Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Essential role of cooperative NF-κB and Stat3 recruitment to ICAM-1 intronic consensus elements in the regulation of radiation-induced invasion and migration in glioma

Abstract

Although radiotherapy improves survival in patients, glioblastoma multiformes (GBMs) tend to relapse with augmented tumor migration and invasion even after ionizing radiation (IR). Aberrant nuclear factor-κB (NF-κB) and signal transducer and activator of transcription factor 3 (Stat3) activation and interaction have been suggested in several human tumors. However, possible NF-κB/Stat3 interaction and the role of Stat3 in maintenance of NF-κB nuclear retention in GBM still remain unknown. Stat3 and NF-κB (p65) physically interact with one another in the nucleus in glioma tumors. Most importantly, glutathione S-transferase pull-down assays identified that Stat3 binds to the p65 transactivation domain and is present in the NF-κB DNA-binding complex. Irradiation significantly elevated nuclear phospho-p65/phospho-Stat3 interaction in correlation with increased intercellular adhesion molecule-1 (ICAM-1) and soluble-ICAM-1 levels, migration and invasion in human glioma xenograft cell lines 4910 and 5310. Chromatin immunopreicipitation and promoter luciferase activity assays confirmed the critical role of adjacent NF-κB (+399) and Stat3 (+479) binding motifs in the proximal intron-1 in elevating IR-induced ICAM-1 expression. Specific inhibition of Stat3 or NF-κB with Stat3.siRNA or JSH-23 severely inhibited IR-induced p65 recruitment onto ICAM-1 intron-1 and suppressed migratory properties in both the cell lines. On the other hand, Stat3C- or IR-induced Stat3 promoter recruitment was significantly decreased in p65-knockdown cells, thereby suggesting the reciprocal regulation between p65 and Stat3. We also observed a significant increase in NF-κB enrichment on ICAM-1 intron-1 and ICAM-1 transactivation in Stat3C overexpressing cells. In in vivo orthotopic experiments, suppression of tumor growth in Stat3.si+IR-treated mice was associated with the inhibition of IR-induced p-p65/p-Stat3 nuclear colocalization and ICAM-1 levels. To our knowledge, this is the first study showing the crucial role of NF-κB/Stat3 nuclear association in IR-induced ICAM-1 regulation and implies that targeting NF-κB/Stat3 interaction may have future therapeutic significance in glioma treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Fine HA, Dear KB, Loeffler JS, Black PM, Canellos GP . Meta-analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults. Cancer 1993; 71: 2585–2597.

    Article  CAS  Google Scholar 

  2. Louis DN . Molecular pathology of malignant gliomas. Annu Rev Pathol 2006; 1: 97–117.

    Article  CAS  Google Scholar 

  3. Rao JS . Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 2003; 3: 489–501.

    Article  CAS  Google Scholar 

  4. Wild-Bode C, Weller M, Rimner A, Dichgans J, Wick W . Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 2001; 61: 2744–2750.

    CAS  Google Scholar 

  5. Kargiotis O, Geka A, Rao JS, Kyritsis AP . Effects of irradiation on tumor cell survival, invasion and angiogenesis. J Neurooncol 2010; 100: 323–338.

    Article  Google Scholar 

  6. Li T, Zeng ZC, Wang L, Qiu SJ, Zhou JW, Zhi XT et al. Radiation enhances long-term metastasis potential of residual hepatocellular carcinoma in nude mice through TMPRSS4-induced epithelial-mesenchymal transition. Cancer Gene Ther 2011; 18: 617–626.

    Article  CAS  Google Scholar 

  7. Karin M, Greten FR . NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005; 5: 749–759.

    Article  CAS  Google Scholar 

  8. Lowe JM, Cha H, Yang Q, Fornace AJ . Nuclear factor-kappaB (NF-kappaB) is a novel positive transcriptional regulator of the oncogenic Wip1 phosphatase. J Biol Chem 2010; 285: 5249–5257.

