Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TACC3 deregulates the DNA damage response and confers sensitivity to radiation and PARP inhibition

Abstract

Deregulation of the transforming acidic coiled-coil protein 3 (TACC3), an important factor in the centrosome–microtubule system, has been linked to a variety of human cancer types. We have recently reported on the oncogenic potential of TACC3; however, the molecular mechanisms by which TACC3 mediates oncogenic function remain to be elucidated. In this study, we show that high levels of TACC3 lead to the accumulation of DNA double-strand breaks (DSBs) and disrupt the normal cellular response to DNA damage, at least in part, by negatively regulating the expression of ataxia telangiectasia mutated (ATM) and the subsequent DNA damage response (DDR) signaling cascade. Cells expressing high levels of TACC3 display defective checkpoints and DSB-mediated homologous recombination (HR) and non-homologous end joining (NHEJ) repair systems, leading to genomic instability. Importantly, high levels of TACC3 confer cellular sensitization to radiation and poly(ADP-ribose) polymerase (PARP) inhibition. Overall, our findings provide critical information regarding the mechanisms by which TACC3 contributes to genomic instability, potentially leading to cancer development, and suggest a novel prognostic, diagnostic and therapeutic strategy for the treatment of cancer types expressing high levels of TACC3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Lauffart B, Sondarva GV, Gangisetty O, Cincotta M, Still IH . Interaction of TACC proteins with the FHL family: implications for ERK signaling. J Cell Commun Signal 2007; 1: 5–15.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vettaikkorumakankauv A, Gangisetty O, Cincotta M, Hawthorne L, Cowell J, Still I . The TACC proteins are coregulators of the rentinoid × Receptor b. Cancer Therapy 2008; 6: 805–816.

    CAS  Google Scholar 

  3. Gangisetty O, Lauffart B, Sondarva GV, Chelsea DM, Still IH . The transforming acidic coiled coil proteins interact with nuclear histone acetyltransferases. Oncogene 2004; 23: 2559–2563.

    Article  CAS  PubMed  Google Scholar 

  4. Lauffart B, Gangisetty O, Still IH . Molecular cloning, genomic structure and interactions of the putative breast tumor suppressor TACC2. Genomics 2003; 81: 192–201.

    Article  CAS  PubMed  Google Scholar 

  5. Sadek CM, Pelto-Huikko M, Tujague M, Steffensen KR, Wennerholm M, Gustafsson JA . TACC3 expression is tightly regulated during early differentiation. Gene Expr Patterns 2003; 3: 203–211.

    Article  CAS  PubMed  Google Scholar 

  6. Ha GH, Kim JL, Breuer EK . Transforming acidic coiled-coil proteins (TACCs) in human cancer. Cancer Lett 2013; 336: 24–33.

    Article  CAS  PubMed  Google Scholar 

  7. Sadek CM, Jalaguier S, Feeney EP, Aitola M, Damdimopoulos AE, Pelto-Huikko M et al. Isolation and characterization of AINT: a novel ARNT interacting protein expressed during murine embryonic development. Mech Dev 2000; 97: 13–26.

    Article  CAS  PubMed  Google Scholar 

  8. Piekorz RP, Hoffmeyer A, Duntsch CD, McKay C, Nakajima H, Sexl V et al. The centrosomal protein TACC3 is essential for hematopoietic stem cell function and genetically interfaces with p53-regulated apoptosis. EMBO J 2002; 21: 653–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Garriga-Canut M, Orkin SH . Transforming acidic coiled-coil protein 3 (TACC3) controls friend of GATA-1 (FOG-1) subcellular localization and regulates the association between GATA-1 and FOG-1 during hematopoiesis. J Biol Chem 2004; 279: 23597–23605.

    Article  CAS  PubMed  Google Scholar 

  10. Jung CK, Jung JH, Park GS, Lee A, Kang CS, Lee KY . Expression of transforming acidic coiled-coil containing protein 3 is a novel independent prognostic marker in non-small cell lung cancer. Pathol Int 2006; 56: 503–509.

    Article  CAS  PubMed  Google Scholar 

  11. Schuendeln MM, Piekorz RP, Wichmann C, Lee Y, McKinnon PJ, Boyd K et al. The centrosomal, putative tumor suppressor protein TACC2 is dispensable for normal development, and deficiency does not lead to cancer. Mol Cell Biol 2004; 24: 6403–6409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McKeveney PJ, Hodges VM, Mullan RN, Maxwell P, Simpson D, Thompson A et al. Characterization and localization of expression of an erythropoietin-induced gene, ERIC-1/TACC3, identified in erythroid precursor cells. Br J Haematol 2001; 112: 1016–1024.

