Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Malignant melanoma cells acquire resistance to DNA interstrand cross-linking chemotherapeutics by p53-triggered upregulation of DDB2/XPC-mediated DNA repair

Abstract

Malignant melanoma is a cancer characterized by high chemoresistance although p53 is rarely mutated. Here, we show that p53 wild-type melanoma cells acquire resistance to cell death induced by fotemustine (FM), which is a representative of alkylating DNA interstrand cross-linking agents used in melanoma therapy. We show that drug-induced resistance is a result of p53-dependent upregulation of the nucleotide excision repair (NER) genes xeroderma pigmentosum complementation group C (XPC) and damaged DNA-binding protein 2 (DDB2), which stimulate the repair of DNA interstrand cross-links (ICLs) arising from O6-chloroethylguanine. Consequently, TP53 mutated cells are unable to repair ICLs, leading to prolonged ATM, ATR and checkpoint kinase 1 (CHK1) activation, and finally apoptosis. The roles of p53 and NER in ICL-triggered cell death were confirmed by knockdown of p53 and XPC. Upregulation of XPC and DDB2 in p53wt cells following a single drug treatment is a robust and sustained response that lasts for up to 1 week. Pretreatment with an inducing dose followed by a high and toxic dose of FM provoked an adaptive response as the killing outcome of the challenge dose was reduced. Upregulation of XPC and DDB2 was also observed in a melanoma mouse xenograft model following systemic administration of FM. Additionally, XPC and DDB2 induction occurred upon treatment with other cross-linking anticancer drugs, such as cisplatin and mafosfamide, indicating it is a general response of cancer cells to this group of chemotherapeutics. Collectively, the data indicate that p53-dependent upregulation of XPC and DDB2 is a key mechanism upon genotoxic stress, whereby melanoma cells acquire resistance towards DNA cross-linking agents. To our knowledge, this is the first demonstration of upregulation of NER following a single dose of a DNA interstrand cross-linker, which is a robust and long-lasting effect that impacts the killing response of cancer cells to subsequent treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Castresana JS, Rubio MP, Vazquez JJ, Idoate M, Sober AJ, Seizinger BR et al. Lack of allelic deletion and point mutation as mechanisms of p53 activation in human malignant melanoma. Int J Cancer 1993; 55: 562–565.

    Article  CAS  Google Scholar 

  2. Lubbe J, Reichel M, Burg G, Kleihues P . Absence of p53 gene mutations in cutaneous melanoma. J Invest Dermatol 1994; 102: 819–821.

    Article  CAS  Google Scholar 

  3. Roos WP, Jost E, Belohlavek C, Nagel G, Fritz G, Kaina B . Intrinsic anticancer drug resistance of malignant melanoma cells is abrogated by IFN-{beta} and valproic acid. Cancer Res 2011; 71: 4150–4160.

    Article  CAS  Google Scholar 

  4. Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 2001; 409: 207–211.

    Article  CAS  Google Scholar 

  5. Carson C, Omolo B, Chu H, Zhou Y, Sambade MJ, Peters EC et al. A prognostic signature of defective p53-dependent G1 checkpoint function in melanoma cell lines. Pigment Cell Melanoma Res 2012; 25: 514–526.

    Article  CAS  Google Scholar 

  6. Kleeberg UR, Engel E, Israels P, Brocker EB, Tilgen W, Kennes C et al. Palliative therapy of melanoma patients with fotemustine. Inverse relationship between tumour load and treatment effectiveness. Melanoma Res 1995; 5: 195–200.

    Article  CAS  Google Scholar 

  7. Kaina B, Christmann M, Naumann S, Roos WP . MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst) 2007; 6: 1079–1099.

    Article  CAS  Google Scholar 

  8. Hayes MT, Bartley J, Parsons PG, Eaglesham GK, Prakash AS . Mechanism of action of fotemustine, a new chloroethylnitrosourea anticancer agent: evidence for the formation of two DNA-reactive intermediates contributing to cytotoxicity. Biochemistry 1997; 36: 10646–10654.

    Article  CAS  Google Scholar 

  9. Dolan ME, Norbeck L, Clyde C, Hora NK, Erickson LC, Pegg AE . Expression of mammalian O6-alkylguanine-DNA alkyltransferase in a cell line sensitive to alkylating agents. Carcinogenesis 1989; 10: 1613–1619.

