Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Gain-of-function mutant p53 downregulates miR-223 contributing to chemoresistance of cultured tumor cells

Abstract

Mutant p53 proteins are expressed at high frequency in human tumors and are associated with poor clinical prognosis and resistance to chemotherapeutic treatments. Here we show that mutant p53 proteins downregulate micro-RNA (miR)-223 expression in breast and colon cancer cell lines. Mutant p53 binds the miR-223 promoter and reduces its transcriptional activity. This requires the transcriptional repressor ZEB-1. We found that miR-223 exogenous expression sensitizes breast and colon cancer cell lines expressing mutant p53 to treatment with DNA-damaging drugs. Among the putative miR-223 targets, we focused on stathmin-1 (STMN-1), an oncoprotein known to confer resistance to chemotherapeutic drugs associated with poor clinical prognosis. Mutant p53 silencing or miR-223 exogenous expression lowers the levels of STMN-1 and knockdown of STMN-1 by small interfering RNA increases cell death of mutant p53-expressing cell lines. On the basis of these findings, we propose that one of the pathways affected by mutant p53 to increase cellular resistance to chemotherapeutic agents involves miR-223 downregulation and the consequent upregulation of STMN-1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Hainaut P, Hollstein M . P53 and human cancer: the first ten thousand mutations. Adv Cancer Res 2000; 77: 81–137.

    Article  CAS  Google Scholar 

  2. Hollstein M, Sidransky D, Vogelstein B, Harris CC . P53 mutations in human cancers. Science (New York, NY) 1991; 253: 49–53.

    Article  CAS  Google Scholar 

  3. Brosh R, Rotter V . When mutants gain new powers: news from the mutant p53 field. Nat Rev 2009; 9: 701–713.

    Article  CAS  Google Scholar 

  4. Oren M . Decision making by p53: life, death and cancer. Cell Death Differ 2003; 10: 431–442.

    Article  CAS  Google Scholar 

  5. Vousden KH, Prives C . Blinded by the light: the growing complexity of p53. Cell 2009; 137: 413–431.

    Article  CAS  Google Scholar 

  6. Sampath J, Sun D, Kidd VJ, Grenet J, Gandhi A, Shapiro LH et al. Mutant p53 cooperates with ETS and selectively up-regulates human MDR1 not MRP1. J Biol Chem 2001; 276: 39359–39367.

    Article  CAS  Google Scholar 

  7. Aas T, Borresen AL, Geisler S, Smith-Sorensen B, Johnsen H, Varhaug JE et al. Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med 1996; 2: 811–814.

    Article  CAS  Google Scholar 

  8. Bergh J, Norberg T, Sjogren S, Lindgren A, Holmberg L . Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nat Med 1995; 1: 1029–1034.

    Article  CAS  Google Scholar 

  9. Blandino G, Levine AJ, Oren M . Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene 1999; 18: 477–485.

    CAS  Google Scholar 

  10. Lu C, El-Deiry WS . Targeting p53 for enhanced radio- and chemo-sensitivity. Apoptosis 2009; 14: 597–606.

    Article  CAS  Google Scholar 

  11. Li R, Sutphin PD, Schwartz D, Matas D, Almog N, Wolkowicz R et al. Mutant p53 protein expression interferes with p53-independent apoptotic pathways. Oncogene 1998; 16: 3269–3277.

    Article  CAS  Google Scholar 

  12. Matas D, Sigal A, Stambolsky P, Milyavsky M, Weisz L, Schwartz D et al. Integrity of the N-terminal transcription domain of p53 is required for mutant p53 interference with drug-induced apoptosis. EMBO J 2001; 20: 4163–4172.

    Article  CAS  Google Scholar 

  13. Strano S, Fontemaggi G, Costanzo A, Rizzo MG, Monti O, Baccarini A et al. Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J Biol Chem 2002; 277: 18817–18826.

    Article  CAS  Google Scholar 

  14. Strano S, Munarriz E, Rossi M, Cristofanelli B, Shaul Y, Castagnoli L et al. Physical and functional interaction between p53 mutants and different isoforms of p73. J Biol Chem 2000; 275: 29503–29512.

