Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The epigenetic regulator UHRF1 promotes ubiquitination-mediated degradation of the tumor-suppressor protein promyelocytic leukemia protein

A Corrigendum to this article was published on 01 October 2015

Abstract

The promyelocytic leukemia (PML) protein is a tumor suppressor originally identified in acute promyelocytic leukemia and implicated in tumorigenesis in multiple forms of cancer. Here, we demonstrate that the PML protein undergoes ubiquitination-mediated degradation facilitated by an E3 ligase UHRF1 (ubiquitin-like with PHD and RING finger domains 1), which is commonly upregulated in various human malignancies. Furthermore, UHRF1 negatively regulates PML protein accumulation in primary human umbilical vein endothelial cells (HUVECs), HEK 293 cells and cancer cells. Knockdown of UHRF1 upregulates whereas ectopic overexpression of UHRF1 downregulates protein abundance of endogenous or exogenous PML, doing so through its binding to the N-terminus of PML. Overexpression of wild-type UHRF1 shortens PML protein half-life and promotes PML polyubiquitination, whereas deletion of the RING domain or coexpression of the dominant-negative E2 ubiquitin-conjugating enzyme, E2D2, attenuates this modification to PML. Finally, knockdown of UHRF1 prolongs PML half-life and increases PML protein accumulation, yet inhibits cell migration and in vitro capillary tube formation, whereas co-knockdown of PML compromises this inhibitory effect. These findings suggest that UHRF1 promotes the turnover of PML protein, and thus targeting UHRF1 to restore PML-mediated tumor suppression represents a promising, novel, anticancer strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Arita K, Ariyoshi M, Tochio H, Nakamura Y, Shirakawa M . Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature 2008; 455: 818–821.

    Article  CAS  Google Scholar 

  2. Avvakumov GV, Walker JR, Xue S, Li Y, Duan S, Bronner C et al. Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature 2008; 455: 822–825.

    Article  CAS  Google Scholar 

  3. Hashimoto H, Horton JR, Zhang X, Bostick M, Jacobsen SE, Cheng X . The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix. Nature 2008; 455: 826–829.

    Article  CAS  Google Scholar 

  4. Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE . UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 2007; 317: 1760–1764.

    Article  CAS  Google Scholar 

  5. Unoki M, Nishidate T, Nakamura Y . ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain. Oncogene 2004; 23: 7601–7610.

    Article  CAS  Google Scholar 

  6. Hu L, Li Z, Wang P, Lin Y, Xu Y . Crystal structure of PHD domain of UHRF1 and insights into recognition of unmodified histone H3 arginine residue 2. Cell Res 2011; 21: 1374–1378.

    Article  CAS  Google Scholar 

  7. Xie S, Jakoncic J, Qian C . UHRF1 double tudor domain and the adjacent PHD finger act together to recognize K9me3-containing histone H3 tail. J Mol Biol 2011; 415: 318–328.

    Article  Google Scholar 

  8. Citterio E, Papait R, Nicassio F, Vecchi M, Gomiero P, Mantovani R et al. Np95 is a histone-binding protein endowed with ubiquitin ligase activity. Mol Cell Biol 2004; 24: 2526–2535.

    Article  CAS  Google Scholar 

  9. Yan F, Tan XY, Geng Y, Ju HX, Gao YF, Zhu MC . Inhibition effect of siRNA-downregulated UHRF1 on breast cancer growth. Cancer Biother Radiopharm 2011; 26: 183–189.

    Article  CAS  Google Scholar 

  10. Li X, Meng Q, Rosen EM, Fan S . UHRF1 confers radioresistance to human breast cancer cells. Int J Radiat Biol 2011; 87: 263–273.

    Article  CAS  Google Scholar 

  11. Unoki M, Daigo Y, Koinuma J, Tsuchiya E, Hamamoto R, Nakamura Y . UHRF1 is a novel diagnostic marker of lung cancer. Br J Cancer 2010; 103: 217–222.

