Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Intrahepatic cholangiocarcinoma: pathogenesis and rationale for molecular therapies

Abstract

Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy with very poor prognosis. Genome-wide, high-throughput technologies have made major advances in understanding the molecular basis of this disease, although important mechanisms are still unclear. Recent data have revealed specific genetic mutations (for example, KRAS, IDH1 and IDH2), epigenetic silencing, aberrant signaling pathway activation (for example, interleukin (IL)-6/signal transducer and activator of transcription 3 (STAT3), tyrosine kinase receptor-related pathways) and molecular subclasses with unique alterations (for example, proliferation and inflammation subclasses). In addition, some ICCs share common genomic traits with hepatocellular carcinoma. All this information provides the basis to explore novel targeted therapies. Currently, surgery at early stage is the only effective therapy. At more advanced stages, chemotherapy regimens are emerging (that is, cisplatin plus gemcitabine), along with molecular targeted agents tested in several ongoing clinical trials. Nonetheless, a first-line conclusive treatment remains an unmet need. Similarly, there are no studies assessing tumor response related with genetic alterations. This review explores the recent advancements in the knowledge of the molecular alterations underlying ICC and the future prospects in terms of therapeutic strategies leading towards a more personalized treatment of this neoplasm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Khan SA, Thomas HC, Davidson BR, Taylor-Robinson SD . Cholangiocarcinoma. Lancet 2005; 366: 1303–1314.

    PubMed  Google Scholar 

  2. Blechacz B, Gores GJ . Cholangiocarcinoma: advances in pathogenesis, diagnosis, and treatment. Hepatology 2008; 48: 308–321.

    CAS  PubMed  Google Scholar 

  3. Patel T . Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States. Hepatology 2001; 33: 1353–1357.

    CAS  PubMed  Google Scholar 

  4. Shaib Y, El-Serag HB . The epidemiology of cholangiocarcinoma. Semin Liver Dis 2004; 24: 115–125.

    PubMed  Google Scholar 

  5. Hezel AF, Deshpande V, Zhu AX . Genetics of biliary tract cancers and emerging targeted therapies. J Clin Oncol 2010; 28: 3531–3540.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Palmer WC, Patel T . Are common factors involved in the pathogenesis of primary liver cancers? A meta-analysis of risk factors for intrahepatic cholangiocarcinoma. J Hepatol 2012; 57: 69–76.

    PubMed  PubMed Central  Google Scholar 

  7. Sempoux C, Jibara G, Ward SC, Fan C, Qin L, Roayaie S et al. Intrahepatic cholangiocarcinoma: new insights in pathology. Semin Liver Dis 2011; 31: 49–60.

    PubMed  Google Scholar 

  8. Parkin DM, Whelan SL, Ferlay J, Teppo L, Thomas DB . Cancer Incidence in Five Continents Vol VIII: IARC Scientific Publication No. 155 IARC Press, Lyon, 2002.

    Google Scholar 

  9. El-Serag HB, Engels EA, Landgren O, Chiao E, Henderson L, Amaratunge HC et al. Risk of hepatobiliary and pancreatic cancers after hepatitis C virus infection: a population-based study of US veterans. Hepatology 2009; 49: 116–123.

    PubMed  Google Scholar 

  10. Shaib YH, El-Serag HB, Davila JA, Morgan R, McGlynn KA . Risk factors of intrahepatic cholangiocarcinoma in the United States: a case-control study. Gastroenterology 2005; 128: 620–626.

    PubMed  Google Scholar 

  11. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.

    PubMed  Google Scholar 

  12. Shin HR, Oh JK, Masuyer E, Curado MP, Bouvard V, Fang YY et al. Epidemiology of cholangiocarcinoma: an update focusing on risk factors. Cancer Sci 2010; 101: 579–585.

    CAS  PubMed  Google Scholar 

  13. Welzel TM, Graubard BI, Zeuzem S, El-Serag HB, Davila JA, McGlynn KA . Metabolic syndrome increases the risk of primary liver cancer in the United States: a study in the SEER-Medicare database. Hepatology 2011; 54: 463–471.

    PubMed  Google Scholar 

  14. Leelawat K, Sakchinabut S, Narong S, Wannaprasert J . Detection of serum MMP-7 and MMP-9 in cholangiocarcinoma patients: evaluation of diagnostic accuracy. BMC Gastroenterol 2009; 9: 30.

    PubMed  PubMed Central  Google Scholar 

  15. Shibahara H, Tamada S, Higashi M, Goto M, Batra SK, Hollingsworth MA et al. MUC4 is a novel prognostic factor of intrahepatic cholangiocarcinoma-mass forming type. Hepatology 2004; 39: 220–229.

    CAS  PubMed  Google Scholar 

  16. Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A . AJCC Cancer Staging Manual 7th edn. Springer, New York, NY, 2010.

