Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Wnt4 inhibits cell motility induced by oncogenic Ras

Abstract

Aberrant motility and invasive ability are relevant hallmarks of malignant tumor cells. Pathways regulating the movement of cancer cells from the site of primary tumor toward adjacent and/or distant tissues are not entirely defined. By using a model of malignant transformation induced by Ras, we identified Wnt4 as an early target of Ras oncogenic signaling. Here we show that Wnt4 is repressed by Ras and that forced Wnt4 expression inhibits Ras-induced cell motility. Accordingly, we found that Wnt4 is downregulated in human anaplastic thyroid carcinomas, the most malignant and metastatic thyroid cancer histotype. Wnt4 interferes with Ras-induced actin cytoskeleton reorganization through non-canonical pathways, by altering the balance between the activation of different Rho-family small guanosine triphosphatases (GTPases). Finally, we demonstrate that Wnt4 is post-transcriptionally repressed by miR-24, a Ras-induced micro RNA (miRNA) targeting the 3′-untranslated region (UTR) of Wnt4. Taken together our data highlight a novel Ras-regulated miRNA-dependent circuitry regulating the motile phenotype of cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  2. Kondo T, Ezzat S, Asa SL . Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 2006; 6: 292–306.

    Article  CAS  PubMed  Google Scholar 

  3. Malumbres M, Barbacid MRAS . oncogenes: the first 30 years. Nat Rev Cancer 2003; 3: 459–465.

    Article  CAS  PubMed  Google Scholar 

  4. Schubbert S, Shannon K, Bollag G . Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 2007; 7: 295–308.

    Article  CAS  PubMed  Google Scholar 

  5. Hingorani SR, Tuveson DA . Ras redux: rethinking how and where Ras acts. Curr Opin Genet Dev 2003; 13: 6–13.

    Article  CAS  PubMed  Google Scholar 

  6. Marshall CJ . Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 1995; 80: 179–185.

    Article  CAS  PubMed  Google Scholar 

  7. Cully MYH, Levine AJ, Mak TW . Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 2006; 6: 184–192.

    Article  CAS  PubMed  Google Scholar 

  8. Engelman JALJ, Cantley LC . The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 2006; 7: 606–619.

    Article  CAS  PubMed  Google Scholar 

  9. Braga VM, Betson M, Li X, Lamarche-Vane N . Activation of the small GTPase Rac is sufficient to disrupt cadherin-dependent cell-cell adhesion in normal human keratinocytes. Mol Biol Cell 2000; 11: 3703–3721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Quinlan MP . Rac regulates the stability of the adherens junction and its components, thus affecting epithelial cell differentiation and transformation. Oncogene 1999; 18: 6434–6442.

    Article  CAS  PubMed  Google Scholar 

  11. Arthur WT, Burridge K . RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity. Mol Biol Cell 2001; 12: 2711–2720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Parri M, Chiarugi P . Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal 2010; 8: 23.

    Article  PubMed  PubMed Central  Google Scholar 

  13. De Vita G, Bauer L, da Costa VM, De Felice M, Baratta MG, De Menna M et al. Dose-dependent inhibition of thyroid differentiation by RAS oncogenes. Mol Endocrinol 2005; 19: 76–89.

    Article  CAS  PubMed  Google Scholar 

  14. Frezzetti D, De Menna M, Zoppoli P, Guerra C, Ferraro A, Bello AM et al. Upregulation of miR-21 by Ras in vivo and its role in tumor growth. Oncogene 2011; 30: 275–286.

    Article  CAS  PubMed  Google Scholar 

  15. Stark K, Vainio S, Vassileva G, McMahon AP . Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 1994; 372: 679–683.

    Article  CAS  PubMed  Google Scholar 

  16. Vainio S, Heikkila M, Kispert A, Chin N, McMahon AP . Female development in mammals is regulated by Wnt-4 signalling. Nature 1999; 397: 405–409.

    Article  CAS  PubMed  Google Scholar 

  17. Vainio SJ . Nephrogenesis regulated by Wnt signaling. J Nephrol 2003; 16: 279–285.

    CAS  PubMed  Google Scholar 

  18. Tanigawa S, Wang H, Yang Y, Sharma N, Tarasova N, Ajima R et al. Wnt4 induces nephronic tubules in metanephric mesenchyme by a non-canonical mechanism. Dev Biol 2011; 352: 58–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vincent JP, Beckett K . Off-track takes Frizzled off the canonical path. EMBO J 2011; 30: 3665–3666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schlessinger K, Hall A, Tolwinski N . Wnt signaling pathways meet Rho GTPases. Genes Dev 2009; 23: 265–277.

