Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Growth-promoting and tumourigenic activity of c-Myc is suppressed by Hhex

Abstract

c-Myc transcription factor is a key protein involved in cellular growth, proliferation and metabolism. c-Myc is one of the most frequently activated oncogenes, highlighting the need to identify intracellular molecules that interact directly with c-Myc to suppress its function. Here we show that Hhex is able to interact with the basic region/helix-loop-helix/leucine zipper of c-Myc. Knockdown of Hhex increases proliferation rate in hepatocellular carcinoma cells, whereas Hhex expression cell-autonomously reduces cell proliferation rate in multiple cell lines by increasing G1 phase length through a c-Myc-dependent mechanism. Global transcriptomic analysis shows that Hhex counter-regulates multiple c-Myc targets involved in cell proliferation and metabolism. Concomitantly, Hhex expression leads to reduced cell size, lower levels of cellular RNA, downregulation of metabolism-related genes, decreased sensitivity to methotrexate and severe reduction in the ability to form tumours in nude mouse xenografts, all indicative of decreased c-Myc activity. Our data suggest that Hhex is a novel regulator of c-Myc function that limits c-Myc activity in transformed cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Nesbit CE, Tersak JM, Prochownik EV . MYC oncogenes and human neoplastic disease. Oncogene 1999; 18: 3004–3016.

    Article  CAS  PubMed  Google Scholar 

  2. Oster SK, Ho CS, Soucie EL, Penn LZ . The myc oncogene: MarvelouslY Complex. Adv Cancer Res 2002; 84: 81–154.

    Article  CAS  PubMed  Google Scholar 

  3. Pelengaris S, Khan M, Evan GI . Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 2002; 109: 321–334.

    Article  CAS  PubMed  Google Scholar 

  4. Trumpp A, Refaeli Y, Oskarsson T, Gasser S, Murphy M, Martin GR et al. c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature 2001; 414: 768–773.

    Article  CAS  PubMed  Google Scholar 

  5. Wang H, Mannava S, Grachtchouk V, Zhuang D, Soengas MS, Gudkov AV et al. c-Myc depletion inhibits proliferation of human tumor cells at various stages of the cell cycle. Oncogene 2008; 27: 1905–1915.

    Article  CAS  PubMed  Google Scholar 

  6. Hammoudeh DI, Follis AV, Prochownik EV, Metallo SJ . Multiple independent binding sites for small-molecule inhibitors on the oncoprotein c-Myc. J Am Chem Soc 2009; 131: 7390–7401.

    Article  CAS  PubMed  Google Scholar 

  7. Lin CY, Loven J, Rahl PB, Paranal RM, Burge CB, Bradner JE et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 2012; 151: 56–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nie Z, Hu G, Wei G, Cui K, Yamane A, Resch W et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 2012; 151: 68–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brickman JM, Jones CM, Clements M, Smith JC, Beddington RS . Hex is a transcriptional repressor that contributes to anterior identity and suppresses Spemann organiser function. Development 2000; 127: 2303–2315.

    CAS  PubMed  Google Scholar 

  10. Foley AC, Mercola M . Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Genes Dev 2005; 19: 387–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guo Y, Chan R, Ramsey H, Li W, Xie X, Shelley WC et al. The homeoprotein Hex is required for hemangioblast differentiation. Blood 2003; 102: 2428–2435.

    Article  CAS  PubMed  Google Scholar 

  12. Martinez Barbera JP, Clements M, Thomas P, Rodriguez T, Meloy D, Kioussis D et al. The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development 2000; 127: 2433–2445.

    CAS  PubMed  Google Scholar 

  13. Bort R, Martinez-Barbera JP, Beddington RS, Zaret KS . Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas. Development 2004; 131: 797–806.

    Article  CAS  PubMed  Google Scholar 

  14. Bort R, Signore M, Tremblay K, Martinez Barbera JP, Zaret KS . Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development. Dev Biol 2006; 290: 44–56.

    Article  CAS  PubMed  Google Scholar 

  15. Newman CS, Chia F, Krieg PA . The XHex homeobox gene is expressed during development of the vascular endothelium: overexpression leads to an increase in vascular endothelial cell number. Mech Dev 1997; 66: 83–93.