    Article  CAS  Google Scholar 

  10. Chen JM, Zhang YP, Wang C, Sun Y, Fujimoto J, Ikenaga M . O6-methylguanine-DNA methyltransferase activity in human tumors. Carcinogenesis 1992; 13: 1503–1507.

    Article  CAS  Google Scholar 

  11. Tellez CS, Shen L, Estecio MR, Jelinek J, Gershenwald JE, Issa JP . CpG island methylation profiling in human melanoma cell lines. Melanoma Res 2009; 19: 146–155.

    Article  CAS  Google Scholar 

  12. Passagne I, Evrard A, Winum JY, Depeille P, Cuq P, Montero JL et al. Cytotoxicity, DNA damage, and apoptosis induced by new fotemustine analogs on human melanoma cells in relation to O6-methylguanine DNA-methyltransferase expression. J Pharmacol Exp Ther 2003; 307: 816–823.

    Article  CAS  Google Scholar 

  13. Naumann SC, Roos WP, Jost E, Belohlavek C, Lennerz V, Schmidt CW et al. Temozolomide- and fotemustine-induced apoptosis in human malignant melanoma cells: response related to MGMT, MMR, DSBs, and p53. Br J Cancer 2009; 100: 322–333.

    Article  CAS  Google Scholar 

  14. Christmann M, Pick M, Lage H, Schadendorf D, Kaina B . Acquired resistance of melanoma cells to the antineoplastic agent fotemustine is caused by reactivation of the DNA repair gene MGMT. Int J Cancer 2001; 92: 123–129.

    Article  CAS  Google Scholar 

  15. Ludlum DB . Formation of cyclic adducts in nucleic acids by the haloethylnitrosoureas. IARC Sci Publ 1986; 70: 137–146.

    CAS  Google Scholar 

  16. Akkari YM, Bateman RL, Reifsteck CA, Olson SB, Grompe M . DNA replication is required To elicit cellular responses to psoralen-induced DNA interstrand cross-links. Mol Cell Biol 2000; 20: 8283–8289.

    Article  CAS  Google Scholar 

  17. Muniandy PA, Thapa D, Thazhathveetil AK, Liu ST, Seidman MM . Repair of laser-localized DNA interstrand cross-links in G1 phase mammalian cells. J Biol Chem 2009; 284: 27908–27917.

    Article  CAS  Google Scholar 

  18. McHugh PJ, Sarkar S . DNA interstrand cross-link repair in the cell cycle: a critical role for polymerase zeta in G1 phase. Cell Cycle 2006; 5: 1044–1047.

    Article  CAS  Google Scholar 

  19. Sasaki MS, Takata M, Sonoda E, Tachibana A, Takeda S . Recombination repair pathway in the maintenance of chromosomal integrity against DNA interstrand crosslinks. Cytogenet Genome Res 2004; 104: 28–34.

    Article  CAS  Google Scholar 

  20. De Silva IU, McHugh PJ, Clingen PH, Hartley JA . Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol Cell Biol 2000; 20: 7980–7990.

    Article  CAS  Google Scholar 

  21. Raschle M, Knipscheer P, Enoiu M, Angelov T, Sun J, Griffith JD et al. Mechanism of replication-coupled DNA interstrand crosslink repair. Cell 2008; 134: 969–980.

    Article  CAS  Google Scholar 

  22. Tsaryk R, Fabian K, Thacker J, Kaina B . Xrcc2 deficiency sensitizes cells to apoptosis by MNNG and the alkylating anticancer drugs temozolomide, fotemustine and mafosfamide. Cancer Lett 2006; 239: 305–313.

    Article  CAS  Google Scholar 

  23. Roos WP, Tsaalbi-Shtylik A, Tsaryk R, Guvercin F, de Wind N, Kaina B . The translesion polymerase Rev3L in the tolerance of alkylating anticancer drugs. Mol Pharmacol 2009; 76: 927–934.

    Article  CAS  Google Scholar 

  24. Tian M, Shinkura R, Shinkura N, Alt FW . Growth retardation, early death, and DNA repair defects in mice deficient for the nucleotide excision repair enzyme XPF. Mol Cell Biol 2004; 24: 1200–1205.