    Article  CAS  PubMed  Google Scholar 

  13. Kinoshita K, Noetzel TL, Pelletier L, Mechtler K, Drechsel DN, Schwager A et al. Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis. J Cell Biol 2005; 170: 1047–1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schneider L, Essmann F, Kletke A, Rio P, Hanenberg H, Wetzel W et al. The transforming acidic coiled coil 3 protein is essential for spindle-dependent chromosome alignment and mitotic survival. J Biol Chem 2007; 282: 29273–29283.

    Article  CAS  PubMed  Google Scholar 

  15. Albee AJ, Wiese C . Xenopus TACC3/maskin is not required for microtubule stability but is required for anchoring microtubules at the centrosome. Mol Biol Cell 2008; 19: 3347–3356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lauffart B, Gangisetty O, Still IH . Evolutionary conserved interaction of TACC2/TACC3 with BARD1 and BRCA1: potential implications for DNA damage response in breast and ovarian cancer. Cancer Ther 2007; 5: 409–416.

    Google Scholar 

  17. Lauffart B, Howell SJ, Tasch JE, Cowell JK, Still IH . Interaction of the transforming acidic coiled-coil 1 (TACC1) protein with ch-TOG and GAS41/NuBI1 suggests multiple TACC1-containing protein complexes in human cells. Biochem J 2002; 363: 195–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stewart JP, Thompson A, Santra M, Barlogie B, Lappin TR, Shaughnessy J Jr . Correlation of TACC3, FGFR3, MMSET and p21 expression with the t(4;14)(p16.3;q32) in multiple myeloma. Br J Haematol 2004; 126: 72–76.

    Article  CAS  PubMed  Google Scholar 

  19. Lauffart B, Vaughan MM, Eddy R, Chervinsky D, DiCioccio RA, Black JD et al. Aberrations of TACC1 and TACC3 are associated with ovarian cancer. BMC Womens Health 2005; 5: 8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P et al. Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 2003; 100: 5974–5979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kiemeney LA, Sulem P, Besenbacher S, Vermeulen SH, Sigurdsson A, Thorleifsson G et al. A sequence variant at 4p16.3 confers susceptibility to urinary bladder cancer. Nat Genet 2010; 42: 415–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Singh D, Chan JM, Zoppoli P, Niola F, Sullivan R, Castano A et al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science 2012; 337: 1231–1235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 2007; 9: 166–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhai Y, Kuick R, Nan B, Ota I, Weiss SJ, Trimble CL et al. Gene expression analysis of preinvasive and invasive cervical squamous cell carcinomas identifies HOXC10 as a key mediator of invasion. Cancer Res 2007; 67: 10163–10172.

    Article  CAS  PubMed  Google Scholar 

  25. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449: 557–563.

    Article  CAS  PubMed  Google Scholar 

  26. Hou J, Aerts J, den Hamer B, van Ijcken W, den Bakker M, Riegman P et al. Gene expression-based classification of non-small cell lung carcinomas and survival prediction. PLoS One 2010; 5: e10312.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Sun L, Hui AM, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S et al. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 2006; 9: 287–300.

    Article  CAS  PubMed  Google Scholar 

  28. D'Errico M, de Rinaldis E, Blasi MF, Viti V, Falchetti M, Calcagnile A et al. Genome-wide expression profile of sporadic gastric cancers with microsatellite instability. Eur J Cancer 2009; 45: 461–469.

    Article  CAS  PubMed  Google Scholar 

  29. Roessler S, Jia HL, Budhu A, Forgues M, Ye QH, Lee JS et al. A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. Cancer Res 2010; 70: 10202–10212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hong Y, Downey T, Eu KW, Koh PK, Cheah PY . A 'metastasis-prone' signature for early-stage mismatch-repair proficient sporadic colorectal cancer patients and its implications for possible therapeutics. Clin Exp Metastasis 2010; 27: 83–90.

