Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The Hippo pathway transcriptional co-activator, YAP, is an ovarian cancer oncogene

Abstract

The Salvador-Warts-Hippo (SWH) pathway was first discovered in Drosophila melanogaster as a potent inhibitor of tissue growth. The SWH pathway is highly conserved between D. melanogaster and mammals, both in function and in the mechanism of signal transduction. The mammalian SWH pathway limits tissue growth by inhibiting the nuclear access and expression of the transcriptional co-activator, Yes-associated protein (YAP). Mutation and altered expression of SWH pathway proteins has been observed in several types of human cancer, but the contribution of these events to tumorigenesis has been unclear. Here we show that YAP can enhance the transformed phenotype of ovarian cancer cell lines and that YAP confers resistance to chemotherapeutic agents that are commonly used to treat ovarian cancer. We find that high nuclear YAP expression correlates with poor patient prognosis in a cohort of 268 invasive epithelial ovarian cancer samples. Segregation by histotype shows that the correlation between nuclear YAP and poor survival is predominantly associated with clear cell tumors, independent of stage. Collectively our findings suggest that YAP derepression contributes to the genesis of ovarian clear cell carcinoma and that the SWH pathway is an attractive therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R et al. (2007). YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol 17: 2054–2060.

    Article  CAS  PubMed  Google Scholar 

  • Chan SW, Lim CJ, Guo K, Ng CP, Lee I, Hunziker W et al. (2008). A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res 68: 2592–2598.

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Chan SW, Zhang X, Walsh M, Lim CJ, Hong W et al. (2010). Structural basis of YAP recognition by TEAD4 in the hippo pathway. Genes Dev 24: 290–300.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chosdol K, Misra A, Puri S, Srivastava T, Chattopadhyay P, Sarkar C et al. (2009). Frequent loss of heterozygosity and altered expression of the candidate tumor suppressor gene ′FAT′ in human astrocytic tumors. BMC Cancer 9: 5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A et al. (2010). Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463: 360–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA et al. (2007). Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130: 1120–1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez LA, Northcott PA, Dalton J, Fraga C, Ellison D, Angers S et al. (2009). YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev 23: 2729–2741.

    Article  Google Scholar 

  • Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G et al. (2007). Patterns of somatic mutation in human cancer genomes. Nature 446: 153–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grusche FA, Richardson HE, Harvey KF . (2010). Upstream regulation of the hippo size control pathway. Curr Biol 20: R574–R582.

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, Chun A, Cheung K, Rashidi B, Yang X . (2008). Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem 283: 5496–5509.

    Article  CAS  PubMed  Google Scholar 

  • Harvey K, Tapon N . (2007). The Salvador-Warts-Hippo pathway—an emerging tumour-suppressor network. Nat Rev Cancer 7: 182–191.

    Article  CAS  PubMed  Google Scholar 

  • Harvey KF, Pfleger CM, Hariharan IK . (2003). The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114: 457–467.

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Wu S, Barrera J, Matthews K, Pan D . (2005). The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 122: 421–434.

    Article  CAS  PubMed  Google Scholar 

  • Ihaka R, Gentleman R . (1996). R: A language for data analysis and graphics. 5: 299–314.

    Google Scholar 

  • Jia J, Zhang W, Wang B, Trinko R, Jiang J . (2003). The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev 17: 2514–2519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai ZC, Wei X, Shimizu T, Ramos E, Rohrbaugh M, Nikolaidis N et al. (2005). Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell 120: 675–685.

    Article  CAS  PubMed  Google Scholar 

  • Lee KP, Lee JH, Kim TS, Kim TH, Park HD, Byun JS et al. (2010). The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc Natl Acad Sci USA 107: 8248–8253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei QY, Zhang H, Zhao B, Zha ZY, Bai F, Pei XH et al. (2008). TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol 28: 2426–2436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Zhao B, Wang P, Chen F, Dong Z, Yang H et al. (2010). Structural insights into the YAP and TEAD complex. Genes Dev 24: 235–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakaya K, Yamagata HD, Arita N, Nakashiro KI, Nose M, Miki T et al. (2007). Identification of homozygous deletions of tumor suppressor gene FAT in oral cancer using CGH-array. Oncogene 26: 5300–5308.

    Article  CAS  PubMed  Google Scholar 

  • Oka T, Mazack V, Sudol M . (2008). Mst2 and Lats kinases regulate apoptotic function of Yes kinase-associated protein (YAP). J Biol Chem 283: 27534–27546.

    Article  CAS  PubMed  Google Scholar 

  • Ota M, Sasaki H . (2008). Mammalian tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development 135: 4059–4069.

    Article  CAS  PubMed  Google Scholar 

  • Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC et al. (2006). Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci USA 103: 12405–12410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pantalacci S, Tapon N, Leopold P . (2003). The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat Cell Biol 5: 921–927.

    Article  CAS  PubMed  Google Scholar 

  • Qi C, Zhu YT, Hu L, Zhu YJ . (2009). Identification of Fat4 as a candidate tumor suppressor gene in breast cancers. Int J Cancer 124: 793–798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiner A, Yekutieli D, Benjamini Y . (2003). Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19: 368–375.

    Article  CAS  PubMed  Google Scholar 

  • Smyth GK . (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article 3.