    Google Scholar 

  17. de Jong MC, Nathan H, Sotiropoulos GC, Paul A, Alexandrescu S, Marques H et al. Intrahepatic cholangiocarcinoma: an international multi-institutional analysis of prognostic factors and lymph node assessment. J Clin Oncol 2011; 29: 3140–3145.

    PubMed  Google Scholar 

  18. Nathan H, Pawlik TM . Staging of intrahepatic cholangiocarcinoma. Curr Opin Gastroenterol 2010; 26: 269–273.

    CAS  PubMed  Google Scholar 

  19. Sirica AE, Nathanson MH, Gores GJ, Larusso NF . Pathobiology of biliary epithelia and cholangiocarcinoma: proceedings of the Henry M. and Lillian Stratton Basic Research Single-Topic Conference. Hepatology 2008; 48: 2040–2046.

    PubMed  Google Scholar 

  20. Berthiaume EP, Wands J . The molecular pathogenesis of cholangiocarcinoma. Semin Liver Dis 2004; 24: 127–137.

    CAS  PubMed  Google Scholar 

  21. Sirica AE, Campbell DJ, Dumur CI . Cancer-associated fibroblasts in intrahepatic cholangiocarcinoma. Curr Opin Gastroenterol 2011; 27: 276–284.

    CAS  PubMed  Google Scholar 

  22. Andersen JB, Spee B, Blechacz BR, Avital I, Komuta M, Barbour A et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology 2012; 142: 1021–1031.

    CAS  PubMed  Google Scholar 

  23. Roskams T . Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene 2006; 25: 3818–3822.

    CAS  PubMed  Google Scholar 

  24. Sia D, Hoshida Y, Villanueva A, Roayaie S, Ferrer J, Tabak B et al. Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals two subclasses with distinct clinical outcome. Gastroenterology 2013, (in press).

  25. Woo HG, Lee JH, Yoon JH, Kim CY, Lee HS, Jang JJ et al. Identification of a cholangiocarcinoma-like gene expression trait in hepatocellular carcinoma. Cancer Res 2010; 70: 3034–3041.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yamashita T, Ji J, Budhu A, Forgues M, Yang W, Wang HY et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology 2009; 136: 1012–1024.

    CAS  PubMed  Google Scholar 

  27. Oishi N, Kumar MR, Roessler S, Ji J, Forgues M, Budhu A et al. Transcriptomic profiling reveals hepatic stem-like gene signatures and interplay of mir-200c and EMT in intrahepatic cholangiocarcinoma. Hepatology 2012; 56: 1792–1803.

    CAS  PubMed  Google Scholar 

  28. Lee JS, Heo J, Libbrecht L, Chu IS, Kaposi-Novak P, Calvisi DF et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 2006; 12: 410–416.

    Article  CAS  PubMed  Google Scholar 

  29. Hoshida Y, Nijman SM, Kobayashi M, Chan JA, Brunet JP, Chiang DY et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res 2009; 69: 7385–7392.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chiang DY, Villanueva A, Hoshida Y, Peix J, Newell P, Minguez B et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res 2008; 68: 6779–6788.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen TC, Jan YY, Yeh TS . K-ras mutation is strongly associated with perineural invasion and represents an independent prognostic factor of intrahepatic cholangiocarcinoma after hepatectomy. Ann Surg Oncol 2012; 19 (Suppl 3): S675–S681.

    PubMed  Google Scholar 

  32. Furubo S, Harada K, Shimonishi T, Katayanagi K, Tsui W, Nakanuma Y . Protein expression and genetic alterations of p53 and ras in intrahepatic cholangiocarcinoma. Histopathology 1999; 35: 230–240.

    CAS  PubMed  Google Scholar 

  33. Momoi H, Itoh T, Nozaki Y, Arima Y, Okabe H, Satoh S et al. Microsatellite instability and alternative genetic pathway in intrahepatic cholangiocarcinoma. J Hepatol 2001; 35: 235–244.

    CAS  PubMed  Google Scholar 

  34. Tannapfel A, Benicke M, Katalinic A, Uhlmann D, Kockerling F, Hauss J et al. Frequency of p16(INK4A) alterations and K-ras mutations in intrahepatic cholangiocarcinoma of the liver. Gut 2000; 47: 721–727.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tannapfel A, Sommerer F, Benicke M, Weinans L, Katalinic A, Geissler F et al. Genetic and epigenetic alterations of the INK4a-ARF pathway in cholangiocarcinoma. J Pathol 2002; 197: 624–631.