    Article  CAS  Google Scholar 

  12. Daskalos A, Oleksiewicz U, Filia A, Nikolaidis G, Xinarianos G, Gosney JR et al. UHRF1-mediated tumor suppressor gene inactivation in nonsmall cell lung cancer. Cancer 2010; 117: 1027–1037.

    Article  Google Scholar 

  13. Wang F, Yang YZ, Shi CZ, Zhang P, Moyer MP, Zhang HZ et al. UHRF1 promotes cell growth and metastasis through repression of p16(ink4a) in colorectal cancer. Ann Surg Oncol 2012; 19: 2753–2762.

    Article  Google Scholar 

  14. Du Z, Song J, Wang Y, Zhao Y, Guda K, Yang S et al. DNMT1 stability is regulated by proteins coordinating deubiquitination and acetylation-driven ubiquitination. Sci Signal 2010; 3: ra80.

    Article  Google Scholar 

  15. Sabatino L, Fucci A, Pancione M, Carafa V, Nebbioso A, Pistore C et al. UHRF1 coordinates peroxisome proliferator activated receptor gamma (PPARG) epigenetic silencing and mediates colorectal cancer progression. Oncogene 2012; 31: 5061–5072.

    Article  CAS  Google Scholar 

  16. Jenkins Y, Markovtsov V, Lang W, Sharma P, Pearsall D, Warner J et al. Critical role of the ubiquitin ligase activity of UHRF1, a nuclear RING finger protein, in tumor cell growth. Mol Biol Cell 2005; 16: 5621–5629.

    Article  CAS  Google Scholar 

  17. Babbio F, Pistore C, Curti L, Castiglioni I, Kunderfranco P, Brino L et al. The SRA protein UHRF1 promotes epigenetic crosstalks and is involved in prostate cancer progression. Oncogene 2012; 31: 4878–4887.

    Article  CAS  Google Scholar 

  18. Unoki M, Kelly JD, Neal DE, Ponder BA, Nakamura Y, Hamamoto R . UHRF1 is a novel molecular marker for diagnosis and the prognosis of bladder cancer. Br J Cancer 2009; 101: 98–105.

    Article  CAS  Google Scholar 

  19. Yang GL, Zhang LH, Bo JJ, Chen HG, Cao M, Liu DM et al. UHRF1 is associated with tumor recurrence in non-muscle-invasive bladder cancer. Med Oncol 2011; 29: 842–847.

    Article  Google Scholar 

  20. Un F, Qi C, Prosser M, Wang N, Zhou B, Bronner C et al. Modulating ICBP90 to suppress human ribonucleotide reductase M2 induction restores sensitivity to hydroxyurea cytotoxicity. Anticancer Res 2006; 26: 2761–2767.

    CAS  PubMed  Google Scholar 

  21. Jin W, Chen L, Chen Y, Xu SG, Di GH, Yin WJ et al. UHRF1 is associated with epigenetic silencing of BRCA1 in sporadic breast cancer. Breast Cancer Res Treat 2010; 123: 359–373.

    Article  CAS  Google Scholar 

  22. Alhosin M, Sharif T, Mousli M, Etienne-Selloum N, Fuhrmann G, Schni-Kerth VB et al. Down-regulation of UHRF1, associated with re-expression of tumor suppressor genes, is a common feature of natural compounds exhibiting anti-cancer properties. J Exp Clin Cancer Res 2011; 30: 41.

    Article  CAS  Google Scholar 

  23. Jeanblanc M, Mousli M, Hopfner R, Bathami K, Martinet N, Abbady AQ et al. The retinoblastoma gene and its product are targeted by ICBP90: a key mechanism in the G1/S transition during the cell cycle. Oncogene 2005; 24: 7337–7345.

    Article  CAS  Google Scholar 

  24. Kim JK, Esteve PO, Jacobsen SE, Pradhan S . UHRF1 binds G9a and participates in p21 transcriptional regulation in mammalian cells. Nucleic Acids Res 2009; 37: 493–505.

    Article  CAS  Google Scholar 

  25. de The H, Chomienne C, Lanotte M, Degos L, Dejean A . The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature 1990; 347: 558–561.

