Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

p57Kip2 is an unrecognized DNA damage response effector molecule that functions in tumor suppression and chemoresistance

Abstract

The DNA damage response (DDR) helps to maintain genome integrity, suppress tumorigenesis and mediate the radiotherapeutic and chemotherapeutic effects on cancer. Here we report that p57Kip2, a cyclin-dependent kinase (CDK) inhibitor implicated in the development of tumor-prone Beckwith–Wiedemann syndrome, is an effector molecule of the DNA-damage response. Genotoxic stress induces p57Kip2 expression via the bone morphogenetic protein-Smad1 and Atm-p38MAPK-Atf2 pathways in p53-proficient or -deficient cells and requires the Smad1-Atf2 complex that facilitates their recruitment to the p57Kip2 promoter. Elevated p57Kip2 induces G1/S phase cell cycle arrest but inhibits cell death in response to DNA damage and acts in parallel with p53 to suppress cell transformation and tumor formation. p57Kip2 is also upregulated in stage I and II clinical rectal tumor samples, likely due to genome instability of precancerous and/or early cancer cells. Targeting p57Kip2 in primary rectal cancer cells and tumor models resulted in increased sensitivity to doxorubicin, suggesting that p57Kip2 has a role in chemoresistance, which is consistent with its pro-survival function. These findings place p57Kip2 in DDR and uncover molecular mechanisms by which p57Kip2 suppresses tumorigenesis and causes chemoresistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Lord CJ, Ashworth A . The DNA damage response and cancer therapy. Nature 2012; 481: 287–294.

    Article  CAS  PubMed  Google Scholar 

  2. Jackson SP, Bartek J . The DNA-damage response in human biology and disease. Nature 2009; 461: 1071–1078.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ciccia A, Elledge SJ . The DNA damage response: making it safe to play with knives. Mol Cell 2010; 40: 179–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Belyi VA, Ak P, Markert E, Wang H, Hu W, Puzio-Kuter A et al. The origins and evolution of the p53 family of genes. Cold Spring Harb Perspect Biol 2010; 2: a001198.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cheok CF, Verma CS, Baselga J, Lane DP . Translating p53 into the clinic. Nat Rev Clin Oncol 2011; 8: 25–37.

    Article  CAS  PubMed  Google Scholar 

  6. Muller PA, Vousden KH . p53 mutations in cancer. Nat Cell Biol 2013; 15: 2–8.

    Article  CAS  PubMed  Google Scholar 

  7. Vogelstein B, Lane D, Levine AJ . Surfing the p53 network. Nature 2000; 408: 307–310.

    Article  CAS  PubMed  Google Scholar 

  8. Chau JF, Jia D, Wang Z, Liu Z, Hu Y, Zhang X et al. A crucial role for bone morphogenetic protein-Smad1 signalling in the DNA damage response. Nat Commun 2012; 3: 836.

    Article  PubMed  Google Scholar 

  9. Lai KP, Leong WF, Chau JF, Jia D, Zeng L, Liu H et al. S6K1 is a multifaceted regulator of Mdm2 that connects nutrient status and DNA damage response. EMBO J 2010; 29: 2994–3006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reinhardt HC, Yaffe MB . Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol 2009; 21: 245–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Starostina NG, Kipreos ET . Multiple degradation pathways regulate versatile CIP/KIP CDK inhibitors. Trends Cell Biol 2012; 22: 33–41.

    Article  CAS  PubMed  Google Scholar 

  12. Besson A, Dowdy SF, Roberts JM . CDK inhibitors: cell cycle regulators and beyond. Dev Cell 2008; 14: 159–169.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang P, Liégeois NJ, Wong C, Finegold M, Hou H, Thompson JC et al. Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature 1997; 387: 151–158.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang P, Wong C, Liu D, Finegold M, Harper JW, Elledge SJ et al. p21(CIP1) and p57(KIP2) control muscle differentiation at the myogenin step. Genes Dev 1999; 13: 213–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Susaki E, Nakayama K, Yamasaki L, Nakayama KI . Common and specific roles of the related CDK inhibitors p27 and p57 revealed by a knock-in mouse model. Proc Natl Acad Sci USA 2009; 106: 5192–5197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Susaki E, Nakayama KI . Functional similarities and uniqueness of p27 and p57: insight from a knock-in mouse model. Cell Cycle 2009; 8: 2497–2501.