    Article  CAS  PubMed  Google Scholar 

  31. Bonome T, Levine DA, Shih J, Randonovich M, Pise-Masison CA, Bogomolniy F et al. A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer. Cancer Res 2008; 68: 5478–5486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sanchez-Carbayo M, Socci ND, Lozano J, Saint F, Cordon-Cardo C . Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. J Clin Oncol 2006; 24: 778–789.

    Article  CAS  PubMed  Google Scholar 

  33. Talantov D, Mazumder A, Yu JX, Briggs T, Jiang Y, Backus J et al. Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res 2005; 11: 7234–7242.

    Article  CAS  PubMed  Google Scholar 

  34. Grutzmann R, Pilarsky C, Ammerpohl O, Luttges J, Bohme A, Sipos B et al. Gene expression profiling of microdissected pancreatic ductal carcinomas using high-density DNA microarrays. Neoplasia 2004; 6: 611–622.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hu N, Clifford RJ, Yang HH, Wang C, Goldstein AM, Ding T et al. Genome wide analysis of DNA copy number neutral loss of heterozygosity (CNNLOH) and its relation to gene expression in esophageal squamous cell carcinoma. BMC Genomics 2010; 11: 576.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Ha GH, Park JS, Breuer EK . TACC3 promotes epithelial-mesenchymal transition (EMT) through the activation of PI3K/Akt and ERK signaling pathways. Cancer Lett 2013; 332: 63–73.

    Article  CAS  PubMed  Google Scholar 

  37. Ha GH, Kim JL, Breuer EK . TACC3 Is Essential for EGF-Mediated EMT in Cervical Cancer. PLoS One, 2013; 8: e70353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yim EK, Tong SY, Ho EM, Bae JH, Um SJ, Park JS . Anticancer effects on TACC3 by treatment of paclitaxel in HPV-18 positive cervical carcinoma cells. Oncol Rep 2009; 21: 549–557.

    CAS  PubMed  Google Scholar 

  39. Still IH, Vettaikkorumakankauv AK, DiMatteo A, Liang P . Structure-function evolution of the transforming acidic coiled coil genes revealed by analysis of phylogenetically diverse organisms. BMC Evol Biol 2004; 4: 16.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hurov KE, Cotta-Ramusino C, Elledge SJ . A genetic screen identifies the Triple T complex required for DNA damage signaling and ATM and ATR stability. Genes Dev 2010; 24: 1939–1950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Antoni L, Sodha N, Collins I, Garrett MD . CHK2 kinase: cancer susceptibility and cancer therapy—two sides of the same coin? Nat Rev Cancer 2007; 7: 925–936.

    Article  CAS  PubMed  Google Scholar 

  42. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005; 434: 864–870.

    Article  CAS  PubMed  Google Scholar 

  43. Harper JW, Elledge SJ . The DNA damage response: ten years after. Mol Cell 2007; 28: 739–745.

    Article  CAS  PubMed  Google Scholar 

  44. Mistrik M, Oplustilova L, Lukas J, Bartek J . Low-dose DNA damage and replication stress responses quantified by optimized automated single-cell image analysis. Cell Cycle 2009; 8: 2592–2599.

    Article  CAS  PubMed  Google Scholar 

  45. Beck H, Nahse V, Larsen MS, Groth P, Clancy T, Lees M et al. Regulators of cyclin-dependent kinases are crucial for maintaining genome integrity in S phase. J Cell Biol 2010; 188: 629–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Asaithamby A, Chen DJ . Cellular responses to DNA double-strand breaks after low-dose gamma-irradiation. Nucleic Acids Res 2009; 37: 3912–3923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fairbairn DW, Olive PL, O'Neill KL . The comet assay: a comprehensive review. Mutat Res 1995; 339: 37–59.

    Article  CAS  PubMed  Google Scholar 

  48. Shrivastav M, De Haro LP, Nickoloff JA . Regulation of DNA double-strand break repair pathway choice. Cell Res 2008; 18: 134–147.

    Article  CAS  PubMed  Google Scholar 

  49. Obe G, Johannes C, Schulte-Frohlinde D . DNA double-strand breaks induced by sparsely ionizing radiation and endonucleases as critical lesions for cell death, chromosomal aberrations, mutations and oncogenic transformation. Mutagenesis 1992; 7: 3–12.

