Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Synthetic lethality of Chk1 inhibition combined with p53 and/or p21 loss during a DNA damage response in normal and tumor cells

Abstract

Cell cycle checkpoints ensure genome integrity and are frequently compromised in human cancers. A therapeutic strategy being explored takes advantage of checkpoint defects in p53-deficient tumors in order to sensitize them to DNA-damaging agents by eliminating Chk1-mediated checkpoint responses. Using mouse models, we demonstrated that p21 is a key determinant of how cells respond to the combination of DNA damage and Chk1 inhibition (combination therapy) in normal cells as well as in tumors. Loss of p21 sensitized normal cells to the combination therapy much more than did p53 loss and the enhanced lethality was partially blocked by CDK inhibition. In addition, basal pools of p21 (p53 independent) provided p53 null cells with protection from the combination therapy. Our results uncover a novel p53-independent function for p21 in protecting cells from the lethal effects of DNA damage followed by Chk1 inhibition. As p21 levels are low in a significant fraction of colorectal tumors, they are predicted to be particularly sensitive to the combination therapy. Results reported in this study support this prediction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 1998; 282: 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  2. Shimuta K, Nakajo N, Uto K, Hayano Y, Okazaki K, Sagata N . Chk1 is activated transiently and targets Cdc25A for degradation at the Xenopus midblastula transition. EMBO J 2002; 21: 3694–3703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sorensen CS, Syluasen RG, Falck J, Schroeder T, Ronnstrand L, Khanna KK et al. Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell 2003; 3: 247–258.

    Article  CAS  PubMed  Google Scholar 

  4. Zhao H, Watkins JL, Piwnica-Worms H . Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints. Proc Natl Acad Sci USA 2002; 99: 14795–14800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J . The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 2001; 410: 842–847.

    Article  CAS  PubMed  Google Scholar 

  6. Goloudina A, Yamaguchi H, Chervyakova DB, Appella E, Fornace Jr AJ, Bulavin DV . Regulation of human Cdc25A stability by serine 75 phosphorylation is not sufficient to activate a S-phase checkpoint. Cell Cycle 2003; 2: 473–478.

    Article  CAS  PubMed  Google Scholar 

  7. Hassepass I, Voit R, Hoffmann I . Phosphorylation at serine-75 is required for UV-mediated degradation of human Cdc25A phosphatase at the S-phase checkpoint. J Biol Chem 2003; 278: 29824–29829.

    Article  CAS  PubMed  Google Scholar 

  8. Ma CX, Janetka JW, Piwnica-Worms H . Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol Med 2010; 17: 88–96.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bunch RT, Eastman A . Enhancement of cisplatin-induced cytotoxicity by 7-hydroxystaurosporine (UCN-01), a new G2 checkpoint inhibitor. Clin Cancer Res 1996; 2: 791–797.

    CAS  PubMed  Google Scholar 

  10. Wang O, Fan S, Eastman A, Worland PJ, Sausville EA, O’Conner PM . UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J Natl Cancer Inst 1996; 88: 956–965.

    Article  CAS  PubMed  Google Scholar 

  11. Levesque AA, Eastman A . p53-based cancer therapies: is defective p53 the Achilles heel of the tumor? Carcinogenesis 2007; 28: 13–20.

    Article  CAS  PubMed  Google Scholar 

  12. Levesque AA, Fanous AA, Poh A, Eastman A . Defective p53 signaling in p53 wild-type tumors attenuates p21waf1 induction and cyclin B repression rendering them sensitive to Chk1 inhibitors that abrogate DNA damage-induced S and G2 arrest. Mol Cancer Ther 2008; 7: 252–262.

    Article  CAS  PubMed  Google Scholar 

  13. Zabludoff SD, Deng C, Grondine MR, Sheehy AM, Ashwell S, Caleb BL et al. AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Mol Cancer Ther 2008; 7: 2955–2966.

    Article  CAS  PubMed  Google Scholar 

  14. Taylor WR, Stark GR . Regulation of the G2/M transition by p53. Oncogene 2001; 20: 1803–1815.

    Article  CAS  PubMed  Google Scholar 

  15. Abbas T, Dutta A . p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 2009; 9: 400–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ferguson AT, Evron E, Umbricht CB, Pandita TK, Chan TA, Hermeking H et al. High frequency of hypermethylation at the 14-3-3 sigma locus leads to gene silencing in breast cancer. Proc Natl Acad Sci USA 2000; 97: 6049–6054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fracasso PM, Williams KJ, Chen RC, Picus J, Ma CX, Ellis MJ et al. A phase 1 study of UCN-01 in combination with irinotecan in patients with resistant solid tumor malignancies. Cancer Chemother Pharmacol 2011; 67: 1225–1237.

    Article  CAS  PubMed  Google Scholar 

  18. Kohn EA, Ruth ND, Brown MK, Livingstone M, Eastman A . Abrogation of the S phase DNA damage checkpoint results in S phase progression or premature mitosis depending on the concentration of 7-hydroxystaurosporine and the kinetics of Cdc25C activation. J Biol Chem 2002; 277: 26553–26564.

    Article  CAS  PubMed  Google Scholar 

  19. Sedelnikova OA, Pilch DR, Redon C, Bonner WM . Histone H2AX in DNA damage and repair. Cancer Biol Ther 2003; 2: 233–235.

