Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Cyr61 silencing reduces vascularization and dissemination of osteosarcoma tumors

Abstract

Osteosarcoma is the most prevalent primary pediatric cancer-related bone disease. These tumors frequently develop resistance to chemotherapy and are highly metastatic, leading to poor outcome. Thus, there is a need for new therapeutic strategies that can prevent cell dissemination. We previously showed that CYR61/CCN1 expression in osteosarcoma cells is correlated to aggressiveness both in vitro and in vivo in mouse models, as well as in patients. In this study, we found that CYR61 is a critical contributor to the vascularization of primary tumor. We demonstrate that silencing CYR61, using lentiviral transduction, leads to a significant reduction in expression level of pro-angiogenic markers such as VEGF, FGF2, PECAM and angiopoietins concomitantly to an increased expression of major anti-angiogenic markers such as thrombospondin-1 and SPARC. Matrix metalloproteinase-2 family member expression, a key pathway in osteosarcoma metastatic capacity was also downregulated when CYR61 was downregulated in osteosarcoma cells. Using a metastatic murine model, we show that CYR61 silencing in osteosarcoma cells results in reduced tumor vasculature and slows tumor growth compared with control. We also find that microvessel density correlates with lung metastasis occurrence and that CYR61 silencing in osteosarcoma cells limits the number of metastases. Taken together, our data indicate that CYR61 silencing can blunt the malignant behavior of osteosarcoma tumor cells by limiting primary tumor growth and dissemination process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Cheng YY, Huang L, Lee KM, Li K, Kumta SM . Alendronate regulates cell invasion and MMP-2 secretion in human osteosarcoma cell lines. Pediatr Blood Cancer 2004; 42: 410–415.

    Article  CAS  Google Scholar 

  2. Fromigue O, Hamidouche Z, Marie PJ . Blockade of the RhoA-JNK-c-Jun-MMP2 cascade by atorvastatin reduces osteosarcoma cell invasion. J Biol Chem 2008; 283: 30549–30556.

    Article  CAS  Google Scholar 

  3. Xin ZF, Kim YK, Jung ST . Risedronate inhibits human osteosarcoma cell invasion. J Exp Clin Cancer Res 2009; 28: 105.

    Article  Google Scholar 

  4. Foukas AF, Deshmukh NS, Grimer RJ, Mangham DC, Mangos EG, Taylor S . Stage-IIB osteosarcomas around the knee. A study of MMP-9 in surviving tumour cells. J Bone Joint Surg Br 2002; 84: 706–711.

    Article  CAS  Google Scholar 

  5. Zhou Q, Zhu Y, Deng Z, Long H, Zhang S, Chen X . VEGF and EMMPRIN expression correlates with survival of patients with osteosarcoma. Surg Oncol 2011; 20: 13–19.

    Article  CAS  Google Scholar 

  6. Folkman J . Angiogenesis. Annu Rev Med 2006; 57: 1–18.

    Article  CAS  Google Scholar 

  7. Yang J, Yang D, Sun Y, Sun B, Wang G, Trent JC et al. Genetic amplification of the vascular endothelial growth factor (VEGF) pathway genes, including VEGFA, in human osteosarcoma. Cancer 2011; 117: 4925–4938.

    Article  CAS  Google Scholar 

  8. Lammli J, Fan M, Rosenthal HG, Patni M, Rinehart E, Vergara G et al. Expression of vascular endothelial growth factor correlates with the advance of clinical osteosarcoma. Int Orthop 2012; 36: 2307–2313.

    Article  Google Scholar 

  9. Lee YH, Tokunaga T, Oshika Y, Suto R, Yanagisawa K, Tomisawa M et al. Cell-retained isoforms of vascular endothelial growth factor (VEGF) are correlated with poor prognosis in osteosarcoma. Eur J Cancer 1999; 35: 1089–1093.

    Article  CAS  Google Scholar 

  10. Kaya M, Wada T, Akatsuka T, Kawaguchi S, Nagoya S, Shindoh M et al. Vascular endothelial growth factor expression in untreated osteosarcoma is predictive of pulmonary metastasis and poor prognosis. Clin Cancer Res 2000; 6: 572–577.

    CAS  Google Scholar 

  11. Hara H, Akisue T, Fujimoto T, Imabori M, Kawamoto T, Kuroda R et al. Expression of VEGF and its receptors and angiogenesis in bone and soft tissue tumors. Anticancer Res 2006; 26: 4307–4311.