    Article  CAS  PubMed  Google Scholar 

  21. Taki M, Kamata N, Yokoyama K, Fujimoto R, Tsutsumi S, Nagayama M . Down-regulation of Wnt-4 and up-regulation of Wnt-5a expression by epithelial-mesenchymal transition in human squamous carcinoma cells. Cancer Sci 2003; 94: 593–597.

    Article  CAS  PubMed  Google Scholar 

  22. Bui TD, Zhang L, Rees MC, Bicknell R, Harris AL . Expression and hormone regulation of Wnt2, 3, 4, 5a, 7a, 7b and 10b in normal human endometrium and endometrial carcinoma. Br J Cancer 1997; 75: 1131–1136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huguet EL, McMahon JA, McMahon AP, Bicknell R, Harris AL . Differential expression of human Wnt genes 2, 3, 4, and 7B in human breast cell lines and normal and disease states of human breast tissue. Cancer Res 1994; 54: 2615–2621.

    CAS  PubMed  Google Scholar 

  24. Benhaj K, Akcali KC, Ozturk M . Redundant expression of canonical Wnt ligands in human breast cancer cell lines. Oncol Rep 2006; 15: 701–707.

    CAS  PubMed  Google Scholar 

  25. Miyakoshi T, Takei M, Kajiya H, Egashira N, Takekoshi S, Teramoto A et al. Expression of Wnt4 in human pituitary adenomas regulates activation of the beta-catenin-independent pathway. Endocr Pathol 2008; 19: 261–273.

    Article  CAS  PubMed  Google Scholar 

  26. Kimura T, Van Keymeulen A, Golstein J, Fusco A, Dumont JE, Roger PP . Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocrine Reviews 2001; 22: 631–656.

    Article  CAS  PubMed  Google Scholar 

  27. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129: 1401–1414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baratta MGPI, Di Lauro R . Oncogenic ras blocks the cAMP pathway and dedifferentiates thyroid cells via animpairment of pax8 transcriptional activity. Mol Endocrinol 2009; 23: 838–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jeays-Ward K, Hoyle C, Brennan J, Dandonneau M, Alldus G, Capel B et al. Endothelial and steroidogenic cell migration are regulated by WNT4 in the developing mammalian gonad. Development 2003; 130: 3663–3670.

    Article  CAS  PubMed  Google Scholar 

  30. Roger PP, van Staveren WC, Coulonval K, Dumont JE, Maenhaut C . Signal transduction in the human thyrocyte and its perversion in thyroid tumors. Molecular and Cellular Endocrinology 2010; 321: 3–19.

    Article  CAS  PubMed  Google Scholar 

  31. Drosten M, Dhawahir A, Sum EY, Urosevic J, Lechuga CG, Esteban LM et al. Genetic analysis of Ras signalling pathways in cell proliferation, migration and survival. Embo J 2011; 29: 1091–1104.

    Article  Google Scholar 

  32. Herrera Abreu MTHW, Mele K, Lyons RJ, Rickwood D, Browne BC, Bennett HL et al. Gab2 regulates cytoskeletal organization and migration of mammary epithelial cells by modulating RhoA activation. Mol Biol Cell 2011; 22: 105–116.

    Article  PubMed  Google Scholar 

  33. Bhushan L, Kandpal RP . EphB6 receptor modulates micro RNA profile of breast carcinoma cells. PLoS One 2011; 6: e22484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qin WSY, Zhao B, Yao C, Jin L, Ma J, Jin Y . miR-24 regulates apoptosis by targeting the open reading frame (orf) region of FAF1 in cancer cells. PLoS ONE 2010; 5: e9429.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Xie LWT, Yu S, Chen X, Wang L, Qian X, Yu L et al. Cell-free miR-24 and miR-30d, potential diagnostic biomarkers in malignant effusions. Clin Biochem 2011; 44: 216–220.

    Article  CAS  PubMed  Google Scholar 

  36. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103: 2257–2261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hatziapostolou MPC, Aggelidou E, Drakaki A, Poultsides GA, Jaeger SA, Ogata H et al. An HNF4alpha-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis. Cell 2011; 147: 1233–1247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Papadimitriou EVE, Vorvis C, Iliopoulos D, Moustakas A, Kardassis D, Stournaras C . Differential regulation of the two RhoA-specific GEF isoforms Net1/Net1A by TGF-beta and miR-24: role in epithelial-to-mesenchymal transition. Oncogene 2012; 31: 2862–2875.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Associazione Italiana per la Ricerca sul Cancro (AIRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G De Vita.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Menna, M., D'Amato, V., Ferraro, A. et al. Wnt4 inhibits cell motility induced by oncogenic Ras. Oncogene 32, 4110–4119 (2013). https://doi.org/10.1038/onc.2012.419

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.419

Keywords

This article is cited by

Search

Quick links