    Article  CAS  PubMed  Google Scholar 

  16. Paz H, Lynch MR, Bogue CW, Gasson JC . The homeobox gene Hhex regulates the earliest stages of definitive hematopoiesis. Blood 2010; 116: 1254–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Noy P, Williams H, Sawasdichai A, Gaston K, Jayaraman PS . PRH/Hhex controls cell survival through coordinate transcriptional regulation of vascular endothelial growth factor signaling. Mol Cell Biol 2010; 30: 2120–2134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Topisirovic I, Culjkovic B, Cohen N, Perez JM, Skrabanek L, Borden KL . The proline-rich homeodomain protein, PRH, is a tissue-specific inhibitor of eIF4E-dependent cyclin D1 mRNA transport and growth. Embo J 2003; 22: 689–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Swingler TE, Bess KL, Yao J, Stifani S, Jayaraman PS . The proline-rich homeodomain protein recruits members of the Groucho/Transducin-like enhancer of split protein family to co-repress transcription in hematopoietic cells. J Biol Chem 2004; 279: 34938–34947.

    Article  CAS  PubMed  Google Scholar 

  20. Guiral M, Bess K, Goodwin G, Jayaraman PS . PRH represses transcription in hematopoietic cells by at least two independent mechanisms. J Biol Chem 2001; 276: 2961–2970.

    Article  CAS  PubMed  Google Scholar 

  21. Topisirovic I, Guzman ML, McConnell MJ, Licht JD, Culjkovic B, Neering SJ et al. Aberrant eukaryotic translation initiation factor 4E-dependent mRNA transport impedes hematopoietic differentiation and contributes to leukemogenesis. Mol Cell Biol 2003; 23: 8992–9002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Marfil V, Moya M, Pierreux CE, Castell JV, Lemaigre FP, Real FX et al. Interaction between Hhex and SOX13 modulates Wnt/TCF activity. J Biol Chem 2010; 285: 5726–5737.

    Article  CAS  PubMed  Google Scholar 

  23. Minami T, Murakami T, Horiuchi K, Miura M, Noguchi T, Miyazaki J et al. Interaction between hex and GATA transcription factors in vascular endothelial cells inhibits flk-1/KDR-mediated vascular endothelial growth factor signaling. J Biol Chem 2004; 279: 20626–20635.

    Article  CAS  PubMed  Google Scholar 

  24. Prouty SM, Hanson KD, Boyle AL, Brown JR, Shichiri M, Follansbee MR et al. A cell culture model system for genetic analyses of the cell cycle by targeted homologous recombination. Oncogene 1993; 8: 899–907.

    CAS  PubMed  Google Scholar 

  25. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H . Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 1984; 133: 1710–1715.

    CAS  PubMed  Google Scholar 

  26. Shiio Y, Donohoe S, Yi EC, Goodlett DR, Aebersold R, Eisenman RN . Quantitative proteomic analysis of Myc oncoprotein function. EMBO J 2002; 21: 5088–5096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eekels JJ, Pasternak AO, Schut AM, Geerts D, Jeeninga RE, Berkhout B . A competitive cell growth assay for the detection of subtle effects of gene transduction on cell proliferation. Gene Ther 2012; 19: 1058–1064.

    Article  CAS  PubMed  Google Scholar 

  28. Moreno E, Basler K . dMyc transforms cells into super-competitors. Cell 2004; 117: 117–129.

    Article  CAS  PubMed  Google Scholar 

  29. Mateyak MK, Obaya AJ, Adachi S, Sedivy JM . Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ 1997; 8: 1039–1048.

    CAS  PubMed  Google Scholar 

  30. Mateyak MK, Obaya AJ, Sedivy JM . c-Myc regulates cyclin D-Cdk4 and -Cdk6 activity but affects cell cycle progression at multiple independent points. Mol Cell Biol 1999; 19: 4672–4683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vervoorts J, Luscher-Firzlaff J, Luscher B . The ins and outs of MYC regulation by posttranslational mechanisms. J Biol Chem 2006; 281: 34725–34729.

    Article  CAS  PubMed  Google Scholar 

  32. Desjobert C, Noy P, Swingler T, Williams H, Gaston K, Jayaraman PS . The PRH/Hex repressor protein causes nuclear retention of Groucho/TLE co-repressors. Biochem J 2009; 417: 121–132.