    CAS  PubMed  Google Scholar 

  36. Isa T, Tomita S, Nakachi A, Miyazato H, Shimoji H, Kusano T et al. Analysis of microsatellite instability, K-ras gene mutation and p53 protein overexpression in intrahepatic cholangiocarcinoma. Hepatogastroenterology 2002; 49: 604–608.

    CAS  PubMed  Google Scholar 

  37. Leone F, Cavalloni G, Pignochino Y, Sarotto I, Ferraris R, Piacibello W et al. Somatic mutations of epidermal growth factor receptor in bile duct and gallbladder carcinoma. Clin Cancer Res 2006; 12: 1680–1685.

    CAS  PubMed  Google Scholar 

  38. Tannapfel A, Sommerer F, Benicke M, Katalinic A, Uhlmann D, Witzigmann H et al. Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma. Gut 2003; 52: 706–712.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Deshpande V, Nduaguba A, Zimmerman SM, Kehoe SM, Macconaill LE, Lauwers GY et al. Mutational profiling reveals PIK3CA mutations in gallbladder carcinoma. BMC Cancer 2011; 11: 60.

    PubMed  PubMed Central  Google Scholar 

  40. Tannapfel A, Weinans L, Geissler F, Schutz A, Katalinic A, Kockerling F et al. Mutations of p53 tumor suppressor gene, apoptosis, and proliferation in intrahepatic cholangiocellular carcinoma of the liver. Dig Dis Sci 2000; 45: 317–324.

    CAS  PubMed  Google Scholar 

  41. Farazi PA, Zeisberg M, Glickman J, Zhang Y, Kalluri R, DePinho RA . Chronic bile duct injury associated with fibrotic matrix microenvironment provokes cholangiocarcinoma in p53-deficient mice. Cancer Res 2006; 66: 6622–6627.

    CAS  PubMed  Google Scholar 

  42. O’Dell MR, Huang JL, Whitney-Miller CL, Deshpande V, Rothberg P, Grose V et al. Kras(G12D) and p53 mutation cause primary intrahepatic cholangiocarcinoma. Cancer Res 2012; 72: 1557–1567.

    PubMed  PubMed Central  Google Scholar 

  43. Borger DR, Tanabe KK, Fan KC, Lopez HU, Fantin VR, Straley KS et al. Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist 2012; 17: 72–79.

    CAS  PubMed  Google Scholar 

  44. Kipp BR, Voss JS, Kerr SE, Barr Fritcher EG, Graham RP, Zhang L et al. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma. Hum Pathol 2012; 43: 1552–1558.

    CAS  PubMed  Google Scholar 

  45. Wang P, Dong QZ, Zhang C, Kuan PF, Liu Y, Jeck WR et al. Mutations in isocitrate dehydrogenase 1 and 2 are associated with DNA hypermethylation in intrahepatic cholangiocarcinomas. Cancer Res 2012, e-pub ahead of print.

  46. Ong CK, Subimerb C, Pairojkul C, Wongkham S, Cutcutache I, Yu W et al. Exome sequencing of liver fluke-associated cholangiocarcinoma. Nat Genet 2012; 44: 690–693.

    CAS  PubMed  Google Scholar 

  47. Koo SH, Ihm CH, Kwon KC, Park JW, Kim JM, Kong G . Genetic alterations in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Cancer Genet Cytogenet 2001; 130: 22–28.

    CAS  PubMed  Google Scholar 

  48. Uhm KO, Park YN, Lee JY, Yoon DS, Park SH . Chromosomal imbalances in Korean intrahepatic cholangiocarcinoma by comparative genomic hybridization. Cancer Genet Cytogenet 2005; 157: 37–41.

    CAS  PubMed  Google Scholar 

  49. Wong N, Li L, Tsang K, Lai PB, To KF, Johnson PJ . Frequent loss of chromosome 3p and hypermethylation of RASSF1A in cholangiocarcinoma. J Hepatol 2002; 37: 633–639.

    CAS  PubMed  Google Scholar 

  50. Homayounfar K, Gunawan B, Cameron S, Haller F, Baumhoer D, Uecker S et al. Pattern of chromosomal aberrations in primary liver cancers identified by comparative genomic hybridization. Hum Pathol 2009; 40: 834–842.

    CAS  PubMed  Google Scholar 

  51. Esteller M . Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 2007; 8: 286–298.

    CAS  PubMed  Google Scholar 

  52. Lujambio A, Lowe SW . The microcosmos of cancer. Nature 2012; 482: 347–355.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee S, Kim WH, Jung HY, Yang MH, Kang GH . Aberrant CpG island methylation of multiple genes in intrahepatic cholangiocarcinoma. Am J Pathol 2002; 161: 1015–1022.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sandhu DS, Shire AM, Roberts LR . Epigenetic DNA hypermethylation in cholangiocarcinoma: potential roles in pathogenesis, diagnosis and identification of treatment targets. Liver Int 2008; 28: 12–27.