  • Smyth GK (ed.) (2005). Limma: Linear Models for Microarray Data. Springer, New York, pp 397–420.

    Google Scholar 

  • St John MA, Tao W, Fei X, Fukumoto R, Carcangiu ML, Brownstein DG et al (1999). Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. Nat Genet 21: 182–186.

    Article  CAS  PubMed  Google Scholar 

  • Steinhardt AA, Gayyed MF, Klein AP, Dong J, Maitra A, Pan D et al. (2008). Expression of Yes-associated protein in common solid tumors. Hum Pathol 39: 1582–1589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart BW, Kleihues P (eds) (2003). World Cancer Report. IARC Press: Lyon.

    Google Scholar 

  • Takahashi Y, Miyoshi Y, Takahata C, Irahara N, Taguchi T, Tamaki Y et al. (2005). Down-regulation of LATS1 and LATS2 mRNA expression by promoter hypermethylation and its association with biologically aggressive phenotype in human breast cancers. Clin Cancer Res 11: 1380–1385.

    Article  CAS  PubMed  Google Scholar 

  • Tan DS, Kaye S . (2007). Ovarian clear cell adenocarcinoma: a continuing enigma. J Clin Pathol 60: 355–360.

    Article  CAS  PubMed  Google Scholar 

  • Tapon N, Harvey KF, Bell DW, Wahrer DC, Schiripo TA, Haber DA et al. (2002). Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110: 467–478.

    Article  CAS  PubMed  Google Scholar 

  • Tian W, Yu J, Tomchick DR, Pan D, Luo X . (2010). Structural and functional analysis of the YAP-binding domain of human TEAD2. Proc Natl Acad Sci USA 107: 7293–7298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S et al (2008). Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res 14: 5198–5208.

    Article  CAS  PubMed  Google Scholar 

  • Udan RS, Kango-Singh M, Nolo R, Tao C, Halder G . (2003). Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol 5: 914–920.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Dong Q, Zhang Q, Li Z, Wang E, Qiu X . (2010). Overexpression of yes-associated protein contributes to progression and poor prognosis of non-small-cell lung cancer. Cancer Sci 101: 1279–1285.

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Huang J, Dong J, Pan D . (2003). Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114: 445–456.

    Article  CAS  PubMed  Google Scholar 

  • Xu MZ, Yao TJ, Lee NP, Ng IO, Chan YT, Zender L et al. (2009). Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer 115: 4576–4585.

    Article  CAS  PubMed  Google Scholar 

  • Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C, Silke J et al. (2006). Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125: 1253–1267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Q, Hong W . (2008). The emerging role of the hippo pathway in cell contact inhibition, organ size control, and cancer development in mammals. Cancer Cell 13: 188–192.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Smolen GA, Haber DA . (2008). Negative regulation of YAP by LATS1 underscores evolutionary conservation of the Drosophila Hippo pathway. Cancer Res 68: 2789–2794.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Ling MT, Wang X, Wong YC . (2006). Inactivation of Id-1 in prostate cancer cells: a potential therapeutic target in inducing chemosensitization to taxol through activation of JNK pathway. Int J Cancer 118: 2072–2081.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Milton CC, Humbert PO, Harvey KF . (2009). Transcriptional output of the Salvador/warts/hippo pathway is controlled in distinct fashions in Drosophila melanogaster and mammalian cell lines. Cancer Res 69: 6033–6041.

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Li L, Tumaneng K, Wang CY, Guan KL . (2010). A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev 24: 72–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J et al. (2007). Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21: 2747–2761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou D, Conrad C, Xia F, Park JS, Payer B, Yin Y et al. (2009). Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 16: 425–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorn KK, Bonome T, Gangi L, Chandramouli GV, Awtrey CS, Gardner GJ et al. (2005). Gene expression profiles of serous, endometrioid, and clear cell subtypes of ovarian and endometrial cancer. Clin Cancer Res 11: 6422–6430.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the study nurses and research assistants for their contribution to AOCS (http://www.aocstudy.org/) and thank all the women who participated in the study. AOCS was approved by the Human Research Ethics Committees at the Peter Mac, QIMR and participating hospitals. The study was supported by the US Army Medical Research and Materiel Command under DAMD17-01-1-0729, The Cancer Council Victoria, Queensland Cancer Fund, The Cancer Council New South Wales, The Cancer Council South Australia, The Cancer Foundation of Western Australia, The Cancer Council Tasmania and the National Health and Medical Research Council of Australia (NHMRC). We thank D Thomas for comments, D Haber for pBABE-YAP2L and the Peter Mac, Pfizer Incorporated TORCH program for ovarian cancer cell lines. KFH is a Sylvia and Charles Viertel Senior Medical Research Fellow. This work was supported by a Career Development Award from the International Human Frontier Science Program Organization and a Project Grant from the NHMRC of Australia to KFH and the Victorian Breast Cancer Research Consortium to SBF.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to K F Harvey.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., George, J., Deb, S. et al. The Hippo pathway transcriptional co-activator, YAP, is an ovarian cancer oncogene. Oncogene 30, 2810–2822 (2011). https://doi.org/10.1038/onc.2011.8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.8

Keywords

This article is cited by

Search

Quick links