Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Regulation of DCIS to invasive breast cancer progression by Singleminded-2s (SIM2s)

Abstract

Singleminded-2s (SIM2s) is a member of the bHLH/PAS family of transcription factors and a key regulator of mammary epithelial cell differentiation. SIM2s is highly expressed in mammary epithelial cells and downregulated in human breast cancer. Loss of Sim2s causes aberrant mouse mammary ductal development, with features suggestive of malignant transformation, whereas overexpression of SIM2s promotes precocious alveolar differentiation in nulliparous mouse mammary glands, suggesting that SIM2s is required for establishing and enhancing mammary gland differentiation. To test the hypothesis that SIM2s regulates tumor cell differentiation, we analyzed SIM2s expression in human primary breast ductal carcinoma in situ (DCIS) samples and found that SIM2s is lost with progression from DCIS to invasive ductal cancer (IDC). Using a MCF10DCIS.COM progression model, we have shown that SIM2s expression is decreased in MCF10DCIS.COM cells compared with MCF10A cells, and reestablishment of SIM2s in MCF10DCIS.COM cells significantly inhibits growth and invasion both in vitro and in vivo. Analysis of SIM2s-MCF10DCIS.com tumors showed that SIM2s promoted a more differentiated tumor phenotype including the expression of a broad range of luminal markers (CSN2 (β-casein), CDH1 (E-cadherin), and KER18 (keratin-18)) and suppressed genes associated with stem cell maintenance and a basal phenotype (SMO (smoothened), p63, SLUG (snail-2), KER14 (keratin-14) and VIM (vimentin)). Furthermore, loss of SIM2s expression in MCF10DCIS.COM xenografts resulted in a more invasive phenotype and increased lung metastasis likely due to an increase in Hedgehog signaling and matrix metalloproteinase expression. Together, these exciting new data support a role for SIM2s in promoting human breast tumor differentiation and maintaining epithelial integrity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Burstein HJ, Polyak K, Wong JS, Lester SC, Kaelin CM . Ductal carcinoma in situ of the breast. N Engl J Med 2004; 350: 1430–1441.

    Article  CAS  PubMed  Google Scholar 

  2. Cody HS 3rd . Sentinel lymph node biopsy for DCIS: are we approaching consensus? Ann Surg Oncol 2007; 14: 2179–2181.

    Article  PubMed  Google Scholar 

  3. Maffuz A, Barroso-Bravo S, Najera I, Zarco G, Alvarado-Cabrero I, Rodriguez-Cuevas SA . Tumor size as predictor of microinvasion, invasion, and axillary metastasis in ductal carcinoma in situ. J Exp Clin Cancer Res 2006; 25: 223–227.

    CAS  PubMed  Google Scholar 

  4. Yao J, Weremowicz S, Feng B, Gentleman RC, Marks JR, Gelman R et al. Combined cDNA array comparative genomic hybridization and serial analysis of gene expression analysis of breast tumor progression. Cancer Res 2006; 66: 4065–4078.

    Article  CAS  PubMed  Google Scholar 

  5. Chin K, de Solorzano CO, Knowles D, Jones A, Chou W, Rodriguez EG et al. In situ analyses of genome instability in breast cancer. Nat Genet 2004; 36: 984–988.

    Article  CAS  PubMed  Google Scholar 

  6. Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P et al. Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 2003; 100: 5974–5979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Porter D, Lahti-Domenici J, Keshaviah A, Bae YK, Argani P, Marks J et al. Molecular markers in ductal carcinoma in situ of the breast. Mol Cancer Res 2003; 1: 362–375.

    CAS  PubMed  Google Scholar 

  8. Cocker R, Oktay MH, Sunkara JL, Koss LG . Mechanisms of progression of ductal carcinoma in situ of the breast to invasive cancer. A hypothesis. Med Hypotheses 2007; 69: 57–63.

    Article  CAS  PubMed  Google Scholar 

  9. Behbod F, Kittrell FS, LaMarca H, Edwards D, Kerbawy S, Heestand JC et al. An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ. Breast Cancer Res 2009; 11: R66.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Miller FR, Santner SJ, Tait L, Dawson PJ . MCF10DCIS.com xenograft model of human comedo ductal carcinoma in situ. J Natl Cancer Inst 2000; 92: 1185–1186.