    CAS  Google Scholar 

  12. DuBois S, Demetri G . Markers of angiogenesis and clinical features in patients with sarcoma. Cancer 2007; 109: 813–819.

    Article  CAS  Google Scholar 

  13. Rastogi S, Kumar R, Sankineani SR, Marimuthu K, Rijal L, Prakash S et al. Role of vascular endothelial growth factor as a tumour marker in osteosarcoma: a prospective study. Int Orthop 2012; 36: 2315–2321.

    Article  Google Scholar 

  14. Chen D, Zhang YJ, Zhu KW, Wang WC . A systematic review of vascular endothelial growth factor expression as a biomarker of prognosis in patients with osteosarcoma. Tumour Biol 2013; 34: 1895–1899.

    Article  CAS  Google Scholar 

  15. Kreuter M, Bieker R, Bielack SS, Auras T, Buerger H, Gosheger G et al. Prognostic relevance of increased angiogenesis in osteosarcoma. Clin Cancer Res 2004; 10: 8531–8537.

    Article  Google Scholar 

  16. Lau LF . CCN1/CYR61: the very model of a modern matricellular protein. Cell Mol Life Sci 2011; 68: 3149–3163.

    Article  CAS  Google Scholar 

  17. Leu SJ, Lam SC, Lau LF . Pro-angiogenic activities of CYR61 (CCN1) mediated through integrins alphavbeta3 and alpha6beta1 in human umbilical vein endothelial cells. J Biol Chem 2002; 277: 46248–46255.

    Article  CAS  Google Scholar 

  18. Chen N, Leu SJ, Todorovic V, Lam SC, Lau LF . Identification of a novel integrin alphavbeta3 binding site in CCN1 (CYR61) critical for pro-angiogenic activities in vascular endothelial cells. J Biol Chem 2004; 279: 44166–44176.

    Article  CAS  Google Scholar 

  19. Mo FE, Muntean AG, Chen CC, Stolz DB, Watkins SC, Lau LF . CYR61 (CCN1) is essential for placental development and vascular integrity. Mol Cell Biol 2002; 22: 8709–8720.

    Article  CAS  Google Scholar 

  20. Babic AM, Kireeva ML, Kolesnikova TV, Lau LF . CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc Natl Acad Sci USA 1998; 95: 6355–6360.

    Article  CAS  Google Scholar 

  21. Menéndez JA, Mehmi I, Griggs DW, Lupu R . The angiogenic factor CYR61 in breast cancer: molecular pathology and therapeutic perspectives. Endocr Relat Cancer 2003; 10: 141–152.

    Article  Google Scholar 

  22. Jiang WG, Watkins G, Fodstad O, Douglas-Jones A, Mokbel K, Mansel RE . Differential expression of the CCN family members Cyr61, CTGF and Nov in human breast cancer. Endocr Relat Cancer 2004; 11: 781–791.

    Article  CAS  Google Scholar 

  23. Sun ZJ, Wang Y, Cai Z, Chen PP, Tong XJ, Xie D . Involvement of Cyr61 in growth, migration, and metastasis of prostate cancer cells. Br J Cancer 2008; 99: 1656–1667.

    Article  CAS  Google Scholar 

  24. Fromigue O, Hamidouche Z, Vaudin P, Lecanda F, Patino A, Barbry P et al. CYR61 downregulation reduces osteosarcoma cell invasion, migration, and metastasis. J Bone Miner Res 2011; 26: 1533–1542.

    Article  CAS  Google Scholar 

  25. Sabile AA, Arlt MJ, Muff R, Bode B, Langsam B, Bertz J et al. Cyr61 expression in osteosarcoma indicates poor prognosis and promotes intratibial growth and lung metastasis in mice. J Bone Miner Res 2012; 27: 58–67.

    Article  CAS  Google Scholar 

  26. Wang L, Zhang Q, Chen W, Shan B, Ding Y, Zhang G et al. B7-H3 is overexpressed in patients suffering osteosarcoma and associated with tumor aggressiveness and metastasis. PLoS ONE 2013; 8: e70689.

    Article  CAS  Google Scholar 

  27. Wen X, Liu H, Yu K, Liu Y . Matrix metalloproteinase 2 expression and survival of patients with osteosarcoma: a meta-analysis. Tumour Biol 2014; 35: 845–848.