    Article  CAS  PubMed  Google Scholar 

  17. Pateras IS, Apostolopoulou K, Niforou K, Kotsinas A, Gorgoulis VG . p57KIP2: "Kip"ing the cell under control. Mol Cancer Res 2009; 7: 1902–1919.

    Article  CAS  PubMed  Google Scholar 

  18. Deng C, Zhang P, Harper JW, Elledge SJ, Leder P . Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 1995; 82: 675–684.

    Article  CAS  PubMed  Google Scholar 

  19. Mairet-Coello G, Tury A, Van Buskirk E, Robinson K, Genestine M, DiCicco-Bloom E . p57(KIP2) regulates radial glia and intermediate precursor cell cycle dynamics and lower layer neurogenesis in developing cerebral cortex. Development 2012; 139: 475–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ullah Z, Kohn MJ, Yagi R, Vassilev LT, DePamphilis ML . Differentiation of trophoblast stem cells into giant cells is triggered by p57/Kip2 inhibition of CDK1 activity. Genes Dev 2008; 22: 3024–3036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Matsumoto A, Takeishi S, Kanie T, Susaki E, Onoyama I, Tateishi Y et al. p57 is required for quiescence and maintenance of adult hematopoietic stem cells. Cell Stem Cell 2011; 9: 262–271.

    Article  CAS  PubMed  Google Scholar 

  22. Furutachi S, Matsumoto A, Nakayama KI, Gotoh Y . p57 controls adult neural stem cell quiescence and modulates the pace of lifelong neurogenesis. EMBO J 2011; 32: 970–981.

    Article  Google Scholar 

  23. Borriello A, Caldarelli I, Bencivenga D, Criscuolo M, Cucciolla V, Tramontano A et al. p57(Kip2) and cancer: time for a critical appraisal. Mol Cancer Res 2011; 9: 1269–1284.

    Article  CAS  PubMed  Google Scholar 

  24. Kavanagh E, Joseph B . The hallmarks of CDKN1C (p57, KIP2) in cancer. Biochim Biophys Acta 2011; 1816: 50–56.

    CAS  PubMed  Google Scholar 

  25. Zhao R, Yang HY, Shin J, Phan L, Fang L, Che TF et al. CDK inhibitor p57 (Kip2) is downregulated by Akt during HER2-mediated tumorigenicity. Cell Cycle 2013; 12: 935–943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang X, Karuturi RK, Sun F, Aau M, Yu K, Shao R et al. CDKN1C (p57) is a direct target of EZH2 and suppressed by multiple epigenetic mechanisms in breast cancer cells. PLoS One 2009; 4: e5011.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pateras IS, Apostolopoulou K, Koutsami M, Evangelou K, Tsantoulis P, Liloglou T et al. Downregulation of the KIP family members p27(KIP1) and p57(KIP2) by SKP2 and the role of methylation in p57(KIP2) inactivation in nonsmall cell lung cancer. Int J Cancer Suppl 2006; 119: 2546–2556.

    Article  CAS  Google Scholar 

  28. Caspary T, Cleary MA, Perlman EJ, Zhang P, Elledge SJ, Tilghman SM . Oppositely imprinted genes p57(Kip2) and igf2 interact in a mouse model for Beckwith-Wiedemann syndrome. Genes Dev 1999; 13: 3115–3124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A et al. p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev 1995; 9: 650–662.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang X, Jia D, Liu H, Zhu N, Zhang W, Feng J et al. Identification of 5-Iodotubercidin as a genotoxic drug with anti-cancer potential. PLoS One 2013; 8: e62527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Massague J, Seoane J, Wotton D . Smad transcription factors. Genes Dev 2005; 19: 2783–2810.

