependent association between S6K1 and ERα may be exploited in the development of targeted breast cancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Foster KG, Fingar DC . Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 2010; 285: 14071–14077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fenton TR, Gout IT . Functions and regulation of the 70kDa ribosomal S6 kinases. Int J Biochem Cell Biol 2011; 43: 47–59.

    Article  CAS  PubMed  Google Scholar 

  3. Ma XM, Blenis J . Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 2009; 10: 307–318.

    Article  PubMed  Google Scholar 

  4. Chung J, Kuo CJ, Crabtree GR, Blenis J . Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell 1992; 69: 1227–1236.

    Article  CAS  PubMed  Google Scholar 

  5. Shima H, Pende M, Chen Y, Fumagalli S, Thomas G, Kozma SC . Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J 1998; 17: 6649–6659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lane HA, Fernandez A, Lamb NJ, Thomas G . p70s6k function is essential for G1 progression. Nature 1993; 363: 170–172.

    Article  CAS  PubMed  Google Scholar 

  7. Yamnik RL, Digilova A, Davis DC, Brodt ZN, Murphy CJ, Holz MK . S6 kinase 1 regulates estrogen receptor alpha in control of breast cancer cell proliferation. J Biol Chem 2009; 284: 6361–6369.

    Article  CAS  PubMed  Google Scholar 

  8. Brugge J, Hung MC, Mills GB . A new mutational AKTivation in the PI3K pathway. Cancer Cell 2007; 12: 104–107.

    Article  CAS  PubMed  Google Scholar 

  9. Barlund M, Forozan F, Kononen J, Bubendorf L, Chen Y, Bittner ML et al. Detecting activation of ribosomal protein S6 kinase by complementary DNA and tissue microarray analysis. J Natl Cancer Inst 2000; 92: 1252–1259.

    Article  CAS  PubMed  Google Scholar 

  10. Monni O, Barlund M, Mousses S, Kononen J, Sauter G, Heiskanen M et al. Comprehensive copy number and gene expression profiling of the 17q23 amplicon in human breast cancer. Proc Natl Acad Sci USA 2001; 98: 5711–5716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Couch FJ, Wang XY, Wu GJ, Qian J, Jenkins RB, James CD . Localization of PS6K to chromosomal region 17q23 and determination of its amplification in breast cancer. Cancer Res 1999; 59: 1408–1411.

    CAS  PubMed  Google Scholar 

  12. Sinclair CS, Rowley M, Naderi A, Couch FJ . The 17q23 amplicon and breast cancer. Breast Cancer Res Treat 2003; 78: 313–322.

    Article  CAS  PubMed  Google Scholar 

  13. Hu X, Stern HM, Ge L, O’Brien C, Haydu L, Honchell CD et al. Genetic alterations and oncogenic pathways associated with breast cancer subtypes. Mol Cancer Res 2009; 7: 511–522.

    Article  CAS  PubMed  Google Scholar 

  14. van der Hage JA, van den Broek LJ, Legrand C, Clahsen PC, Bosch CJ, Robanus-Maandag EC et al. Overexpression of P70 S6 kinase protein is associated with increased risk of locoregional recurrence in node-negative premenopausal early breast cancer patients. Br J Cancer 2004; 90: 1543–1550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Early Breast Cancer Trialists’ Collaborative Group. Systemic treatment of early breast cancer by hormonal Cytotoxic or immune therapy 133 randomised trials involving 31,000 recurrences and 24,000 deaths among 75,000 women. Lancet 1992; 339: 1–15.

  16. Ellis M . Overcoming endocrine therapy resistance by signal transduction inhibition. Oncologist 2004; 9 (Suppl 3): 20–26.

    Article  CAS  PubMed  Google Scholar 

  17. Han W, Han MR, Kang JJ, Bae JY, Lee JH, Bae YJ et al. Genomic alterations identified by array comparative genomic hybridization as prognostic markers in tamoxifen-treated estrogen receptor-positive breast cancer. BMC Cancer 2006; 6: 92.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Martens JW, Yu JX, Jiang J, Sieuwerts AM, Smid M et al. Copy number alterations that predict metastatic capability of human breast cancer. Cancer Res 2009; 69: 3795–3801.