    Article  CAS  Google Scholar 

  9. Naugler WE, Karin M . NF-kappaB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev 2008; 18: 19–26.

    Article  CAS  Google Scholar 

  10. Hayden MS, Ghosh S . Shared principles in NF-kappaB signaling. Cell 2008; 132: 344–362.

    Article  CAS  Google Scholar 

  11. Magne N, Toillon RA, Bottero V, Didelot C, Houtte PV, Gerard JP et al. NF-kappaB modulation and ionizing radiation: mechanisms and future directions for cancer treatment. Cancer Lett 2006; 231: 158–168.

    Article  CAS  Google Scholar 

  12. Oeckinghaus A, Hayden MS, Ghosh S . Crosstalk in NF-kappaB signaling pathways. Nat Immunol 2011; 12: 695–708.

    Article  CAS  Google Scholar 

  13. Chen LF, Fischle W, Verdin E, Greene WC . Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 2001; 293: 1653–1657.

    Article  CAS  Google Scholar 

  14. Ghizzoni M, Haisma HJ, Maarsingh H, Dekker FJ . Histone acetyltransferases are crucial regulators in NF-kappaB mediated inflammation. Drug Discov Today 2011; 16: 504–511.

    Article  CAS  Google Scholar 

  15. Chen LF, Greene WC . Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol 2004; 5: 392–401.

    Article  CAS  Google Scholar 

  16. Brantley EC, Benveniste EN . Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas. Mol Cancer Res 2008; 6: 675–684.

    Article  CAS  Google Scholar 

  17. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C et al. Stat3 as an oncogene. Cell 1999; 98: 295–303.

    Article  CAS  Google Scholar 

  18. Lee H, Herrmann A, Deng JH, Kujawski M, Niu G, Li Z et al. Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell 2009; 15: 283–293.

    Article  CAS  Google Scholar 

  19. Roland CL . Harken AH, Sarr MG, Barnett CC, Jr. ICAM-1 expression determines malignant potential of cancer. Surgery 2007; 141: 705–707.

    Article  Google Scholar 

  20. Maenpaa A, Kovanen PE, Paetau A, Jaaskelainen J, Timonen T . Lymphocyte adhesion molecule ligands and extracellular matrix proteins in gliomas and normal brain: expression of VCAM-1 in gliomas. Acta Neuropathol 1997; 94: 216–225.

    Article  CAS  Google Scholar 

  21. Burim RV, Teixeira SA, Colli BO, Peria FM, Tirapelli LF, Marie SK et al. ICAM-1 (Lys469Glu) and PECAM-1 (Leu125Val) polymorphisms in diffuse astrocytomas. Clin Exp Med 2009; 9: 157–163.

    Article  CAS  Google Scholar 

  22. Berens ME, Giese A . ‘...those left behind.’ Biology and oncology of invasive glioma cells. Neoplasia 1999; 1: 208–219.

    Article  CAS  Google Scholar 

  23. Voraberger G, Schafer R, Stratowa C . Cloning of the human gene for intercellular adhesion molecule 1 and analysis of its 5'-regulatory region. Induction by cytokines and phorbol ester. J Immunol 1991; 147: 2777–2786.

    CAS  PubMed  Google Scholar 

  24. Ledebur HC, Parks TP . Transcriptional regulation of the intercellular adhesion molecule-1 gene by inflammatory cytokines in human endothelial cells. Essential roles of a variant NF-kappa B site and p65 homodimers. J Biol Chem 1995; 270: 933–943.

    Article  CAS  Google Scholar 

  25. Xue J, Thippegowda PB, Hu G, Bachmaier K, Christman JW, Malik AB et al. NF-kappaB regulates thrombin-induced ICAM-1 gene expression in cooperation with NFAT by binding to the intronic NF-kappaB site in the ICAM-1 gene. Physiol Genomics 2009; 38: 42–53.

    Article  CAS  Google Scholar 

  26. Lam LT, Wright G, Davis RE, Lenz G, Farinha P, Dang L et al. Cooperative signaling through the signal transducer and activator of transcription 3 and nuclear factor-{kappa}B pathways in subtypes of diffuse large B-cell lymphoma. Blood 2008; 111: 3701–3713.