    CAS  PubMed  Google Scholar 

  55. Tischoff I, Markwarth A, Witzigmann H, Uhlmann D, Hauss J, Mirmohammadsadegh A et al. Allele loss and epigenetic inactivation of 3p21.3 in malignant liver tumors. Int J Cancer 2005; 115: 684–689.

    CAS  PubMed  Google Scholar 

  56. Yang B, House MG, Guo M, Herman JG, Clark DP . Promoter methylation profiles of tumor suppressor genes in intrahepatic and extrahepatic cholangiocarcinoma. Mod Pathol 2005; 18: 412–420.

    CAS  PubMed  Google Scholar 

  57. Isomoto H, Mott JL, Kobayashi S, Werneburg NW, Bronk SF, Haan S et al. Sustained IL-6/STAT-3 signaling in cholangiocarcinoma cells due to SOCS-3 epigenetic silencing. Gastroenterology 2007; 132: 384–396.

    CAS  PubMed  Google Scholar 

  58. Dachrut S, Banthaisong S, Sripa M, Paeyao A, Ho C, Lee SA et al. DNA copy-number loss on 1p36.1 harboring RUNX3 with promoter hypermethylation and associated loss of RUNX3 expression in liver fluke-associated intrahepatic cholangiocarcinoma. Asian Pac J Cancer Prev 2009; 10: 575–582.

    PubMed  Google Scholar 

  59. Li B, Han Q, Zhu Y, Yu Y, Wang J, Jiang X . Down-regulation of miR-214 contributes to intrahepatic cholangiocarcinoma metastasis by targeting Twist. FEBS J 2012; 279: 2393–2398.

    CAS  PubMed  Google Scholar 

  60. Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 2006; 130: 2113–2129.

    CAS  PubMed  Google Scholar 

  61. Selaru FM, Olaru AV, Kan T, David S, Cheng Y, Mori Y et al. MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3. Hepatology 2009; 49: 1595–1601.

    CAS  PubMed  Google Scholar 

  62. Chen L, Yan HX, Yang W, Hu L, Yu LX, Liu Q et al. The role of microRNA expression pattern in human intrahepatic cholangiocarcinoma. J Hepatol 2009; 50: 358–369.

    CAS  PubMed  Google Scholar 

  63. Pollard JW . Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 2004; 4: 71–78.

    CAS  PubMed  Google Scholar 

  64. Hasita H, Komohara Y, Okabe H, Masuda T, Ohnishi K, Lei XF et al. Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma. Cancer Sci 2010; 101: 1913–1919.

    CAS  PubMed  Google Scholar 

  65. Okabe H, Beppu T, Hayashi H, Horino K, Masuda T, Komori H et al. Hepatic stellate cells may relate to progression of intrahepatic cholangiocarcinoma. Ann Surg Oncol 2009; 16: 2555–2564.

    PubMed  Google Scholar 

  66. Hammill CW, Wong LL . Intrahepatic cholangiocarcinoma: a malignancy of increasing importance. J Am Coll Surg 2008; 207: 594–603.

    PubMed  Google Scholar 

  67. Shaib YH, Davila JA, McGlynn K, El-Serag HB . Rising incidence of intrahepatic cholangiocarcinoma in the United States: a true increase? J Hepatol 2004; 40: 472–477.

    PubMed  Google Scholar 

  68. Kobayashi M, Ikeda K, Saitoh S, Suzuki F, Tsubota A, Suzuki Y et al. Incidence of primary cholangiocellular carcinoma of the liver in Japanese patients with hepatitis C virus-related cirrhosis. Cancer 2000; 88: 2471–2477.

    CAS  PubMed  Google Scholar 

  69. Yamamoto S, Kubo S, Hai S, Uenishi T, Yamamoto T, Shuto T et al. Hepatitis C virus infection as a likely etiology of intrahepatic cholangiocarcinoma. Cancer Sci 2004; 95: 592–595.

    CAS  PubMed  Google Scholar 

  70. Bragazzi MC, Cardinale V, Carpino G, Venere R, Semeraro R, Gentile R et al. Cholangiocarcinoma: epidemiology and risk factors. Transl Gastrointest Cancer 2012; 1: 21–32.

    CAS  Google Scholar 

  71. Aishima S, Kuroda Y, Nishihara Y, Iguchi T, Taguchi K, Taketomi A et al. Proposal of progression model for intrahepatic cholangiocarcinoma: clinicopathologic differences between hilar type and peripheral type. Am J Surg Pathol 2007; 31: 1059–1067.