    Article  CAS  Google Scholar 

  28. Sternlicht MD, Werb Z . How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001; 17: 463–516.

    Article  CAS  Google Scholar 

  29. Oda Y, Yamamoto H, Tamiya S, Matsuda S, Tanaka K, Yokoyama R et al. CXCR4 and VEGF expression in the primary site and the metastatic site of human osteosarcoma: analysis within a group of patients, all of whom developed lung metastasis. Mod Pathol 2006; 19: 738–745.

    Article  CAS  Google Scholar 

  30. Pignochino Y, Grignani G, Cavalloni G, Motta M, Tapparo M, Bruno S et al. Sorafenib blocks tumour growth, angiogenesis and metastatic potential in preclinical models of osteosarcoma through a mechanism potentially involving the inhibition of ERK1/2, MCL-1 and ezrin pathways. Mol Cancer 2009; 8: 118.

    Article  Google Scholar 

  31. Wang CT, Lin CS, Shiau CW, Chu PY, Hsiao CC, Chiang YL et al. SC-1, a sorafenib derivative, shows anti-tumor effects in osteogenic sarcoma cells. J Orthop Res 2013; 31: 335–342.

    Article  Google Scholar 

  32. Grignani G, Palmerini E, Dileo P, Asaftei SD, D'Ambrosio L, Pignochino Y et al. A phase II trial of sorafenib in relapsed and unresectable high-grade osteosarcoma after failure of standard multimodal therapy: an Italian Sarcoma Group study. Ann Oncol 2012; 23: 508–516.

    Article  CAS  Google Scholar 

  33. Wagner L, Turpin B, Nagarajan R, Weiss B, Cripe T, Geller J . Pilot study of vincristine, oral irinotecan, and temozolomide (VOIT regimen) combined with bevacizumab in pediatric patients with recurrent solid tumors or brain tumors. Pediatr Blood Cancer 2013; 60: 1447–1451.

    Article  Google Scholar 

  34. Athanasopoulos AN, Schneider D, Keiper T, Alt V, Pendurthi UR, Liegibel UM et al. Vascular endothelial growth factor (VEGF)-induced up-regulation of CCN1 in osteoblasts mediates proangiogenic activities in endothelial cells and promotes fracture healing. J Biol Chem 2007; 282: 26746–26753.

    Article  CAS  Google Scholar 

  35. Babkina IV, Osipov DA, Solovyov YN, Bulycheva IV, Machak GN, Aliev MD et al. Endostatin, placental growth factor, and fibroblast growth factors-1 and -2 in the sera of patients with primary osteosarcomas. Bull Exp Biol Med 2009; 148: 246–249.

    Article  CAS  Google Scholar 

  36. Li C, Zhan C, Chen Y, Fu Q, Zhu XD, He DW et al. Analysis report for osteosarcoma expression profile. Eur Rev Med Pharmacol Sci 2013; 17: 2804–2809.

    CAS  Google Scholar 

  37. Ren T, Qing Y, Dai N, Li M, Qian C, Yang Y et al. Apurinic/apyrimidinic endonuclease 1 induced upregulation of fibroblast growth factor 2 and its receptor 3 induces angiogenesis in human osteosarcoma cells. Cancer Sci 2014; 105: 186–194.

    Article  CAS  Google Scholar 

  38. Odagiri H, Kadomatsu T, Endo M, Masuda T, Morioka MS, Fukuhara S et al. The secreted protein ANGPTL2 promotes metastasis of osteosarcoma cells through integrin α5β1, p38 MAPK, and matrix metalloproteinases. Sci Signal 2014; 7: ra7.

    Article  Google Scholar 

  39. Mintz MB, Sowers R, Brown KM, Hilmer SC, Mazza B, Huvos AG et al. An expression signature classifies chemotherapy-resistant pediatric osteosarcoma. Cancer Res 2005; 65: 1748–1754.

    Article  CAS  Google Scholar 

  40. Maris JM, Courtright J, Houghton PJ, Morton CL, Gorlick R, Kolb EA et al. Initial testing of the VEGFR inhibitor AZD2171 by the pediatric preclinical testing program. Pediatr Blood Cancer 2008; 50: 581–587.