    Article  CAS  PubMed  Google Scholar 

  50. Li W, Li F, Huang Q, Shen J, Wolf F, He Y et al. Quantitative, noninvasive imaging of radiation-induced DNA double-strand breaks in vivo. Cancer Res 2011; 71: 4130–4137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Frankenberg D, Frankenberg-Schwager M, Blocher D, Harbich R . Evidence for DNA double-strand breaks as the critical lesions in yeast cells irradiated with sparsely or densely ionizing radiation under oxic or anoxic conditions. Radiat Res 1981; 88: 524–532.

    Article  CAS  PubMed  Google Scholar 

  52. Jeggo PA, Lobrich M . DNA double-strand breaks: their cellular and clinical impact? Oncogene 2007; 26: 7717–7719.

    Article  CAS  PubMed  Google Scholar 

  53. Shibata A, Conrad S, Birraux J, Geuting V, Barton O, Ismail A et al Factors determining DNA double-strand break repair pathway choice in G2 phase. EMBO J 2011; 30: 1079–1092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Aguilera A, Gomez-Gonzalez B . Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet 2008; 9: 204–217.

    Article  CAS  PubMed  Google Scholar 

  55. d'Adda di Fagagna F, Teo SH, Jackson SP . Functional links between telomeres and proteins of the DNA-damage response. Genes Dev 2004; 18: 1781–1799.

    Article  PubMed  Google Scholar 

  56. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM . A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr BIol 2000; 10: 886–895.

    Article  CAS  PubMed  Google Scholar 

  57. Pan MR, Peng G, Hung WC, Lin SY . Monoubiquitination of H2AX protein regulates DNA damage response signaling. J Biol Chem 2011; 286: 28599–28607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Downs JA, Nussenzweig MC, Nussenzweig A . Chromatin dynamics and the preservation of genetic information. Nature 2007; 447: 951–958.

    Article  CAS  PubMed  Google Scholar 

  59. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ . ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 2001; 276: 42462–42467.

    Article  CAS  PubMed  Google Scholar 

  60. Chanoux RA, Yin B, Urtishak KA, Asare A, Bassing CH, Brown EJ . ATR and H2AX cooperate in maintaining genome stability under replication stress. J Biol Chem 2009; 284: 5994–6003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang H, Wang M, Wang H, Bocker W, Iliakis G . Complex H2AX phosphorylation patterns by multiple kinases including ATM and DNA-PK in human cells exposed to ionizing radiation and treated with kinase inhibitors. J Cell Physiol 2005; 202: 492–502.

    Article  CAS  PubMed  Google Scholar 

  62. Lowndes NF, Toh GW . DNA repair: the importance of phosphorylating histone H2AX. Curr Biol 2005; 15: R99–R102.

    Article  CAS  PubMed  Google Scholar 

  63. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM . DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 1998; 273: 5858–5868.

    Article  CAS  PubMed  Google Scholar 

  64. Ismail IH, Andrin C, McDonald D, Hendzel MJ . BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair. J Cell Biol 2010; 191: 45–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ . MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature, 2003; 421: 961–966.

    Article  CAS  PubMed  Google Scholar 

  66. Ward IM, Minn K, Jorda KG, Chen J . Accumulation of checkpoint protein 53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX. J Biol Chem 2003; 278: 19579–19582.

    Article  CAS  PubMed  Google Scholar 

  67. Kobayashi J, Tauchi H, Chen B, Burma S, Tashiro S, Matsuura S et al. Histone H2AX participates the DNA damage-induced ATM activation through interaction with NBS1. Biochem Biophys Res Commun 2009; 380: 752–757.

    Article  CAS  PubMed  Google Scholar 

  68. Carney JP, Maser RS, Olivares H, Davis EM, Le Beau M, Yates JR 3rd et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 1998; 93: 477–486.

    Article  CAS  PubMed  Google Scholar 

  69. Goldberg M, Stucki M, Falck J, D'Amours D, Rahman D, Pappin D et al. MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 2003; 421: 952–956.

    Article  CAS  PubMed  Google Scholar 

  70. Zhong Q, Chen CF, Li S, Chen Y, Wang CC, Xiao J et al. Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response. Science 1999; 285: 747–750.

    Article  CAS  PubMed  Google Scholar 

  71. Rappold I, Iwabuchi K, Date T, Chen J . Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. J Cell Biol 2001; 153: 613–620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. van den Bosch M, Bree RT, Lowndes NF . The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 2003; 4: 844–849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bakkenist CJ, Kastan MB . DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003; 421: 499–506.