    PubMed  Google Scholar 

  72. Malhi H, Gores GJ . Cholangiocarcinoma: modern advances in understanding a deadly old disease. J Hepatol 2006; 45: 856–867.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Okuda K, Nakanuma Y, Miyazaki M . Cholangiocarcinoma: recent progress. Part 1: epidemiology and etiology. J Gastroenterol Hepatol 2002; 17: 1049–1055.

    PubMed  Google Scholar 

  74. Karamitopoulou E, Tornillo L, Zlobec I, Cioccari L, Carafa V, Borner M et al. Clinical significance of cell cycle- and apoptosis-related markers in biliary tract cancer: a tissue microarray-based approach revealing a distinctive immunophenotype for intrahepatic and extrahepatic cholangiocarcinomas. Am J Clin Pathol 2008; 130: 780–786.

    CAS  PubMed  Google Scholar 

  75. Miller G, Socci ND, Dhall D, D’Angelica M, DeMatteo RP, Allen PJ et al. Genome wide analysis and clinical correlation of chromosomal and transcriptional mutations in cancers of the biliary tract. J Exp Clin Cancer Res 2009; 28: 62.

    PubMed  PubMed Central  Google Scholar 

  76. Guedj N, Zhan Q, Perigny M, Rautou PE, Degos F, Belghiti J et al. Comparative protein expression profiles of hilar and peripheral hepatic cholangiocarcinomas. J Hepatol 2009; 51: 93–101.

    CAS  PubMed  Google Scholar 

  77. Fingas CD, Bronk SF, Werneburg NW, Mott JL, Guicciardi ME, Cazanave SC et al. Myofibroblast-derived PDGF-BB promotes Hedgehog survival signaling in cholangiocarcinoma cells. Hepatology 2011; 54: 2076–2088.

    CAS  PubMed  Google Scholar 

  78. Sugimachi K, Taguchi K, Aishima S, Tanaka S, Shimada M, Kajiyama K et al. Altered expression of beta-catenin without genetic mutation in intrahepatic cholangiocarcinoma. Mod Pathol 2001; 14: 900–905.

    CAS  PubMed  Google Scholar 

  79. Tokumoto N, Ikeda S, Ishizaki Y, Kurihara T, Ozaki S, Iseki M et al. Immunohistochemical and mutational analyses of Wnt signaling components and target genes in intrahepatic cholangiocarcinomas. Int J Oncol 2005; 27: 973–980.

    CAS  PubMed  Google Scholar 

  80. Li H, Wolfe A, Septer S, Edwards G, Zhong X, Abdulkarim AB et al. Deregulation of Hippo kinase signalling in human hepatic malignancies. Liver Int 2012; 32: 38–47.

    PubMed  Google Scholar 

  81. Park J, Tadlock L, Gores GJ, Patel T . Inhibition of interleukin 6-mediated mitogen-activated protein kinase activation attenuates growth of a cholangiocarcinoma cell line. Hepatology 1999; 30: 1128–1133.

    CAS  PubMed  Google Scholar 

  82. Kobayashi S, Werneburg NW, Bronk SF, Kaufmann SH, Gores GJ . Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells. Gastroenterology 2005; 128: 2054–2065.

    CAS  PubMed  Google Scholar 

  83. Yamagiwa Y, Meng F, Patel T . Interleukin-6 decreases senescence and increases telomerase activity in malignant human cholangiocytes. Life Sci 2006; 78: 2494–2502.

    CAS  PubMed  Google Scholar 

  84. Hodge DR, Xiao W, Clausen PA, Heidecker G, Szyf M, Farrar WL . Interleukin-6 regulation of the human DNA methyltransferase (HDNMT) gene in human erythroleukemia cells. J Biol Chem 2001; 276: 39508–39511.

    CAS  PubMed  Google Scholar 

  85. Meng F, Yamagiwa Y, Ueno Y, Patel T . Over-expression of interleukin-6 enhances cell survival and transformed cell growth in human malignant cholangiocytes. J Hepatol 2006; 44: 1055–1065.

    CAS  PubMed  Google Scholar 

  86. Wehbe H, Henson R, Meng F, Mize-Berge J, Patel T . Interleukin-6 contributes to growth in cholangiocarcinoma cells by aberrant promoter methylation and gene expression. Cancer Res 2006; 66: 10517–10524.

    CAS  PubMed  Google Scholar 

  87. Meng F, Wehbe-Janek H, Henson R, Smith H, Patel T . Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes. Oncogene 2008; 27: 378–386.

    CAS  PubMed  Google Scholar 

  88. Nakazawa K, Dobashi Y, Suzuki S, Fujii H, Takeda Y, Ooi A . Amplification and overexpression of c-erbB-2, epidermal growth factor receptor, and c-met in biliary tract cancers. J Pathol 2005; 206: 356–365.