    Article  CAS  Google Scholar 

  15. Chicas A, Molina P, Bargonetti J . Mutant p53 forms a complex with Sp1 on HIV-LTR DNA. Biochem Biophys Res Commun 2000; 279: 383–390.

    Article  CAS  Google Scholar 

  16. Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A et al. Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 2006; 10: 191–202.

    CAS  Google Scholar 

  17. Fontemaggi G, Dell’Orso S, Trisciuoglio D, Shay T, Melucci E, Fazi F et al. The execution of the transcriptional axis mutant p53, E2F1 and ID4 promotes tumor neo-angiogenesis. Nat Struct Mol Biol 2009; 16: 1086–1093.

    Article  CAS  Google Scholar 

  18. Gohler T, Jager S, Warnecke G, Yasuda H, Kim E, Deppert W . Mutant p53 proteins bind DNA in a DNA structure-selective mode. Nucleic Acids Res 2005; 33: 1087–1100.

    Article  Google Scholar 

  19. Israel A, Sharan R, Ruppin E, Galun E . Increased microRNA activity in human cancers. PLoS One 2009; 4: e6045.

    Article  Google Scholar 

  20. Wang L, Wang J . MicroRNA-mediated breast cancer metastasis: from primary site to distant organs. Oncogene 2011; 31: 2499–2511.

    Article  Google Scholar 

  21. Donzelli S, Fontemaggi G, Fazi F, Di Agostino S, Padula F, Biagioni F et al. MicroRNA-128-2 targets the transcriptional repressor E2F5 enhancing mutant p53 gain of function. Cell Death Differ 2011; 19: 1038–1048.

    Article  Google Scholar 

  22. Calin GA, Croce CM . MicroRNA signatures in human cancers. Nat Rev 2006; 6: 857–866.

    Article  CAS  Google Scholar 

  23. Fukao T, Fukuda Y, Kiga K, Sharif J, Hino K, Enomoto Y et al. An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell 2007; 129: 617–631.

    Article  CAS  Google Scholar 

  24. Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 2005; 123: 819–831.

    Article  CAS  Google Scholar 

  25. Arumugam T, Ramachandran V, Fournier KF, Wang H, Marquis L, Abbruzzese JL et al. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res 2009; 69: 5820–5828.

    Article  CAS  Google Scholar 

  26. Haddad Y, Choi W, McConkey DJ . Delta-crystallin enhancer binding factor 1 controls the epithelial to mesenchymal transition phenotype and resistance to the epidermal growth factor receptor inhibitor erlotinib in human head and neck squamous cell carcinoma lines. Clin Cancer Res 2009; 15: 532–542.

    Article  CAS  Google Scholar 

  27. Shah AN, Summy JM, Zhang J, Park SI, Parikh NU, Gallick GE . Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol 2007; 14: 3629–3637.

    Article  Google Scholar 

  28. Witta SE, Gemmill RM, Hirsch FR, Coldren CD, Hedman K, Ravdel L et al. Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res 2006; 66: 944–950.

    Article  CAS  Google Scholar 

  29. Fontemaggi G, Gurtner A, Strano S, Higashi Y, Sacchi A, Piaggio G et al. The transcriptional repressor ZEB regulates p73 expression at the crossroad between proliferation and differentiation. Mol Cell Biol 2001; 21: 8461–8470.

    Article  CAS  Google Scholar 

  30. Mueller PR, Coleman TR, Kumagai A, Dunphy WG . Myt1: a membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Science (New York) 1995; 270: 86–90.

    Article  CAS  Google Scholar 

  31. Pulikkan JA, Dengler V, Peramangalam PS, Peer Zada AA, Muller-Tidow C, Bohlander SK et al. Cell-cycle regulator E2F1 and microRNA-223 comprise an autoregulatory negative feedback loop in acute myeloid leukemia. Blood 2010; 115: 1768–1778.