    Article  CAS  Google Scholar 

  27. Atkinson GP, Nozell SE, Benveniste ET . NF-kappaB and STAT3 signaling in glioma: targets for future therapies. Expert Rev Neurother 2010; 10: 575–586.

    Article  CAS  Google Scholar 

  28. Bollrath J, Greten FR . IKK/NF-kappaB and STAT3 pathways: central signalling hubs in inflammation-mediated tumour promotion and metastasis. EMBO Rep 2009; 10: 1314–1319.

    Article  CAS  Google Scholar 

  29. Grivennikov SI, Karin M . Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 2010; 21: 11–19.

    Article  CAS  Google Scholar 

  30. Lee H, Deng J, Xin H, Liu Y, Pardoll D, Yu H . A requirement of STAT3 DNA binding precludes Th-1 immunostimulatory gene expression by NF-kappaB in tumors. Cancer Res 2011; 71: 3772–3780.

    Article  CAS  Google Scholar 

  31. Jang HD, Yoon K, Shin YJ, Kim J, Lee SY . PIAS3 suppresses NF-kappaB-mediated transcription by interacting with the p65/RelA subunit. J Biol Chem 2004; 279: 24873–24880.

    Article  CAS  Google Scholar 

  32. Strebovsky J, Walker P, Lang R, Dalpke AH . Suppressor of cytokine signaling 1 (SOCS1) limits NFkappaB signaling by decreasing p65 stability within the cell nucleus. FASEB J 2011; 25: 863–874.

    Article  CAS  Google Scholar 

  33. Benezra M, Chevallier N, Morrison DJ, MacLachlan TK, el-Deiry WS, Licht JD . BRCA1 augments transcription by the NF-kappaB transcription factor by binding to the Rel domain of the p65/RelA subunit. J Biol Chem 2003; 278: 26333–26341.

    Article  CAS  Google Scholar 

  34. Dutta J, Fan G, Gelinas C . CAPERalpha is a novel Rel-TAD-interacting factor that inhibits lymphocyte transformation by the potent Rel/NF-kappaB oncoprotein v-Rel. J Virol 2008; 82: 10792–10802.

    Article  CAS  Google Scholar 

  35. Liu S, Wu LC, Pang J, Santhanam R, Schwind S, Wu YZ et al. Sp1/NFkappaB/HDAC/miR-29b regulatory network in KIT-driven myeloid leukemia. Cancer Cell 2010; 17: 333–347.

    Article  CAS  Google Scholar 

  36. Liu S, Liu Z, Xie Z, Pang J, Yu J, Lehmann E et al. Bortezomib induces DNA hypomethylation and silenced gene transcription by interfering with Sp1/NF-kappaB-dependent DNA methyltransferase activity in acute myeloid leukemia. Blood 2008; 111: 2364–2373.

    Article  CAS  Google Scholar 

  37. Han SS, Yun H, Son DJ, Tompkins VS, Peng L, Chung ST et al. NF-kappaB/STAT3/PI3K signaling crosstalk in iMyc E mu B lymphoma. Mol Cancer 2010; 9: 97.

    Article  Google Scholar 

  38. Surh YJ, Bode AM, Dong Z . Breaking the NF-kappaB and STAT3 alliance inhibits inflammation and pancreatic tumorigenesis. Cancer Prev Res (Phila) 2010; 3: 1379–1381.

    Article  CAS  Google Scholar 

  39. He G, Yu GY, Temkin V, Ogata H, Kuntzen C, Sakurai T et al. Hepatocyte IKKbeta/NF-kappaB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell 2010; 17: 286–297.

    Article  CAS  Google Scholar 

  40. He G, Karin M . NF-kappaB and STAT3 - key players in liver inflammation and cancer. Cell Res 2011; 21: 159–168.

    Article  CAS  Google Scholar 

  41. Squarize CH, Castilho RM, Sriuranpong V, Pinto DS, Gutkind JS . Molecular cross-talk between the NFkappaB and STAT3 signaling pathways in head and neck squamous cell carcinoma. Neoplasia 2006; 8: 733–746.