    CAS  PubMed  Google Scholar 

  89. Yoshikawa D, Ojima H, Iwasaki M, Hiraoka N, Kosuge T, Kasai S et al. Clinicopathological and prognostic significance of EGFR, VEGF, and HER2 expression in cholangiocarcinoma. Br J Cancer 2008; 98: 418–425.

    CAS  PubMed  Google Scholar 

  90. Sirica AE . Role of ErbB family receptor tyrosine kinases in intrahepatic cholangiocarcinoma. World J Gastroenterol 2008; 14: 7033–7058.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kiguchi K, Carbajal S, Chan K, Beltran L, Ruffino L, Shen J et al. Constitutive expression of ErbB-2 in gallbladder epithelium results in development of adenocarcinoma. Cancer Res 2001; 61: 6971–6976.

    CAS  PubMed  Google Scholar 

  92. Endo K, Yoon BI, Pairojkul C, Demetris AJ, Sirica AE . ERBB-2 overexpression and cyclooxygenase-2 up-regulation in human cholangiocarcinoma and risk conditions. Hepatology 2002; 36: 439–450.

    CAS  PubMed  Google Scholar 

  93. Han C, Leng J, Demetris AJ, Wu T . Cyclooxygenase-2 promotes human cholangiocarcinoma growth: evidence for cyclooxygenase-2-independent mechanism in celecoxib-mediated induction of p21waf1/cip1 and p27kip1 and cell cycle arrest. Cancer Res 2004; 64: 1369–1376.

    CAS  PubMed  Google Scholar 

  94. Jimeno A, Rubio-Viqueira B, Amador ML, Oppenheimer D, Bouraoud N, Kulesza P et al. Epidermal growth factor receptor dynamics influences response to epidermal growth factor receptor targeted agents. Cancer Res 2005; 65: 3003–3010.

    CAS  PubMed  Google Scholar 

  95. Zhang Z, Oyesanya RA, Campbell DJ, Almenara JA, Dewitt JL, Sirica AE . Preclinical assessment of simultaneous targeting of epidermal growth factor receptor (ErbB1) and ErbB2 as a strategy for cholangiocarcinoma therapy. Hepatology 2010; 52: 975–986.

    CAS  PubMed  Google Scholar 

  96. Yoshikawa D, Ojima H, Kokubu A, Ochiya T, Kasai S, Hirohashi S et al. Vandetanib (ZD6474), an inhibitor of VEGFR and EGFR signalling, as a novel molecular-targeted therapy against cholangiocarcinoma. Br J Cancer 2009; 100: 1257–1266.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Comoglio PM, Giordano S, Trusolino L . Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov 2008; 7: 504–516.

    CAS  PubMed  Google Scholar 

  98. Miyamoto M, Ojima H, Iwasaki M, Shimizu H, Kokubu A, Hiraoka N et al. Prognostic significance of overexpression of c-Met oncoprotein in cholangiocarcinoma. Br J Cancer 2011; 105: 131–138.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Terada T, Nakanuma Y, Sirica AE . Immunohistochemical demonstration of MET overexpression in human intrahepatic cholangiocarcinoma and in hepatolithiasis. Hum Pathol 1998; 29: 175–180.

    CAS  PubMed  Google Scholar 

  100. Radaeva S, Ferreira-Gonzalez A, Sirica AE . Overexpression of C-NEU and C-MET during rat liver cholangiocarcinogenesis: A link between biliary intestinal metaplasia and mucin-producing cholangiocarcinoma. Hepatology 1999; 29: 1453–1462.

    CAS  PubMed  Google Scholar 

  101. Leelawat K, Leelawat S, Tepaksorn P, Rattanasinganchan P, Leungchaweng A, Tohtong R et al. Involvement of c-Met/hepatocyte growth factor pathway in cholangiocarcinoma cell invasion and its therapeutic inhibition with small interfering RNA specific for c-Met. J Surg Res 2006; 136: 78–84.

    CAS  PubMed  Google Scholar 

  102. Tabernero J . The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents. Mol Cancer Res 2007; 5: 203–220.

    CAS  PubMed  Google Scholar 

  103. Park BK, Paik YH, Park JY, Park KH, Bang S, Park SW et al. The clinicopathologic significance of the expression of vascular endothelial growth factor-C in intrahepatic cholangiocarcinoma. Am J Clin Oncol 2006; 29: 138–142.

    CAS  PubMed  Google Scholar 

  104. Sugiyama H, Onuki K, Ishige K, Baba N, Ueda T, Matsuda S et al. Potent in vitro and in vivo antitumor activity of sorafenib against human intrahepatic cholangiocarcinoma cells. J Gastroenterol 2011; 46: 779–789.