    Article  CAS  PubMed  Google Scholar 

  11. Hu M, Yao J, Carroll DK, Weremowicz S, Chen H, Carrasco D et al. Regulation of in situ to invasive breast carcinoma transition. Cancer Cell 2008; 13: 394–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shekhar MP, Tait L, Pauley RJ, Wu GS, Santner SJ, Nangia-Makker P et al. Comedo-ductal carcinoma in situ: a paradoxical role for programmed cell death. Cancer Biol Ther 2008; 7: 1774–1782.

    Article  CAS  PubMed  Google Scholar 

  13. Tait LR, Pauley RJ, Santner SJ, Heppner GH, Heng HH, Rak JW et al. Dynamic stromal-epithelial interactions during progression of MCF10DCIS.com xenografts. Int J Cancer 2007; 120: 2127–2134.

    Article  CAS  PubMed  Google Scholar 

  14. Scribner KC, Wellberg EA, Metz RP, Porter WW . Singleminded-2s (Sim2s) promotes delayed involution of the mouse mammary gland through suppression of Stat3 and NF{kappa}B. Mol Endocrinol 2011.

  15. Gustafson TL, Wellberg E, Laffin B, Schilling L, Metz RP, Zahnow CA et al. Ha-Ras transformation of MCF10A cells leads to repression of Singleminded-2s through NOTCH and C/EBPbeta. Oncogene 2009.

  16. Laffin B, Wellberg E, Kwak HI, Burghardt RC, Metz RP, Gustafson T et al. Loss of singleminded-2s in the mouse mammary gland induces an epithelial-mesenchymal transition associated with up-regulation of slug and matrix metalloprotease 2. Mol Cell Biol 2008; 28: 1936–1946.

    Article  CAS  PubMed  Google Scholar 

  17. Kwak HI, Gustafson T, Metz RP, Laffin B, Schedin P, Porter WW . Inhibition of breast cancer growth and invasion by single-minded 2s. Carcinogenesis 2007; 28: 259–266.

    Article  CAS  PubMed  Google Scholar 

  18. Wellberg E, Metz RP, Parker C, Porter WW . The bHLH/PAS transcription factor singleminded 2s promotes mammary gland lactogenic differentiation. Development 2010; 137: 945–952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. LaMarca HL, Visbal AP, Creighton CJ, Liu H, Zhang Y, Behbod F et al. CCAAT/enhancer binding protein beta regulates stem cell activity and specifies luminal cell fate in the mammary gland. Stem Cells 2010; 28: 535–544.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Stylianou S, Clarke RB, Brennan K . Aberrant activation of notch signaling in human breast cancer. Cancer Res 2006; 66: 1517–1525.

    Article  CAS  PubMed  Google Scholar 

  21. Grimm SL, Rosen JM . The role of C/EBPbeta in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 2003; 8: 191–204.

    Article  PubMed  Google Scholar 

  22. Politi K, Feirt N, Kitajewski J . Notch in mammary gland development and breast cancer. Semin Cancer Biol 2004; 14: 341–347.

    Article  CAS  PubMed  Google Scholar 

  23. Kiaris H, Politi K, Grimm LM, Szabolcs M, Fisher P, Efstratiadis A et al. Modulation of notch signaling elicits signature tumors and inhibits hras1-induced oncogenesis in the mouse mammary epithelium. Am J Pathol 2004; 165: 695–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Du Z, Li J, Wang L, Bian C, Wang Q, Liao L et al. Overexpression of DeltaNp63alpha induces a stem cell phenotype in MCF7 breast carcinoma cell line through the Notch pathway. Cancer Sci 2010; 101: 2417–2424.

    Article  CAS  PubMed  Google Scholar 

  25. Yalcin-Ozuysal O, Fiche M, Guitierrez M, Wagner KU, Raffoul W, Brisken C . Antagonistic roles of Notch and p63 in controlling mammary epithelial cell fates. Cell Death Differ 2010; 17: 1600–1612.

    Article  CAS  PubMed  Google Scholar 

  26. de Biase D, Morandi L, Degli Esposti R, Ligorio C, Pession A, Foschini MP et al. p63 short isoforms are found in invasive carcinomas only and not in benign breast conditions. Virchows Arch 2010; 456: 395–401.

    Article  CAS  PubMed  Google Scholar 

  27. Visbal AP, LaMarca HL, Villanueva H, Toneff MJ, Li Y, Rosen JM et al. Altered differentiation and paracrine stimulation of mammary epithelial cell proliferation by conditionally activated Smoothened. Dev Biol 2011; 352: 116–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moraes RC, Zhang X, Harrington N, Fung JY, Wu MF, Hilsenbeck SG et al. Constitutive activation of smoothened (SMO) in mammary glands of transgenic mice leads to increased proliferation, altered differentiation and ductal dysplasia. Development 2007; 134: 1231–1242.