    Article  CAS  PubMed  Google Scholar 

  32. Gosselet FP, Magnaldo T, Culerrier RM, Sarasin A, Ehrhart JC . BMP2 and BMP6 control p57(Kip2) expression and cell growth arrest/terminal differentiation in normal primary human epidermal keratinocytes. Cell Signal 2007; 19: 731–739.

    Article  CAS  PubMed  Google Scholar 

  33. Urano T, Yashiroda H, Muraoka M, Tanaka K, Hosoi T, Inoue S et al. p57(Kip2) is degraded through the proteasome in osteoblasts stimulated to proliferation by transforming growth factor beta1. J Biol Chem 1999; 274: 12197–12200.

    Article  CAS  PubMed  Google Scholar 

  34. Schmierer B, Hill CS . TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol 2007; 8: 970–982.

    Article  CAS  PubMed  Google Scholar 

  35. ten Dijke P, Hill CS . New insights into TGF-beta-Smad signalling. Trends Biochem Sci 2004; 29: 265–273.

    Article  CAS  PubMed  Google Scholar 

  36. Balint E, Phillips AC, Kozlov S, Stewart CL, Vousden KH . Induction of p57(KIP2) expression by p73beta. Proc Natl Acad Sci USA 2002; 99: 3529–3534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Giovannini C, Gramantieri L, Minguzzi M, Fornari F, Chieco P, Grazi GL et al. CDKN1C/P57 is regulated by the Notch target gene Hes1 and induces senescence in human hepatocellular carcinoma. Am J Pathol 2012; 181: 413–422.

    Article  CAS  PubMed  Google Scholar 

  38. Cannell IG, Kong YW, Johnston SJ, Chen ML, Collins HM, Dobbyn HC et al. p38 MAPK/MK2-mediated induction of miR-34c following DNA damage prevents Myc-dependent DNA replication. Proc Natl Acad Sci USA 2010; 107: 5375–5380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reinhardt HC, Hasskamp P, Schmedding I, Morandell S, van Vugt MA, Wang X et al. DNA damage activates a spatially distinct late cytoplasmic cell-cycle checkpoint network controlled by MK2-mediated RNA stabilization. Mol Cell 2010; 40: 34–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang Y, Xia F, Hermance N, Mabb A, Simonson S, Morrissey S et al. A cytosolic ATM/NEMO/RIP1 complex recruits TAK1 to mediate the NF-kappaB and p38 mitogen-activated protein kinase (MAPK)/MAPK-activated protein 2 responses to DNA damage. Mol Cell Biol 2011; 31: 2774–2786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang QE, Han C, Zhao R, Wani G, Zhu Q, Gong L et al. p38 MAPK- and Akt-mediated p300 phosphorylation regulates its degradation to facilitate nucleotide excision repair. Nucleic Acids Res 2012; 41: 1722–1733.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hopker K, Hagmann H, Khurshid S, Chen S, Hasskamp P, Seeger-Nukpezah T et al. AATF/Che-1 acts as a phosphorylation-dependent molecular modulator to repress p53-driven apoptosis. EMBO J 2012; 31: 3961–3975.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Barascu A, Le Chalony C, Pennarun G, Genet D, Imam N, Lopez B et al. Oxidative stress induces an ATM-independent senescence pathway through p38 MAPK-mediated lamin B1 accumulation. EMBO J 2012; 31: 1080–1094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Raman M, Earnest S, Zhang K, Zhao Y, Cobb MH . TAO kinases mediate activation of p38 in response to DNA damage. EMBO J 2007; 26: 2005–2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gozdecka M, Breitwieser W . The roles of ATF2 (activating transcription factor 2) in tumorigenesis. Biochem Soc Trans 2012; 40: 230–234.