    Article  CAS  Google Scholar 

  32. Laios A, O’Toole S, Flavin R, Martin C, Kelly L, Ring M et al. Potential role of miR-9 and miR-223 in recurrent ovarian cancer. Mol Cancer 2008; 7: 35.

    Article  Google Scholar 

  33. Gottardo F, Liu CG, Ferracin M, Calin GA, Fassan M, Bassi P et al. Micro-RNA profiling in kidney and bladder cancers. Urol Oncol 2007; 25: 387–392.

    Article  CAS  Google Scholar 

  34. Wong QW, Lung RW, Law PT, Lai PB, Chan KY, To KF et al. MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of Stathmin1. Gastroenterology 2008; 135: 257–269.

    Article  CAS  Google Scholar 

  35. Jia CY, Li HH, Zhu XC, Dong YW, Fu D, Zhao QL et al. MiR-223 suppresses cell proliferation by targeting IGF-1R. PLoS One 2011; 6: e27008.

    Article  CAS  Google Scholar 

  36. Rubin CI, Atweh GF . The role of stathmin in the regulation of the cell cycle. J Cell Biochem 2004; 93: 242–250.

    Article  CAS  Google Scholar 

  37. Melhem RF, Strahler JR, Hailat N, Zhu XX, Hanash SM . Involvement of OP18 in cell proliferation. Biochem Biophys Res Commun 1991; 179: 1649–1655.

    Article  CAS  Google Scholar 

  38. Johnsen JI, Aurelio ON, Kwaja Z, Jorgensen GE, Pellegata NS, Plattner R et al. P53-mediated negative regulation of stathmin/Op18 expression is associated with G(2)/M cell-cycle arrest. Int J Cancer 2000; 88: 685–691.

    Article  CAS  Google Scholar 

  39. Mistry SJ, Li HC, Atweh GF . Role for protein phosphatases in the cell-cycle-regulated phosphorylation of stathmin. Biochem J 1998; 334 (Part 1): 23–29.

    Article  CAS  Google Scholar 

  40. Bane AL, Pinnaduwage D, Colby S, Reedijk M, Egan SE, Bull SB et al. Expression profiling of familial breast cancers demonstrates higher expression of FGFR2 in BRCA2-associated tumors. Breast Cancer Res Treat 2009; 117: 183–191.

    Article  CAS  Google Scholar 

  41. Cheng AL, Huang WG, Chen ZC, Peng F, Zhang PF, Li MY et al. Identification of novel nasopharyngeal carcinoma biomarkers by laser capture microdissection and proteomic analysis. Clin Cancer Res 2008; 14: 435–445.

    Article  CAS  Google Scholar 

  42. Golouh R, Cufer T, Sadikov A, Nussdorfer P, Usher PA, Brunner N et al. The prognostic value of Stathmin-1, S100A2, and SYK proteins in ER-positive primary breast cancer patients treated with adjuvant tamoxifen monotherapy: an immunohistochemical study. Breast Cancer Res Treat 2008; 110: 317–326.

    Article  CAS  Google Scholar 

  43. Salvesen HB, Carter SL, Mannelqvist M, Dutt A, Getz G, Stefansson IM et al. Integrated genomic profiling of endometrial carcinoma associates aggressive tumors with indicators of PI3 kinase activation. Proc Natl Acad Sci USA 2009; 106: 4834–4839.

    Article  CAS  Google Scholar 

  44. Zheng P, Liu YX, Chen L, Liu XH, Xiao ZQ, Zhao L et al. Stathmin, a new target of PRL-3 identified by proteomic methods, plays a key role in progression and metastasis of colorectal cancer. J Proteome Res 2010; 9: 4897–4905.

    Article  CAS  Google Scholar 

  45. Belletti B, Baldassarre G . Stathmin: a protein with many tasks. New biomarker and potential target in cancer. Expert Opin Therap Targets 2011; 15: 1249–1266.