    Article  Google Scholar 

  41. Kireeva ML, Lam SC, Lau LF . Adhesion of human umbilical vein endothelial cells to the immediate-early gene product Cyr61 is mediated through integrin alphavbeta3. J Biol Chem 1998; 273: 3090–3096.

    Article  CAS  Google Scholar 

  42. Menendez JA, Vellon L, Mehmi I, Teng PK, Griggs DW, Lupu R . A novel CYR61-triggered 'CYR61-alphavbeta3 integrin loop' regulates breast cancer cell survival and chemosensitivity through activation of ERK1/ERK2 MAPK signaling pathway. Oncogene 2005; 24: 761–779.

    Article  CAS  Google Scholar 

  43. Byzova TV, Goldman CK, Pampori N, Thomas KA, Bett A, Shattil SJ et al. A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol Cell 2000; 6: 851–860.

    CAS  Google Scholar 

  44. Wilkinson-Berka JL, Jones D, Taylor G, Jaworski K, Kelly DJ, Ludbrook SB et al. SB-267268, a nonpeptidic antagonist of alpha(v)beta3 and alpha(v)beta5 integrins, reduces angiogenesis and VEGF expression in a mouse model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 2006; 47: 1600–1605.

    Article  Google Scholar 

  45. Tsou R, Isik FF . Integrin activation is required for VEGF and FGF receptor protein presence on human microvascular endothelial cells. Mol Cell Biochem 2001; 224: 81–89.

    Article  CAS  Google Scholar 

  46. Huang Y, Lin Z, Zhuang J, Chen Y, Lin J . Prognostic significance of alpha V integrin and VEGF in osteosarcoma after chemotherapy. Onkologie 2008; 31: 535–540.

    Article  CAS  Google Scholar 

  47. Gomes N, Legrand C, Fauvel-Lafève F . Shear stress induced release of von Willebrand factor and thrombospondin-1 in HUVEC extracellular matrix enhances breast tumour cell adhesion. Clin Exp Metastasis 2005; 22: 215–223.

    Article  CAS  Google Scholar 

  48. North S, Moenner M, Bikfalvi A . Recent developments in the regulation of the angiogenic switch by cellular stress factors in tumors. Cancer Lett 2005; 218: 1–14.

    Article  CAS  Google Scholar 

  49. Estrada R, Li N, Sarojini H, An J, Lee MJ, Wang E . Secretome from mesenchymal stem cells induces angiogenesis via Cyr61. J Cell Physiol 2009; 219: 563–571.

    Article  CAS  Google Scholar 

  50. Meyuhas R, Pikarsky E, Tavor E, Klar A, Abramovitch R, Hochman J et al. A Key role for cyclic AMP-responsive element binding protein in hypoxia-mediated activation of the angiogenesis factor CCN1 (CYR61) in tumor cells. Mol Cancer Res 2008; 6: 1397–1409.

    Article  CAS  Google Scholar 

  51. Vilalta M, Dégano IR, Bagó J, Gould D, Santos M, García-Arranz M et al. Biodistribution, long-term survival, and safety of human adipose tissue-derived mesenchymal stem cells transplanted in nude mice by high sensitivity non-invasive bioluminescence imaging. Stem Cells Dev 2008; 17: 993–1003.

    Article  Google Scholar 

  52. Román I, Vilalta M, Rodriguez J, Matthies AM, Srouji S, Livne E et al. Analysis of progenitor cell-scaffold combinations by in vivo non-invasive photonic imaging. Biomaterials 2007; 28: 2718–2728.

    Article  Google Scholar 

Download references

Acknowledgements

NH is a recipient of a PhD award from the Ministère de la Recherche (Paris, France). This work was supported in part by Inserm (France), by Fondation de l’Avenir pour la Recherche Médicale Appliquée (Paris, France), by Red Temática de Investigación Cooperativa (TERCEL, Spain) and SAF2012-33404 from MINECO (Spain). We thank the Department of Medical Biology and Pathology of Gustave Roussy Institute (Dr Adam; Villejuif, France) for their contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Fromigué.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habel, N., Vilalta, M., Bawa, O. et al. Cyr61 silencing reduces vascularization and dissemination of osteosarcoma tumors. Oncogene 34, 3207–3213 (2015). https://doi.org/10.1038/onc.2014.232

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.232

This article is cited by

Search

Quick links