    Article  CAS  PubMed  Google Scholar 

  74. Dodson GE, Shi Y, Tibbetts RS . DNA replication defects, spontaneous DNA damage, and ATM-dependent checkpoint activation in replication protein A-deficient cells. J Biol Chem 2004; 279: 34010–34014.

    Article  CAS  PubMed  Google Scholar 

  75. McKinnon PJ . ATM and ataxia telangiectasia. EMBO Rep 2004; 5: 772–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jackson SP . Sensing and repairing DNA double-strand breaks. Carcinogenesis 2002; 23: 687–696.

    Article  CAS  PubMed  Google Scholar 

  77. Wang H, Powell SN, Iliakis G, Wang Y . ATR affecting cell radiosensitivity is dependent on homologous recombination repair but independent of nonhomologous end joining. Cancer Res 2004; 64: 7139–7143.

    Article  CAS  PubMed  Google Scholar 

  78. Deckbar D, Birraux J, Krempler A, Tchouandong L, Beucher A, Walker S et al. Chromosome breakage after G2 checkpoint release. J Cell Biol 2007; 176: 749–755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Riballo E, Kuhne M, Rief N, Doherty A, Smith GC, Recio MJ et al. A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol Cell 2004; 16: 715–724.

    Article  CAS  PubMed  Google Scholar 

  80. Beucher A, Birraux J, Tchouandong L, Barton O, Shibata A, Conrad S et al. ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. EMBO J 2009; 28: 3413–3427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kocher S, Rieckmann T, Rohaly G, Mansour WY, Dikomey E, Dornreiter I et al. Radiation-induced double-strand breaks require ATM but not Artemis for homologous recombination during S-phase. Nucleic Acids Res 2012; 40: 8336–8347.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Pierce AJ, Johnson RD, Thompson LH, Jasin M . XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev 1999; 13: 2633–2638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Peng G, Yim EK, Dai H, Jackson AP, Burgt I, Pan MR et al. BRIT1/MCPH1 links chromatin remodelling to DNA damage response. Nat Cell Biol 2009; 11: 865–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wu J, Zhang X, Zhang L, Wu CY, Rezaeian AH, Chan CH et al. Skp2 E3 ligase integrates ATM activation and homologous recombination repair by ubiquitinating NBS1. Mol Cell 2012; 46: 351–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nakanishi K, Yang YG, Pierce AJ, Taniguchi T, Digweed M, D'Andrea AD et al. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proc Natl Acad Sci USA 2005; 102: 1110–1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bartek J, Lukas J . DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 2007; 19: 238–245.

    Article  CAS  PubMed  Google Scholar 

  87. Fernet M, Megnin-Chanet F, Hall J, Favaudon V . Control of the G2/M checkpoints after exposure to low doses of ionising radiation: implications for hyper-radiosensitivity. DNA Repair (Amst) 2010; 9: 48–57.

    Article  CAS  Google Scholar 

  88. Nakada S, Katsuki Y, Imoto I, Yokoyama T, Nagasawa M, Inazawa J et al. Early G2/M checkpoint failure as a molecular mechanism underlying etoposide-induced chromosomal aberrations. J Clin Invest 2006; 116: 80–89.

    Article  CAS  PubMed  Google Scholar 

  89. Xu B, Kim S, Kastan MB . Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol Cell Biol 2001; 21: 3445–3450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lin SY, Rai R, Li K, Xu ZX, Elledge SJ . BRIT1/MCPH1 is a DNA damage responsive protein that regulates the Brca1-Chk1 pathway, implicating checkpoint dysfunction in microcephaly. Proc Natl Acad Sci USA 2005; 102: 15105–15109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rai R, Dai H, Multani AS, Li K, Chin K, Gray J et al. BRIT1 regulates early DNA damage response, chromosomal integrity, and cancer. Cancer Cell 2006; 10: 145–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang RH, Sengupta K, Li C, Kim HS, Cao L, Xiao C et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 2008; 14: 312–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Deng CX . BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res 2006; 34: 1416–1426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 2010; 123: 725–731.

    Article  CAS  PubMed  Google Scholar 

  95. Lio YC, Schild D, Brenneman MA, Redpath JL, Chen DJ . Human Rad51C deficiency destabilizes XRCC3, impairs recombination, and radiosensitizes S/G2-phase cells. J Biol Chem 2004; 279: 42313–42320.