    Article  CAS  PubMed  Google Scholar 

  29. Kallergi G, Papadaki MA, Politaki E, Mavroudis D, Georgoulias V, Agelaki S . Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Res 2011; 13: R59.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dubois-Marshall S, Thomas JS, Faratian D, Harrison DJ, Katz E . Two possible mechanisms of epithelial to mesenchymal transition in invasive ductal breast cancer. Clin Exp Metastasis 2011.

  31. Bond J, Haughton M, Blaydes J, Gire V, Wynford-Thomas D, Wyllie F . Evidence that transcriptional activation by p53 plays a direct role in the induction of cellular senescence. Oncogene 1996; 13: 2097–2104.

    CAS  PubMed  Google Scholar 

  32. Zuo S, Liu C, Wang J, Wang F, Xu W, Cui S et al. IGFBP-rP1 induces p21 expression through a p53-independent pathway, leading to cellular senescence of MCF-7 breast cancer cells. J Can Res Clin Oncol 2012; 138: 1045–1055.

    Article  CAS  Google Scholar 

  33. Malkin D, Li FP, Strong LC, Fraumeni JF, Nelson CE, Kim DH et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990; 250: 1233–1238.

    Article  CAS  PubMed  Google Scholar 

  34. Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z . GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 2006; 127: 1041–1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 2007; 9: 201–209.

    Article  CAS  PubMed  Google Scholar 

  36. McDaniel SM, Rumer KK, Biroc SL, Metz RP, Singh M, Porter W et al. Remodeling of the mammary microenvironment after lactation promotes breast tumor cell metastasis. Am J Pathol 2006; 168: 608–620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu R, Wang X, Chen GY, Dalerba P, Gurney A, Hoey T et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 2007; 356: 217–226.

    Article  CAS  PubMed  Google Scholar 

  38. Bloom HJ, Richardson WW . Histological grading and prognosis in breast cancer; a study of 1409 cases of which 359 have been followed for 15 years. Br J Cancer 1957; 11: 359–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. van ′t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415: 530–536.

    Article  PubMed  Google Scholar 

  40. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752.

    Article  CAS  PubMed  Google Scholar 

  41. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98: 10869–10874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zajchowski DA, Bartholdi MF, Gong Y, Webster L, Liu HL, Munishkin A et al. Identification of gene expression profiles that predict the aggressive behavior of breast cancer cells. Cancer Res 2001; 61: 5168–5178.

    CAS  PubMed  Google Scholar 

  43. West M, Blanchette C, Dressman H, Huang E, Ishida S, Spang R et al. Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci USA 2001; 98: 11462–11467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou J, Chehab R, Tkalcevic J, Naylor MJ, Harris J, Wilson TJ et al. Elf5 is essential for early embryogenesis and mammary gland development during pregnancy and lactation. Embo J. 2005; 24: 635–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Oakes SR, Hilton HN, Ormandy CJ . The alveolar switch: coordinating the proliferative cues and cell fate decisions that drive the formation of lobuloalveoli from ductal epithelium. Breast Cancer Res 2006; 8: 207.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Walsh LA, Cepeda MA, Damjanovski S . Analysis of the MMP-dependent and independent functions of tissue inhibitor of metalloproteinase-2 on the invasiveness of breast cancer cells. J Cell Commun Signal 2012; 6: 87–95.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Liu D, Guo H, Li Y, Xu X, Yang K, Bai Y . Association between polymorphisms in the promoter regions of matrix metalloproteinases (MMPs) and risk of cancer metastasis: a meta-analysis. PLoS One 2012; 7: e31251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mendes O, Kim HT, Stoica G . Expression of MMP2, MMP9 and MMP3 in breast cancer brain metastasis in a rat model. Clin Exp Metastasis 2005; 22: 237–246.

    Article  CAS  PubMed  Google Scholar 

  49. Pellikainen JM, Ropponen KM, Kataja VV, Kellokoski JK, Eskelinen MJ, Kosma VM . Expression of matrix metalloproteinase (MMP)-2 and MMP-9 in breast cancer with a special reference to activator protein-2, HER2, and prognosis. Clin Cancer Res 2004; 10: 7621–7628.