    Article  CAS  PubMed  Google Scholar 

  33. Baena E, Gandarillas A, Vallespinos M, Zanet J, Bachs O, Redondo C et al. c-Myc regulates cell size and ploidy but is not essential for postnatal proliferation in liver. Proc Natl Acad Sci USA 2005; 102: 7286–7291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Iritani BM, Eisenman RN . c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc Natl Acad Sci USA 1999; 96: 13180–13185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zanet J, Pibre S, Jacquet C, Ramirez A, de Alboran IM, Gandarillas A . Endogenous Myc controls mammalian epidermal cell size, hyperproliferation, endoreplication and stem cell amplification. J Cell Sci 2005; 118: 1693–1704.

    Article  CAS  PubMed  Google Scholar 

  36. Harvey DM, Levine AJ . p53 alteration is a common event in the spontaneous immortalization of primary BALB/c murine embryo fibroblasts. Genes Dev 1991; 5: 2375–2385.

    Article  CAS  PubMed  Google Scholar 

  37. Harvey M, Sands AT, Weiss RS, Hegi ME, Wiseman RW, Pantazis P et al. In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene 1993; 8: 2457–2467.

    CAS  PubMed  Google Scholar 

  38. Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 1997; 91: 649–659.

    Article  CAS  PubMed  Google Scholar 

  39. Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 1998; 12: 2424–2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Morrish F, Isern N, Sadilek M, Jeffrey M, Hockenbery DM . c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry. Oncogene 2009; 28: 2485–2491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nikiforov MA, Chandriani S, O'Connell B, Petrenko O, Kotenko I, Beavis A et al. A functional screen for Myc-responsive genes reveals serine hydroxymethyltransferase, a major source of the one-carbon unit for cell metabolism. Mol Cell Biol 2002; 22: 5793–5800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bush A, Mateyak M, Dugan K, Obaya A, Adachi S, Sedivy J et al. c-myc null cells misregulate cad and gadd45 but not other proposed c-Myc targets. Genes Dev 1998; 12: 3797–3802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Frank SR, Schroeder M, Fernandez P, Taubert S, Amati B . Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev 2001; 15: 2069–2082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jimenez RH, Lee JS, Francesconi M, Castellani G, Neretti N, Sanders JA et al. Regulation of gene expression in hepatic cells by the mammalian Target of Rapamycin (mTOR). PLoS ONE 2009; 5: e9084.

    Article  Google Scholar 

  45. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J et al. The landscape of somatic copy-number alteration across human cancers. Nature 2010; 463: 899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gaubatz S, Imhof A, Dosch R, Werner O, Mitchell P, Buettner R et al. Transcriptional activation by Myc is under negative control by the transcription factor AP-2. EMBO J 1995; 14: 1508–1519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shichiri M, Hanson KD, Sedivy JM . Effects of c-myc expression on proliferation, quiescence, and the G0 to G1 transition in nontransformed cells. Cell Growth Differ 1993; 4: 93–104.

    CAS  PubMed  Google Scholar 

  48. Bazarov AV, Adachi S, Li SF, Mateyak MK, Wei S, Sedivy JM . A modest reduction in c-myc expression has minimal effects on cell growth and apoptosis but dramatically reduces susceptibility to Ras and Raf transformation. Cancer Res 2001; 61: 1178–1186.

    CAS  PubMed  Google Scholar 

  49. Mannava S, Grachtchouk V, Wheeler LJ, Im M, Zhuang D, Slavina EG et al. Direct role of nucleotide metabolism in C-MYC-dependent proliferation of melanoma cells. Cell Cycle 2008; 7: 2392–2400.

    Article  CAS  PubMed  Google Scholar 

  50. Canelles M, Delgado MD, Hyland KM, Lerga A, Richard C, Dang CV et al. Max and inhibitory c-Myc mutants induce erythroid differentiation and resistance to apoptosis in human myeloid leukemia cells. Oncogene 1997; 14: 1315–1327.

    Article  CAS  PubMed  Google Scholar 

  51. D'Elia AV, Tell G, Russo D, Arturi F, Puglisi F, Manfioletti G et al. Expression and localization of the homeodomain-containing protein HEX in human thyroid tumors. J Clin Endocrinol Metab 2002; 87: 1376–1383.