    Article  CAS  PubMed  Google Scholar 

  19. Yamnik RL, Holz MK . mTOR/S6K1 and MAPK/RSK signaling pathways coordinately regulate estrogen receptor alpha serine 167 phosphorylation. FEBS Lett 2010; 584: 124–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Becker MA, Ibrahim YH, Cui X, Lee AV, Yee D . The IGF pathway regulates ERalpha through a S6K1-dependent mechanism in breast cancer cells. Mol Endocrinol 2011; 25: 516–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hua S, Kallen CB, Dhar R, Baquero MT, Mason CE, Russell BA et al. Genomic analysis of estrogen cascade reveals histone variant H2A.Z associated with breast cancer progression. Mol Syst Biol 2008; 4: 188.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gruber CJ, Gruber DM, Gruber IM, Wieser F, Huber JC . Anatomy of the estrogen response element. Trends Endocrinol Metab 2004; 15: 73–78.

    Article  CAS  PubMed  Google Scholar 

  23. Sathya G, Li W, Klinge CM, Anolik JH, Hilf R, Bambara RA . Effects of multiple estrogen responsive elements, their spacing, and location on estrogen response of reporter genes. Mol Endocrinol 1997; 11: 1994–2003.

    Article  CAS  PubMed  Google Scholar 

  24. Eeckhoute J, Keeton EK, Lupien M, Krum SA, Carroll JS, Brown M . Positive cross-regulatory loop ties GATA-3 to estrogen receptor alpha expression in breast cancer. Cancer Res 2007; 67: 6477–6483.

    Article  CAS  PubMed  Google Scholar 

  25. Jiang S, Katayama H, Wang J, Li S, Hong Y, Radvanyi L et al. Estrogen-Induced Aurora Kinase-A (AURKA) gene expression is activated by GATA-3 in estrogen receptor-positive breast cancer cells. Hormones Cancer 2010; 1: 11–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752.

    Article  CAS  PubMed  Google Scholar 

  27. Lacroix M, Leclercq G . About GATA3, HNF3A, and XBP1, three genes co-expressed with the oestrogen receptor-alpha gene (ESR1) in breast cancer. Mol Cell Endocrinol 2004; 219: 1–7.

    Article  CAS  PubMed  Google Scholar 

  28. Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J et al. Genome-wide analysis of estrogen receptor binding sites. Nat Genet 2006; 38: 1289–1297.

    Article  CAS  PubMed  Google Scholar 

  29. Lin CY, Vega VB, Thomsen JS, Zhang T, Kong SL, Xie M et al. Whole-genome cartography of estrogen receptor alpha binding sites. PLoS Genet 2007; 3: e87.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bhat-Nakshatri P, Wang G, Appaiah H, Luktuke N, Carroll JS, Geistlinger TR et al. AKT alters genome-wide estrogen receptor alpha binding and impacts estrogen signaling in breast cancer. Mol Cell Biol 2008; 28: 7487–7503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB et al. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 2009; 462: 58–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ikeda K, Inoue S . Estrogen receptors and their downstream targets in cancer. Arch Histol Cytol 2004; 67: 435–442.

    Article  CAS  PubMed  Google Scholar 

  33. Baselga J, Semiglazov V, van Dam P, Manikhas A, Bellet M, Mayordomo J et al. Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor-positive breast cancer. J Clin Oncol 2009; 27: 2630–2637.

    Article  CAS  PubMed  Google Scholar 

  34. Johnston SR . Are we missing the mTOR target in breast cancer? Breast Cancer Res Treat 2011; 128: 607–611.

    Article  PubMed  Google Scholar 

  35. Frizzell KM, Gamble MJ, Berrocal JG, Zhang T, Krishnakumar R, Cen Y et al. Global analysis of transcriptional regulation by poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase in MCF-7 human breast cancer cells. J Biol Chem 2009; 284: 33926–33938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank W Lee Kraus for expression constructs and Jonathan Backer for help with kinase assays. We are especially grateful to Matthew Gamble and members of his laboratory for assistance and guidance with ChIP assays. We also like to acknowledge Antonio Di Cristofano for scientific generosity and help with animal experiments. We also thank Fannie F Seligman, Faygel Beren and Miriam Ciner for technical assistance. This work was founded by grants to MKH from NIH (CA151112), Atol Charitable Trust, Wendy Will Case Cancer Fund and Yeshiva University. TNS, ENH, ASS and HAU received support from the S Daniel Abraham Honors Program of Yeshiva University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M K Holz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maruani, D., Spiegel, T., Harris, E. et al. Estrogenic regulation of S6K1 expression creates a positive regulatory loop in control of breast cancer cell proliferation. Oncogene 31, 5073–5080 (2012). https://doi.org/10.1038/onc.2011.657

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.657

Keywords

This article is cited by

Search

Quick links