    Article  CAS  PubMed  Google Scholar 

  50. Ioachim EE, Athanassiadou SE, Kamina S, Carassavoglou K, Agnantis NJ . Matrix metalloproteinase expression in human breast cancer: an immunohistochemical study including correlation with cathepsin D, type IV collagen, laminin, fibronectin, EGFR, c-erbB-2 oncoprotein, p53, steroid receptors status and proliferative indices. Anticancer Res 1998; 18: 1665–1670.

    CAS  PubMed  Google Scholar 

  51. Schedin P, Mitrenga T, McDaniel S, Kaeck M . Mammary ECM composition and function are altered by reproductive state. Mol Carcinog 2004; 41: 207–220.

    Article  CAS  PubMed  Google Scholar 

  52. Witty JP, Wright JH, Matrisian LM . Matrix metalloproteinases are expressed during ductal and alveolar mammary morphogenesis, and misregulation of stromelysin-1 in transgenic mice induces unscheduled alveolar development. Mol Biol Cell 1995; 6: 1287–1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kessenbrock K, Plaks V, Werb Z . Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010; 141: 52–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 1999; 98: 137–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang C, Hu F, Guo S, Mi D, Shen W, Zhang J et al. BMP-6 inhibits MMP-9 expression by regulating heme oxygenase-1 in MCF-7 breast cancer cells. J Can Res Clin Oncol 2011; 137: 985–995.

    Article  CAS  Google Scholar 

  56. Sims JD, McCready J, Jay DG . Extracellular heat shock protein (Hsp)70 and Hsp90alpha assist in matrix metalloproteinase-2 activation and breast cancer cell migration and invasion. PLoS One 2011; 6: e18848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kasperczyk H, Baumann B, Debatin KM, Fulda S . Characterization of sonic hedgehog as a novel NF-kappaB target gene that promotes NF-kappaB-mediated apoptosis resistance and tumor growth in vivo. FASEB J. 2009; 23: 21–33.

    Article  CAS  PubMed  Google Scholar 

  58. Kasper M, Jaks V, Fiaschi M, Toftgard R . Hedgehog signalling in breast cancer. Carcinogenesis 2009; 30: 903–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yoo YA, Kang MH, Lee HJ, Kim BH, Park JK, Kim HK et al. Sonic hedgehog pathway promotes metastasis and lymphangiogenesis via activation of Akt, EMT, and MMP-9 pathway in gastric cancer. Cancer Res 2011; 71: 7061–7070.

    Article  CAS  PubMed  Google Scholar 

  60. Liao X, Siu MK, Au CW, Wong ES, Chan HY, Ip PP et al. Aberrant activation of hedgehog signaling pathway in ovarian cancers: effect on prognosis, cell invasion and differentiation. Carcinogenesis 2009; 30: 131–140.

    Article  CAS  PubMed  Google Scholar 

  61. Koodie L, Ramakrishnan S, Roy S . Morphine suppresses tumor angiogenesis through a HIF-1alpha/p38MAPK pathway. Am J Pathol 2010; 177: 984–997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stockmann C, Doedens A, Weidemann A, Zhang N, Takeda N, Greenberg JI et al. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 2008; 456: 814–818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Metz RP, Kwak HI, Gustafson T, Laffin B, Porter WW . Differential transcriptional regulation by mouse single-minded 2s. J Biol Chem 2006; 281: 10839–10848.

    Article  CAS  PubMed  Google Scholar 

  64. Hettinger AM, Allen MR, Zhang BR, Goad DW, Malayer JR, Geisert RD . Presence of the acute phase protein, bikunin, in the endometrium of gilts during estrous cycle and early pregnancy. Biol Reprod 2001; 65: 507–513.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Daniel Medina (Baylor College of Medicine, Houston, TX, USA) for providing the MCF10DCIS.com cell line and the Histology Core Facility at Texas A&M University College of Veterinary Medicine & Biomedical Sciences for tissue preparation and hematoxylin and eosin staining. DCIS and IDC tissue sections were provided by the University of KansasCancer Center Biospecimen Share Resources at the University of KansasMedical Center. This work was supported by grants R01CA111551 from the National Cancer Institute (NCI) to WWP, W81XWH-11-1-0158 from the Department of Defence (DOD-CDMRP) to KCS and 5R00CA127462-06 from the NCI to FB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W W Porter.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scribner, K., Behbod, F. & Porter, W. Regulation of DCIS to invasive breast cancer progression by Singleminded-2s (SIM2s). Oncogene 32, 2631–2639 (2013). https://doi.org/10.1038/onc.2012.286

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.286

Keywords

This article is cited by

Search

Quick links