    Article  CAS  Google Scholar 

  25. Jaspers NG, Raams A, Silengo MC, Wijgers N, Niedernhofer LJ, Robinson AR et al. First reported patient with human ERCC1 deficiency has cerebro-oculo-facio-skeletal syndrome with a mild defect in nucleotide excision repair and severe developmental failure. Am J Hum Genet 2007; 80: 457–466.

    Article  CAS  Google Scholar 

  26. Fety R, Lucas C, Solere P, Cour V, Vignoud J . Hepatic intra-arterial infusion of fotemustine: pharmacokinetics. Cancer Chemother Pharmacol 1992; 31: 118–122.

    Article  CAS  Google Scholar 

  27. Pegg AE, Boosalis M, Samson L, Moschel RC, Byers TL, Swenn K et al. Mechanism of inactivation of human O6-alkylguanine-DNA alkyltransferase by O6-benzylguanine. Biochemistry 1993; 32: 11998–12006.

    Article  CAS  Google Scholar 

  28. Usanova S, Piee-Staffa A, Sied U, Thomale J, Schneider A, Kaina B et al. Cisplatin sensitivity of testis tumour cells is due to deficiency in interstrand-crosslink repair and low ERCC1-XPF expression. Mol Cancer 2010; 9: 248.

    Article  Google Scholar 

  29. Haapajarvi T, Pitkanen K, Laiho M . Human melanoma cell line UV responses show independency of p53 function. Cell Growth Differ 1999; 10: 163–171.

    CAS  PubMed  Google Scholar 

  30. Wang QE, Zhu Q, Wani G, Chen J, Wani AA . UV radiation-induced XPC translocation within chromatin is mediated by damaged-DNA binding protein, DDB2. Carcinogenesis 2004; 25: 1033–1043.

    Article  CAS  Google Scholar 

  31. Chen Z, Xu XS, Yang J, Wang G . Defining the function of XPC protein in psoralen and cisplatin-mediated DNA repair and mutagenesis. Carcinogenesis 2003; 24: 1111–1121.

    Article  CAS  Google Scholar 

  32. Tarhini AA, Agarwala SS . Management of brain metastases in patients with melanoma. Curr Opin Oncol 2004; 16: 161–166.

    Article  Google Scholar 

  33. Brent TP, Lestrud SO, Smith DG, Remack JS . Formation of DNA interstrand cross-links by the novel chloroethylating agent 2-chloroethyl(methylsulfonyl) methanesulfonate: suppression by O6-alkylguanine-DNA alkyltransferase purified from human leukemic lymphoblasts. Cancer Res 1987; 47: 3384–3387.

    CAS  PubMed  Google Scholar 

  34. Muller M, Wilder S, Bannasch D, Israeli D, Lehlbach K, Li-Weber M et al. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 1998; 188: 2033–2045.

    Article  CAS  Google Scholar 

  35. Adimoolam S, Ford JM . p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proc Natl Acad Sci USA 2002; 99: 12985–12990.

    Article  CAS  Google Scholar 

  36. Hwang BJ, Ford JM, Hanawalt PC, Chu G . Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc Natl Acad Sci USA 1999; 96: 424–428.

    Article  CAS  Google Scholar 

  37. Batista LF, Roos WP, Christmann M, Menck CF, Kaina B . Differential sensitivity of malignant glioma cells to methylating and chloroethylating anticancer drugs: p53 determines the switch by regulating xpc, ddb2, and DNA double-strand breaks. Cancer Res 2007; 67: 11886–11895.

    Article  CAS  Google Scholar 

  38. Batista LF, Roos WP, Kaina B, Menck CF . p53 mutant human glioma cells are sensitive to UV-C-induced apoptosis due to impaired cyclobutane pyrimidine dimer removal. Mol Cancer Res 2009; 7: 237–246.

    Article  CAS  Google Scholar 

  39. Thoma BS, Wakasugi M, Christensen J, Reddy MC, Vasquez KM . Human XPC-hHR23B interacts with XPA-RPA in the recognition of triplex-directed psoralen DNA interstrand crosslinks. Nucleic Acids Res 2005; 33: 2993–3001.

    Article  CAS  Google Scholar 

  40. Dumaz N, Meek DW . Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. Embo J. 1999; 18: 7002–7010.

    Article  CAS  Google Scholar 

  41. Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD . Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci USA 1999; 96: 13777–13782.