    Article  CAS  Google Scholar 

  26. Reineke EL, Kao HY . Targeting promyelocytic leukemia protein: a means to regulating PML nuclear bodies. Int J Biol Sci 2009; 5: 366–376.

    Article  CAS  Google Scholar 

  27. Reineke EL, Liu Y, Kao HY . Promyelocytic leukemia protein controls cell migration in response to hydrogen peroxide and insulin-like growth factor-1. J Biol Chem 2010; 285: 9485–9492.

    Article  CAS  Google Scholar 

  28. Gurrieri C, Capodieci P, Bernardi R, Scaglioni PP, Nafa K, Rush LJ et al. Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J Natl Cancer Inst 2004; 96: 269–279.

    Article  CAS  Google Scholar 

  29. Fanelli M, Fantozzi A, De Luca P, Caprodossi S, Matsuzawa S, Lazar MA et al. The coiled-coil domain is the structural determinant for mammalian homologues of Drosophila Sina-mediated degradation of promyelocytic leukemia protein and other tripartite motif proteins by the proteasome. J Biol Chem 2004; 279: 5374–5379.

    Article  CAS  Google Scholar 

  30. Boutell C, Canning M, Orr A . Everett RD. Reciprocal activities between herpes simplex virus type 1 regulatory protein ICP0, a ubiquitin E3 ligase, and ubiquitin-specific protease USP7. J Virol 2005; 79: 12342–12354.

    Article  CAS  Google Scholar 

  31. Louria-Hayon I, Alsheich-Bartok O, Levav-Cohen Y, Silberman I, Berger M, Grossman T et al. E6AP promotes the degradation of the PML tumor suppressor. Cell Death Differ 2009; 16: 1156–1166.

    Article  CAS  Google Scholar 

  32. Yuan WC, Lee YR, Huang SF, Lin YM, Chen TY, Chung HC et al. A Cullin3-KLHL20 Ubiquitin ligase-dependent pathway targets PML to potentiate HIF-1 signaling and prostate cancer progression. Cancer Cell 2011; 20: 214–228.

    Article  CAS  Google Scholar 

  33. Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG et al. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 2008; 10: 538–546.

    Article  CAS  Google Scholar 

  34. Lallemand-Breitenbach V, Jeanne M, Benhenda S, Nasr R, Lei M, Peres L et al. Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol 2008; 10: 547–555.

    Article  CAS  Google Scholar 

  35. Reineke EL, Lam M, Liu Q, Liu Y, Stanya KJ, Chang KS et al. Degradation of the tumor suppressor PML by Pin1 contributes to the cancer phenotype of breast cancer MDA-MB-231 cells. Mol Cell Biol 2008; 28: 997–1006.

    Article  CAS  Google Scholar 

  36. Jensen K, Shiels C, Freemont PS . PML protein isoforms and the RBCC/TRIM motif. Oncogene 2001; 20: 7223–7233.

    CAS  Google Scholar 

  37. Felle M, Joppien S, Nemeth A, Diermeier S, Thalhammer V, Dobner T et al. The USP7/Dnmt1 complex stimulates the DNA methylation activity of Dnmt1 and regulates the stability of UHRF1. Nucleic Acids Res 2011; 39: 8355–8365.

    Article  CAS  Google Scholar 

  38. Ma H, Chen H, Guo X, Wang Z, Sowa ME, Zheng L et al. M phase phosphorylation of the epigenetic regulator UHRF1 regulates its physical association with the deubiquitylase USP7 and stability. Proc Natl Acad Sci USA. 2012; 109: 4828–4833.

    Article  CAS  Google Scholar 

  39. van Wijk SJ, de Vries SJ, Kemmeren P, Huang A, Boelens R, Bonvin AM et al. A comprehensive framework of E2-RING E3 interactions of the human ubiquitin-proteasome system. Mol Syst Biol 2009; 5: 295.

    Article  Google Scholar 

  40. Rajakumara E, Wang Z, Ma H, Hu L, Chen H, Lin Y et al. PHD finger recognition of unmodified histone H3R2 links UHRF1 to regulation of euchromatic gene expression. Mol Cell 2011; 43: 275–284.