    CAS  PubMed  Google Scholar 

  105. Settakorn J, Kaewpila N, Burns GF, AS Leong . FAT, E-cadherin, beta catenin, HER 2/neu, Ki67 immuno-expression, and histological grade in intrahepatic cholangiocarcinoma. J Clin Pathol 2005; 58: 1249–1254.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Sirica AE . The role of cancer-associated myofibroblasts in intrahepatic cholangiocarcinoma. Nat Rev Gastroenterol Hepatol 2011; 9: 44–54.

    PubMed  Google Scholar 

  107. Sirica AE, Dumur CI, Campbell DJ, Almenara JA, Ogunwobi OO, Dewitt JL . Intrahepatic cholangiocarcinoma progression: prognostic factors and basic mechanisms. Clin Gastroenterol Hepatol 2009; 7: S68–S78.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sirica AE, Zhang Z, Lai GH, Asano T, Shen XN, Ward DJ et al. A novel ‘patient-like’ model of cholangiocarcinoma progression based on bile duct inoculation of tumorigenic rat cholangiocyte cell lines. Hepatology 2008; 47: 1178–1190.

    CAS  PubMed  Google Scholar 

  109. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344: 783–792.

    CAS  PubMed  Google Scholar 

  110. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 2010; 363: 1693–1703.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Tsao MS, Sakurada A, Cutz JC, Zhu CQ, Kamel-Reid S, Squire J et al. Erlotinib in lung cancer—molecular and clinical predictors of outcome. N Engl J Med 2005; 353: 133–144.

    CAS  PubMed  Google Scholar 

  112. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 2010; 363: 809–819.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Jinawath N, Chamgramol Y, Furukawa Y, Obama K, Tsunoda T, Sripa B et al. Comparison of gene expression profiles between Opisthorchis viverrini and non-Opisthorchis viverrini associated human intrahepatic cholangiocarcinoma. Hepatology 2006; 44: 1025–1038.

    CAS  PubMed  Google Scholar 

  114. Obama K, Ura K, Li M, Katagiri T, Tsunoda T, Nomura A et al. Genome-wide analysis of gene expression in human intrahepatic cholangiocarcinoma. Hepatology 2005; 41: 1339–1348.

    CAS  PubMed  Google Scholar 

  115. Pascher A, Jonas S, Neuhaus P . Intrahepatic cholangiocarcinoma: indication for transplantation. J Hepatobiliary Pancreat Surg 2003; 10: 282–287.

    PubMed  Google Scholar 

  116. Yoon JH, Gwak GY, Lee HS, Bronk SF, Werneburg NW, Gores GJ . Enhanced epidermal growth factor receptor activation in human cholangiocarcinoma cells. J Hepatol 2004; 41: 808–814.

    CAS  PubMed  Google Scholar 

  117. Zhu AX, Hezel AF . Development of molecularly targeted therapies in biliary tract cancers: reassessing the challenges and opportunities. Hepatology 2011; 53: 695–704.

    CAS  PubMed  Google Scholar 

  118. Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 2010; 362: 1273–1281.

    CAS  PubMed  Google Scholar 

  119. Bengala C, Bertolini F, Malavasi N, Boni C, Aitini E, Dealis C et al. Sorafenib in patients with advanced biliary tract carcinoma: a phase II trial. Br J Cancer 2010; 102: 68–72.

    CAS  PubMed  Google Scholar 

  120. El-Khoueiry AB, Rankin CJ, Ben-Josef E, Lenz HJ, Gold PJ, Hamilton RD et al. SWOG 0514: a phase II study of sorafenib in patients with unresectable or metastatic gallbladder carcinoma and cholangiocarcinoma. Invest New Drugs 2011; 30: 1646–1651.

    PubMed  PubMed Central  Google Scholar 

  121. Ramanathan RK, Belani CP, Singh DA, Tanaka M, Lenz HJ, Yen Y et al. A phase II study of lapatinib in patients with advanced biliary tree and hepatocellular cancer. Cancer Chemother Pharmacol 2009; 64: 777–783.

    CAS  PubMed  Google Scholar 

  122. Zhu AX, Meyerhardt JA, Blaszkowsky LS, Kambadakone AR, Muzikansky A, Zheng H et al. Efficacy and safety of gemcitabine, oxaliplatin, and bevacizumab in advanced biliary-tract cancers and correlation of changes in 18-fluorodeoxyglucose PET with clinical outcome: a phase 2 study. Lancet Oncol 2010; 11: 48–54.

    CAS  PubMed  Google Scholar 

  123. Gruenberger B, Schueller J, Heubrandtner U, Wrba F, Tamandl D, Kaczirek K et al. Cetuximab, gemcitabine, and oxaliplatin in patients with unresectable advanced or metastatic biliary tract cancer: a phase 2 study. Lancet Oncol 2010; 11: 1142–1148.