    Article  CAS  Google Scholar 

  46. Phadke AP, Jay CM, Wang Z, Chen S, Liu S, Haddock C et al. In vivo safety and antitumor efficacy of bifunctional small hairpin RNAs specific for the human Stathmin 1 oncoprotein. DNA Cell Biol 2011; 30: 715–726.

    Article  CAS  Google Scholar 

  47. Rana S, Maples PB, Senzer N, Nemunaitis J . Stathmin 1: a novel therapeutic target for anticancer activity. Expert Rev Anticancer Ther 2008; 8: 1461–1470.

    Article  CAS  Google Scholar 

  48. Ahn J, Murphy M, Kratowicz S, Wang A, Levine AJ, George DL . Down-regulation of the stathmin/Op18 and FKBP25 genes following p53 induction. Oncogene 1999; 18: 5954–5958.

    Article  CAS  Google Scholar 

  49. Murphy M, Ahn J, Walker KK, Hoffman WH, Evans RM, Levine AJ et al. Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev 1999; 13: 2490–2501.

    Article  CAS  Google Scholar 

  50. Alli E, Bash-Babula J, Yang JM, Hait WN . Effect of stathmin on the sensitivity to antimicrotubule drugs in human breast cancer. Cancer Res 2002; 62: 6864–6869.

    CAS  PubMed  Google Scholar 

  51. Alli E, Yang JM, Hait WN . Silencing of stathmin induces tumor-suppressor function in breast cancer cell lines harboring mutant p53. Oncogene 2007; 26: 1003–1012.

    Article  CAS  Google Scholar 

  52. Singer S, Ehemann V, Brauckhoff A, Keith M, Vreden S, Schirmacher P et al. Protumorigenic overexpression of stathmin/Op18 by gain-of-function mutation in p53 in human hepatocarcinogenesis. Hepatology (Baltimore, MD) 2007; 46: 759–768.

    Article  CAS  Google Scholar 

  53. Kang W, Tong JH, Chan AW, Lung RW, Chau SL, Wong QW et al. Stathmin1 plays oncogenic role and is a target of microRNA-223 in gastric cancer. PLoS One 2012; 7: e33919.

    Article  CAS  Google Scholar 

  54. Baldassarre G, Belletti B, Nicoloso MS, Schiappacassi M, Vecchione A, Spessotto P et al. p27(Kip1)–stathmin interaction influences sarcoma cell migration and invasion. Cancer Cell 2005; 7: 51–63.

    Article  CAS  Google Scholar 

  55. Manceau V, Gavet O, Curmi P, Sobel A . Stathmin interaction with HSC70 family proteins. Electrophoresis 1999; 20: 409–417.

    Article  CAS  Google Scholar 

  56. Maucuer A, Camonis JH, Sobel A . Stathmin interaction with a putative kinase and coiled-coil-forming protein domains. Proc Natl Acad Sci USA 1995; 92: 3100–3104.

    Article  CAS  Google Scholar 

  57. Ng DC, Lin BH, Lim CP, Huang G, Zhang T, Poli V et al. Stat3 regulates microtubules by antagonizing the depolymerization activity of stathmin. J Cell Biol 2006; 172: 245–257.

    Article  CAS  Google Scholar 

  58. Jiang H, Schiffer E, Song Z, Wang J, Zurbig P, Thedieck K et al. Proteins induced by telomere dysfunction and DNA damage represent biomarkers of human aging and disease. Proc Natl Acad Sci USA 2008; 105: 11299–11304.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the support given by AIRC (Grant Number: 10454) to GB. We thank Francesca Fausti for providing the SW480-sh53 cell line and Dr Taro Fukao for kindly providing the ppri-hmiR-223−669-Luc luciferase reporter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Blandino.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masciarelli, S., Fontemaggi, G., Di Agostino, S. et al. Gain-of-function mutant p53 downregulates miR-223 contributing to chemoresistance of cultured tumor cells. Oncogene 33, 1601–1608 (2014). https://doi.org/10.1038/onc.2013.106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.106

Keywords

This article is cited by

Search

Quick links