    Article  CAS  Google Scholar 

  41. Nady N, Lemak A, Walker JR, Avvakumov GV, Kareta MS, Achour M et al. Recognition of multivalent histone states associated with heterochromatin by UHRF1. J Biol Chem 2011; 286: 24300–24311.

    Article  CAS  Google Scholar 

  42. Wang DY, Done SJ, McCready DR, Boerner S, Kulkarni S, Leong WL . A new gene expression signature, the ClinicoMolecular Triad Classification, may improve prediction and prognostication of breast cancer at the time of diagnosis. Breast Cancer Res 2011; 13: R92.

    Article  CAS  Google Scholar 

  43. Unoki M, Brunet J, Mousli M . Drug discovery targeting epigenetic codes: the great potential of UHRF1, which links DNA methylation and histone modifications, as a drug target in cancers and toxoplasmosis. Biochem Pharmacol 2009; 78: 1279–1288.

    Article  CAS  Google Scholar 

  44. Terris B, Baldin V, Dubois S, Degott C, Flejou JF, Henin D et al. PML nuclear bodies are general targets for inflammation and cell proliferation. Cancer Res 1995; 55: 1590–1597.

    CAS  PubMed  Google Scholar 

  45. Gao C, Cheng X, Lam M, Liu Y, Liu Q, Chang KS et al. Signal-dependent regulation of transcription by histone deacetylase 7 involves recruitment to promyelocytic leukemia protein nuclear bodies. Mol Biol Cell 2008; 19: 3020–3027.

    Article  CAS  Google Scholar 

  46. Cheng X, Liu Y, Chu H, Kao HY . Promyelocytic leukemia protein (PML) regulates endothelial cell network formation and migration in response to tumor necrosis factor alpha (TNFalpha) and interferon alpha (IFNalpha). J Biol Chem 2012; 287: 23356–23367.

    Article  CAS  Google Scholar 

  47. Sarkari F, Wang X, Nguyen T, Frappier L . The herpesvirus associated ubiquitin specific protease, USP7, is a negative regulator of PML proteins and PML nuclear bodies. PLoS One 2011; 6: e16598.

    Article  CAS  Google Scholar 

  48. Canning M, Boutell C, Parkinson J, Everett RD . A RING finger ubiquitin ligase is protected from autocatalyzed ubiquitination and degradation by binding to ubiquitin-specific protease USP7. J Biol Chem 2004; 279: 38160–38168.

    Article  CAS  Google Scholar 

  49. Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 2000; 406: 207–210.

    Article  CAS  Google Scholar 

  50. Hofmann TG, Moller A, Sirma H, Zentgraf H, Taya Y, Droge W et al. Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol 2002; 4: 1–10.

    Article  CAS  Google Scholar 

  51. Lim JH, Liu Y, Reineke E, Kao HY . Mitogen-activated protein kinase extracellular signal-regulated kinase 2 phosphorylates and promotes Pin1 protein-dependent promyelocytic leukemia protein turnover. J Biol Chem 2011; 286: 44403–44411.

    Article  CAS  Google Scholar 

  52. Khurana S, Chakraborty S, Cheng X, Su YT, Kao HY . The actin-binding protein, actinin alpha 4 (ACTN4), is a nuclear receptor coactivator that promotes proliferation of MCF-7 breast cancer cells. J Biol Chem 2011; 286: 1850–1859.

    Article  CAS  Google Scholar 

  53. Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S et al. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 2003; 112: 779–791.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr David Samols for his comments on the manuscript. D Factor is supported by training Grant T32HD07104. This project is supported by the NIH through R01 DK078965, HL093269 and Case Comprehensive Cancer Center Program in Aging and Energy Balance, NCI P20 CA103767 to H-Y Kao and CA127590 to Z Wang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H-Y Kao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, D., Factor, D., Liu, Y. et al. The epigenetic regulator UHRF1 promotes ubiquitination-mediated degradation of the tumor-suppressor protein promyelocytic leukemia protein. Oncogene 32, 3819–3828 (2013). https://doi.org/10.1038/onc.2012.406

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.406

Keywords

This article is cited by

Search

Quick links