    Article  CAS  Google Scholar 

  42. Devary Y, Gottlieb RA, Lau LF, Karin M . Rapid and preferential activation of the c-jun gene during the mammalian UV response. Mol Cell Biol 1991; 11: 2804–2811.

    Article  CAS  Google Scholar 

  43. Rafferty JA, Clarke AR, Sellappan D, Koref MS, Frayling IM, Margison GP . Induction of murine O6-alkylguanine-DNA-alkyltransferase in response to ionising radiation is p53 gene dose dependent. Oncogene 1996; 12: 693–697.

    CAS  PubMed  Google Scholar 

  44. Grombacher T, Eichhorn U, Kaina B . p53 is involved in regulation of the DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) by DNA damaging agents. Oncogene 1998; 17: 845–851.

    Article  CAS  Google Scholar 

  45. Garbe C, Peris K, Hauschild A, Saiag P, Middleton M, Spatz A et al. Diagnosis and treatment of melanoma: European consensus-based interdisciplinary guideline. Eur J Cancer 2010; 46: 270–283.

    Article  Google Scholar 

  46. Pavey S, Johansson P, Packer L, Taylor J, Stark M, Pollock PM et al. Microarray expression profiling in melanoma reveals a BRAF mutation signature. Oncogene 2004; 23: 4060–4067.

    Article  CAS  Google Scholar 

  47. Stark M, Hayward N . Genome-wide loss of heterozygosity and copy number analysis in melanoma using high-density single-nucleotide polymorphism arrays. Cancer Res 2007; 67: 2632–2642.

    Article  CAS  Google Scholar 

  48. Wu YH, Tsai Chang JH, Cheng YW, Wu TC, Chen CY, Lee H . Xeroderma pigmentosum group C gene expression is predominantly regulated by promoter hypermethylation and contributes to p53 mutation in lung cancers. Oncogene 2007; 26: 4761–4773.

    Article  CAS  Google Scholar 

  49. Berdelle N, Nikolova T, Quiros S, Efferth T, Kaina B . Artesunate induces oxidative DNA damage, sustained dna double-strand breaks, and the ATM/ATR damage response in cancer cells. Mol Cancer Ther 2011; 10: 2224–2233.

    Article  CAS  Google Scholar 

  50. Roos W, Baumgartner M, Kaina B . Apoptosis triggered by DNA damage O6-methylguanine in human lymphocytes requires DNA replication and is mediated by p53 and Fas/CD95/Apo-1. Oncogene 2004; 23: 359–367.

    Article  CAS  Google Scholar 

  51. Roos WP, Batista LF, Naumann SC, Wick W, Weller M, Menck CF et al. Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene 2007; 26: 186–197.

    Article  CAS  Google Scholar 

  52. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 1997; 275: 1129–1132.

    Article  CAS  Google Scholar 

  53. Bradford MM . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248–254.

    Article  CAS  Google Scholar 

  54. Roos WP, Nikolova T, Quiros S, Naumann SC, Kiedron O, Zdzienicka MZ et al. Brca2/Xrcc2 dependent HR, but not NHEJ, is required for protection against O(6)-methylguanine triggered apoptosis, DSBs and chromosomal aberrations by a process leading to SCEs. DNA Repair (Amst) 2009; 8: 72–86.

    Article  CAS  Google Scholar 

  55. Padget K, Carr R, Pearson AD, Tilby MJ, Austin CA. . Camptothecin-stabilised topoisomerase I-DNA complexes in leukaemia cells visualised and quantified in situ by the TARDIS assay (trapped in agarose DNA immunostaining). Biochem Pharmacol 2000; 59 (6): 629–638.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge a gift of DDB2 antibodies from Dr Vesna Rapic-Otrin, University of Pittsburgh and Dr Beate Köberle for her help. We thank Rebekka Kitzinger for technical assistance, Georg Nagel for his help with animal experiments and Christian Henninger for helpful advice concerning tumor sample processing. Work was supported by DFG KA724 and RO3617.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Kaina.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barckhausen, C., Roos, W., Naumann, S. et al. Malignant melanoma cells acquire resistance to DNA interstrand cross-linking chemotherapeutics by p53-triggered upregulation of DDB2/XPC-mediated DNA repair. Oncogene 33, 1964–1974 (2014). https://doi.org/10.1038/onc.2013.141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.141

Keywords

This article is cited by

Search

Quick links