    Article  CAS  PubMed  Google Scholar 

  96. Ma W, Halweg CJ, Menendez D, Resnick MA . Differential effects of poly(ADP-ribose) polymerase inhibition on DNA break repair in human cells are revealed with Epstein-Barr virus. Proc Natl Acad Sci USA 2012; 109: 6590–6595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ashworth A . A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol 2008; 26: 3785–3790.

    Article  CAS  PubMed  Google Scholar 

  98. Sourisseau T, Maniotis D, McCarthy A, Tang C, Lord CJ, Ashworth A et al. Aurora-A expressing tumour cells are deficient for homology-directed DNA double strand-break repair and sensitive to PARP inhibition. EMBO Mol Med 2010; 2: 130–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Partch CL, Gardner KH . Coactivators necessary for transcriptional output of the hypoxia inducible factor, HIF, are directly recruited by ARNT PAS-B. Proc Natl Acad Sci USA 2011; 108: 7739–7744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bargo S, Raafat A, McCurdy D, Amirjazil I, Shu Y, Traicoff J et al. Transforming acidic coiled-coil protein-3 (Tacc3) acts as a negative regulator of Notch signaling through binding to CDC10/Ankyrin repeats. Biochem Biophys Res Commun 2010; 400: 606–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Berkovich E, Ginsberg D . ATM is a target for positive regulation by E2F-1. Oncogene 2003; 22: 161–167.

    Article  CAS  PubMed  Google Scholar 

  102. Shanware NP, Zhan L, Hutchinson JA, Kim SH, Williams LM, Tibbetts RS . Conserved and distinct modes of CREB/ATF transcription factor regulation by PP2A/B56gamma and genotoxic stress. PLoS One 2010; 5: e12173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Dell H, Hadzopoulou-Cladaras M . CREB-binding protein is a transcriptional coactivator for hepatocyte nuclear factor-4 and enhances apolipoprotein gene expression. J Biol Chem 1999; 274: 9013–9021.

    Article  CAS  PubMed  Google Scholar 

  104. Stroup D, Chiang JY . HNF4 and COUP-TFII interact to modulate transcription of the cholesterol 7alpha-hydroxylase gene (CYP7A1). J Lipid Res 2000; 41: 1–11.

    CAS  PubMed  Google Scholar 

  105. Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Lobrich M et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell 2008; 31: 167–177.

    Article  CAS  PubMed  Google Scholar 

  106. Ziv Y, Bielopolski D, Galanty Y, Lukas C, Taya Y, Schultz DC et al. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat Cell Biol 2006; 8: 870–876.

    Article  CAS  PubMed  Google Scholar 

  107. Bignold LP, Coghlan BL, Jersmann HP . Cancer morphology, carcinogenesis and genetic instability: a background. EXS 2006; 96: 1–24.

    CAS  Google Scholar 

  108. Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 2006; 124: 315–329.

    Article  CAS  PubMed  Google Scholar 

  109. Bugler B, Schmitt E, Aressy B, Ducommun B . Unscheduled expression of CDC25B in S-phase leads to replicative stress and DNA damage. Mol Cancer 2010; 9: 29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  111. Ulisse S, Baldini E, Toller M, Delcros JG, Gueho A, Curcio F et al. Transforming acidic coiled-coil 3 and Aurora-A interact in human thyrocytes and their expression is deregulated in thyroid cancer tissues. Endocr Relat Cancer 2007; 14: 827–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Craig AL, Holcakova J, Finlan LE, Nekulova M, Hrstka R, Gueven N et al. DeltaNp63 transcriptionally regulates ATM to control p53 Serine-15 phosphorylation. Mol Cancer 2010; 9: 195.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Morton JP, Timpson P, Karim SA, Ridgway RA, Athineos D, Doyle B et al. Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc Natl Acad Sci USA 2010; 107: 246–251.

    Article  CAS  PubMed  Google Scholar 

  114. Yochum GS, Rajaraman V, Cleland R, McWeeney S . Localization of TFIIB binding regions using serial analysis of chromatin occupancy. BMC Mol Biol 2007; 8: 102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Program Development Startup from Loyola University Chicago.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E-K Breuer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, GH., Kim, JL., Petersson, A. et al. TACC3 deregulates the DNA damage response and confers sensitivity to radiation and PARP inhibition. Oncogene 34, 1667–1678 (2015). https://doi.org/10.1038/onc.2014.105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.105

This article is cited by

Search

Quick links