    Article  CAS  PubMed  Google Scholar 

  20. Lam MH, Liu Q, Elledge SJ, Rosen JM . Chk1 is haploinsufficient for multiple functions critical to tumor suppression. Cancer Cell 2004; 6: 45–59.

    Article  CAS  PubMed  Google Scholar 

  21. Perez RP, Lewis LD, Beelen AP, Olszanski AJ, Johnston N, Rhodes CH et al. Modulation of cell cycle progression in human tumors: a pharmacokinetic and tumor molecular pharmacodynamic study of cisplatin plus the Chk1 inhibitor UCN-01 (NSC 638850). Clin Cancer Res 2006; 12: 7079–7085.

    Article  CAS  PubMed  Google Scholar 

  22. Xu B, Kim S-T, Kastan MB . Involvement of Brca1 in S-phase and G2-phase checkpoints after ionizing radiation. Mol Cell Biol 2001; 21: 3445–3450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tapia C, Kutzner H, Mentzel T, Savic S, Baumhoer D, Glatz K . Two mitosis-specific antibodies, MPM-2 and phospho-histone H3 (Ser28), allow rapid and precise determination of mitotic activity. Am J Surg Pathol 2006; 30: 83–89.

    Article  PubMed  Google Scholar 

  24. Parker LL, Piwnica-Worms H . Inactivation of the p34cdc2-cyclin B complex by the human wee1 tyrosine kinase. Science 1992; 257: 1955–1957.

    Article  CAS  PubMed  Google Scholar 

  25. Goga A, Yang D, Tward AD, Morgan DO, Bishop JM . Inhibition of CDK1 as a potential therapy for tumors over-expressing MYC. Nat Med 2007; 13: 820–827.

    Article  CAS  PubMed  Google Scholar 

  26. Cespedes MV, Espina C, Garcia-Cabezas MA, Trias M, Boluda A, Gomez del Pulgar MT et al. Orthotopic microinjection of human colon cancer cells in nude mice induces tumor foci in all clinically relevant metastatic sites. Am J Pathol 2007; 170: 1077–1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Waldman T, Kinzler KW, Vogelstein B . p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 1995; 55: 5187–5190.

    CAS  PubMed  Google Scholar 

  28. Eastman A . Cell cycle checkpoints and their impact on anticancer therapeutic strategies. J Cell Biochem 2004; 91: 223–231.

    Article  CAS  PubMed  Google Scholar 

  29. Rodriguez R, Meuth M . Chk1 and p21 cooperate to prevent apoptosis during DNA replication fork stress. Mol Biol Cell 2006; 17: 402–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luo Y, Hurwitz J, Massague J . Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. Nature 1995; 375: 159–161.

    Article  CAS  PubMed  Google Scholar 

  31. Besson A, Dowdy SF, Roberts JM . CDK inhibitors: cell cycle regulators and beyond. Dev Cell 2008; 14: 159–169.

    Article  CAS  PubMed  Google Scholar 

  32. Sherr CJ, Roberts JM . CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13: 1501–1512.

    Article  CAS  PubMed  Google Scholar 

  33. Kohn EA, Yoo CJ, Eastman A . The protein kinase C inhibitor Go6976 is a potent inhibitor of DNA damage-induced S and G2 cell cycle checkpoints. Cancer Res 2003; 63: 31–35.

    CAS  PubMed  Google Scholar 

  34. Tse AN, Rendahl KG, Sheikh T, Cheema H, Aardalen K, Embry M et al. CHIR-124, a novel potent inhibitor of Chk1, potentiates the cytotoxicity of topoisomerase I poisons in vitro and in vivo. Clin Cancer Res 2007; 13 (2 Pt 1): 591–602.

    Article  CAS  PubMed  Google Scholar 

  35. Fikaris AJ, Lewis AE, Abulaiti A, Tsygankova OM, Meinkoth JL . Ras triggers ataxia-telangiectasia-mutated and Rad-3-related activation and apoptosis through sustained mitogenic signaling. J Biol Chem 2006; 281: 34759–34767.

    Article  CAS  PubMed  Google Scholar 

  36. Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 2006; 444: 633–637.

    Article  CAS  PubMed  Google Scholar 

  37. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 2006; 444: 638–642.

    Article  CAS  PubMed  Google Scholar 

  38. Gilad O, Nabet BY, Ragland RL, Schoppy DW, Smith KD, Durham AC et al. Combining ATR suppression with oncogenic Ras synergistically increases genomic instability, causing synthetic lethality or tumorigenesis in a dosage-dependent manner. Cancer Res 2010; 70: 9693–9702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Raynaud FI, Fischer PM, Nutley BP, Goddard PM, Lane DP, Workman P . Cassette dosing pharmacokinetics of a library of 2,6,9-trisubstituted purine cyclin-dependent kinase 2 inhibitors prepared by parallel synthesis. Mol Cancer Ther 2004; 3: 353–362.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr B Vogelstein for providing the HCT116 cell lines. This study was supported in part by NIH GM047017, the KOMEN Foundation and P50 CA94056 to the Molecular Imaging Center at Washington University. HP-W is a Research Professor of the American Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Piwnica-Worms.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Origanti, S., Cai, Sr., Munir, A. et al. Synthetic lethality of Chk1 inhibition combined with p53 and/or p21 loss during a DNA damage response in normal and tumor cells. Oncogene 32, 577–588 (2013). https://doi.org/10.1038/onc.2012.84

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.84

Keywords

This article is cited by

Search

Quick links