    Article  CAS  PubMed  Google Scholar 

  52. Puppin C, Puglisi F, Pellizzari L, Manfioletti G, Pestrin M, Pandolfi M et al. HEX expression and localization in normal mammary gland and breast carcinoma. BMC Cancer 2006; 6: 192.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Obinata A, Akimoto Y, Omoto Y, Hirano H . Expression of Hex homeobox gene during skin development: Increase in epidermal cell proliferation by transfecting the Hex to the dermis. Dev Growth Differ 2002; 44: 281–292.

    Article  CAS  PubMed  Google Scholar 

  54. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18 000 cancer gene expression profiles. Neoplasia 2007; 9: 166–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Serrano F, Calatayud CF, Blazquez M, Torres J, Castell JV, Bort R . Gata4 blocks somatic cell reprogramming by directly repressing Nanog. Stem Cells 2013; 31: 71–82.

    Article  CAS  PubMed  Google Scholar 

  56. Buschbeck M, Uribesalgo I, Ledl A, Gutierrez A, Minucci S, Muller S et al. PML4 induces differentiation by Myc destabilization. Oncogene 2007; 26: 3415–3422.

    Article  CAS  PubMed  Google Scholar 

  57. Seol D, Choe H, Zheng H, Jang K, Ramakrishnan PS, Lim TH et al. Selection of reference genes for normalization of quantitative real-time PCR in organ culture of the rat and rabbit intervertebral disc. BMC Res Notes 2011; 4: 162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu Z, Irizarri R, Gentleman R, Murillo F, Spencer F . A model-based background adjustment for oligonucleotide expression arrays. J Am Stat Assoc 2004; 99: 909–917.

    Article  Google Scholar 

  59. Smyth GK . Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004; 3: Article3.

    Article  Google Scholar 

  60. Edgar R, Domrachev M, Lash AE . Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002; 30: 207–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kamburov A, Stelzl U, Lehrach H, Herwig R . The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res 2012; 41: D793–D800.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sims RJ 3rd, Liss AS, Gottlieb PD . Normalization of luciferase reporter assays under conditions that alter internal controls. Biotechniques 2003; 34: 938–940.

    Article  CAS  PubMed  Google Scholar 

  63. Xu CR, Cole PA, Meyers DJ, Kormish J, Dent S, Zaret KS . Chromatin ‘prepattern’ and histone modifiers in a fate choice for liver and pancreas. Science 2011; 332: 963–966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ni M, Chen Y, Fei T, Li D, Lim E, Liu XS et al. Amplitude modulation of androgen signaling by c-MYC. Genes Dev 2013; 27: 734–748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Perna D, Faga G, Verrecchia A, Gorski MM, Barozzi I, Narang V et al. Genome-wide mapping of Myc binding and gene regulation in serum-stimulated fibroblasts. Oncogene 2011; 31: 1695–1709.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S, Burge CB et al. c-Myc regulates transcriptional pause release. Cell 2010; 141: 432–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cai H, Chen H, Yi T, Daimon CM, Boyle JP, Peers C et al. VennPlex—a novel Venn diagram program for comparing and visualizing datasets with differentially regulated datapoints. PLoS ONE 2013; 8: e53388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Di Crocce for providing c-Myc truncated plasmids and Dr Ken Zaret for providing total RNA from Hhex-deficient E9.5 mouse embryos. We also thank Dr Laia Tolosa for assistance with Olympus ScanR screening station, Juan Jose Lozano for microarray analysis, Cristina Corchero for assistance in qRT-PCR and Ana Flores and Mª Jesus Seguí (Cell Culture and Cell Sorting facility at the SCSIE from Universidad de Valencia) for assistance in flow cytometry and cell sorting. VM and FS were recipients of pre-doctoral fellowships from the Ministerio de Ciencia e Innovacion. This work was supported by the Ministerio de Ciencia e Innovacion (grant number SAF2010-15376 and SAF2011-29718).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Bort.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marfil, V., Blazquez, M., Serrano, F. et al. Growth-promoting and tumourigenic activity of c-Myc is suppressed by Hhex. Oncogene 34, 3011–3022 (2015). https://doi.org/10.1038/onc.2014.240

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.240

Search

Quick links