    Article  CAS  Google Scholar 

  42. McDonald MW, Shu HK, Curran WJ, Crocker IR . Pattern of failure after limited margin radiotherapy and temozolomide for glioblastoma. Int J Radiat Oncol Biol Phys 2011; 79: 130–136.

    Article  CAS  Google Scholar 

  43. Anwar KN, Fazal F, Malik AB, Rahman A . RhoA/Rho-associated kinase pathway selectively regulates thrombin-induced intercellular adhesion molecule-1 expression in endothelial cells via activation of I kappa B kinase beta and phosphorylation of RelA/p65. J Immunol 2004; 173: 6965–6972.

    Article  CAS  Google Scholar 

  44. Roebuck KA . Oxidant stress regulation of IL-8 and ICAM-1 gene expression: differential activation and binding of the transcription factors AP-1 and NF-kappaB (review). Int J Mol Med 1999; 4: 223–230.

    CAS  PubMed  Google Scholar 

  45. Roy J, Audette M, Tremblay MJ . Intercellular adhesion molecule-1 (ICAM-1) gene expression in human T cells is regulated by phosphotyrosyl phosphatase activity. Involvement of NF-kappaB, Ets, and palindromic interferon-gamma-responsive element-binding sites. J Biol Chem 2001; 276: 14553–14561.

    Article  CAS  Google Scholar 

  46. Rahman A, True AL, Anwar KN, Ye RD, Voyno-Yasenetskaya TA, Malik AB . Galpha(q) and Gbetagamma regulate PAR-1 signaling of thrombin-induced NF-kappaB activation and ICAM-1 transcription in endothelial cells. Circ Res 2002; 91: 398–405.

    Article  CAS  Google Scholar 

  47. Giannini C, Sarkaria JN, Saito A, Uhm JH, Galanis E, Carlson BL et al. Patient tumor EGFR and PDGFRA gene amplifications retained in an invasive intracranial xenograft model of glioblastoma multiforme. Neuro-oncol 2005; 7: 164–176.

    Article  CAS  Google Scholar 

  48. Kesanakurti D, Sareddy GR, Babu PP, Kirti PB . Mustard NPR1, a mammalian IkappaB homologue inhibits NF-kappaB activation in human GBM cell lines. Biochem Biophys Res Commun 2009; 390: 427–433.

    Article  CAS  Google Scholar 

  49. Kesanakurti D, Chetty C, Dinh DH, Gujrati M, Rao JS . Role of MMP-2 in the regulation of IL-6/Stat3 survival signaling via interaction with α5β1 integrin in glioma. Oncogene (e-pub ahead of print 20 February 2012; doi:10.1038/onc.2012.52).

    Article  Google Scholar 

  50. Badiga AV, Chetty C, Kesanakurti D, Are D, Gujrati M, Klopfenstein JD et al. MMP-2 siRNA inhibits radiation-enhanced invasiveness in glioma cells. PLoS One 2011; 6: e20614.

    Article  CAS  Google Scholar 

  51. Kesanakurti D, Chetty C, Bhoopathi P, Lakka SS, Gorantla B, Tsung AJ et al. Suppression of MMP-2 attenuates TNF-alpha induced NF-kappaB activation and leads to JNK mediated cell death in glioma. PLoS One 2011; 6: e19341.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Noorjehan Ali for technical assistance, Shelle Abraham for manuscript preparation, Diana Meister and Sushma Jasti for manuscript review. This research was supported by award NS64535-01A2 (to JSR) from the National Institute of Neurological Disorders and Stroke. Contents are solely the responsibility of the authors and do not necessarily represent the official views of NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J S Rao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kesanakurti, D., Chetty, C., Rajasekhar Maddirela, D. et al. Essential role of cooperative NF-κB and Stat3 recruitment to ICAM-1 intronic consensus elements in the regulation of radiation-induced invasion and migration in glioma. Oncogene 32, 5144–5155 (2013). https://doi.org/10.1038/onc.2012.546

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.546

Keywords

This article is cited by

Search

Quick links