    CAS  PubMed  Google Scholar 

  124. Lee J, Park SH, Chang HM, Kim JS, Choi HJ, Lee MA et al. Gemcitabine and oxaliplatin with or without erlotinib in advanced biliary-tract cancer: a multicentre, open-label, randomised, phase 3 study. Lancet Oncol 2012; 13: 181–188.

    CAS  PubMed  Google Scholar 

  125. Borbath C, Porta L, Rimassa B, Daniele S, Salvagni JL, Van Laethem H et al. Tivantinib in Met+ pretreated hepatocellular carcinoma (HCC): a randomized controlled phase 2 trial (Rct). Sixth ILCA Annual Conference 2012, (16 Abstract 0-023).

  126. Hedvat M, Huszar D, Herrmann A, Gozgit JM, Schroeder A, Sheehy A et al. The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell 2009; 16: 487–497.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Mesa RA, Yasothan U, Kirkpatrick P . Ruxolitinib. Nat Rev Drug Discov 2012; 11: 103–104.

    CAS  PubMed  Google Scholar 

  128. Pardanani A, Gotlib JR, Jamieson C, Cortes JE, Talpaz M, Stone RM et al. Safety and efficacy of TG101348, a selective JAK2 inhibitor, in myelofibrosis. J Clin Oncol 2011; 29: 789–796.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Verstovsek S, Kantarjian H, Mesa RA, Pardanani AD, Cortes-Franco J, Thomas DA et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med 2010; 363: 1117–1127.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Xin H, Herrmann A, Reckamp K, Zhang W, Pal S, Hedvat M et al. Antiangiogenic and antimetastatic activity of JAK inhibitor AZD1480. Cancer Res 2011; 71: 6601–6610.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Siddiquee K, Zhang S, Guida WC, Blaskovich MA, Greedy B, Lawrence HR et al. Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci USA 2007; 104: 7391–7396.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Sirica AE, Lai GH, Endo K, Zhang Z, Yoon BI . Cyclooxygenase-2 and ERBB-2 in cholangiocarcinoma: potential therapeutic targets. Semin Liver Dis 2002; 22: 303–313.

    CAS  PubMed  Google Scholar 

  133. Wu GS, Zou SQ, Liu ZR, Tang ZH, Wang JH . Celecoxib inhibits proliferation and induces apoptosis via prostaglandin E2 pathway in human cholangiocarcinoma cell lines. World J Gastroenterol 2003; 9: 1302–1306.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Wu T, Leng J, Han C, Demetris AJ . The cyclooxygenase-2 inhibitor celecoxib blocks phosphorylation of Akt and induces apoptosis in human cholangiocarcinoma cells. Mol Cancer Ther 2004; 3: 299–307.

    CAS  PubMed  Google Scholar 

  135. Philip PA, Mahoney MR, Allmer C, Thomas J, Pitot HC, Kim G et al. Phase II study of erlotinib in patients with advanced biliary cancer. J Clin Oncol 2006; 24: 3069–3074.

    CAS  PubMed  Google Scholar 

  136. Yi JH, Thongprasert S, Lee J, Doval DC, Park SH, Park JO et al. A phase II study of sunitinib as a second-line treatment in advanced biliary tract carcinoma: a multicentre, multinational study. Eur J Cancer 2012; 48: 196–201.

    CAS  PubMed  Google Scholar 

  137. Bekaii-Saab T, Phelps MA, Li X, Saji M, Goff L, Kauh JS et al. Multi-institutional phase II study of selumetinib in patients with metastatic biliary cancers. J Clin Oncol 2011; 29: 2357–2363.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Lubner SJ, Mahoney MR, Kolesar JL, Loconte NK, Kim GP, Pitot HC et al. Report of a multicenter phase II trial testing a combination of biweekly bevacizumab and daily erlotinib in patients with unresectable biliary cancer: a phase II Consortium study. J Clin Oncol 2010; 28: 3491–3497.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Jensen LH, Lindebjerg J, Ploen J, Hansen TF, Jakobsen A . Phase II marker-driven trial of panitumumab and chemotherapy in KRAS wild-type biliary tract cancer. Ann Oncol 2012; 23: 2341–2346.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Josep M Llovet is supported by grants from the US National Institutes of Diabetes and Digestive and Kidney Diseases (1R01DK076986), the European Commission’s Framework Programme 7 (HEPTROMIC; 259744), the Asociación Española Contra el Cáncer, the Spanish National Health Institute (SAF-2010-16055) and the Samuel Waxman Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J M Llovet.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sia, D., Tovar, V., Moeini, A. et al. Intrahepatic cholangiocarcinoma: pathogenesis and rationale for molecular therapies. Oncogene 32, 4861–4870 (2013). https://doi.org/10.1038/onc.2012.617

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.617

Keywords

This article is cited by

Search

Quick links