    Article  CAS  PubMed  Google Scholar 

  46. Bhoumik A, Takahashi S, Breitweiser W, Shiloh Y, Jones N, Ronai Z . ATM-dependent phosphorylation of ATF2 is required for the DNA damage response. Mol Cell 2005; 18: 577–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bhoumik A, Singha N, O'Connell MJ, Ronai ZA . Regulation of TIP60 by ATF2 modulates ATM activation. J Biol Chem 2008; 283: 17605–17614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li S, Ezhevsky S, Dewing A, Cato MH, Scortegagna M, Bhoumik A et al. Radiation sensitivity and tumor susceptibility in ATM phospho-mutant ATF2 mice. Genes Cancer 2010; 1: 316–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gartel AL . p21(WAF1/CIP1) and cancer: a shifting paradigm? BioFactors 2009; 35: 161–164.

    Article  CAS  PubMed  Google Scholar 

  50. Cazzalini O, Scovassi AI, Savio M, Stivala LA, Prosperi E . Multiple roles of the cell cycle inhibitor p21(CDKN1A) in the DNA damage response. Mutat Res 2010; 704: 12–20.

    Article  CAS  PubMed  Google Scholar 

  51. Bartek J, Bartkova J, Lukas J . DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 2007; 26: 7773–7779.

    Article  CAS  PubMed  Google Scholar 

  52. Gu J, Chen N . Current status of rectal cancer treatment in China. Colorectal Dis 2013; 07: 677–2012.

    Google Scholar 

  53. Velimezi G, Liontos M, Vougas K, Roumeliotis T, Bartkova J, Sideridou M et al. Functional interplay between the DNA-damage-response kinase ATM and ARF tumour suppressor protein in human cancer. Nat Cell Biol 2013; 15: 967–977.

    Article  CAS  PubMed  Google Scholar 

  54. Borriello A, Cucciolla V, Oliva A, Zappia V, Della Ragione F . p27Kip1 metabolism: a fascinating labyrinth. Cell Cycle 2007; 6: 1053–1061.

    Article  CAS  PubMed  Google Scholar 

  55. Sugihara E, Kanai M, Saito S, Nitta T, Toyoshima H, Nakayama K et al. Suppression of centrosome amplification after DNA damage depends on p27 accumulation. Cancer Res 2006; 66: 4020–4029.

    Article  CAS  PubMed  Google Scholar 

  56. Joaquin M, Gubern A, González-Nuñez D, Josué Ruiz E, Ferreiro I, de Nadal E et al. The p57 CDKi integrates stress signals into cell-cycle progression to promote cell survival upon stress. EMBO J 2012; 31: 2952–2964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kavanagh E, Vlachos P, Emourgeon V, Rodhe J, Joseph B . p57(KIP2) control of actin cytoskeleton dynamics is responsible for its mitochondrial pro-apoptotic effect. Cell Death Dis 2012; 3: e311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vlachos P, Nyman U, Hajji N, Joseph B . The cell cycle inhibitor p57(Kip2) promotes cell death via the mitochondrial apoptotic pathway. Cell Death Differ 2007; 14: 1497–1507.

    Article  CAS  PubMed  Google Scholar 

  59. Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB . p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 2007; 11: 175–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Reimold AM, Grusby MJ, Kosaras B, Fries JW, Mori R, Maniwa S et al. Chondrodysplasia and neurological abnormalities in ATF-2-deficient mice. Nature 1996; 379: 262–265.

    Article  CAS  PubMed  Google Scholar 

  61. Tremblay KD, Dunn NR, Robertson EJ . Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development 2001; 128: 3609–3621.

    CAS  PubMed  Google Scholar 

  62. Engel FB, Schebesta M, Duong MT, Lu G, Ren S, Madwed JB et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev 2005; 19: 1175–1187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xie M, Zhang D, Dyck JR, Li Y, Zhang H, Morishima M et al. A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc Natl Acad Sci USA 2006; 103: 17378–17383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Lina Gao, IH In, C Deyu, GC Hong, L Soh, J Lin and T Cheng for technical assistance and Boehringer Ingelheim, Novartis, Dr Michael D. Schneider, Dr Ye-Guang Chen, Dr Yibin Wang, Dr Nelson J Dusetti, Dr Olivier Delattre, Dr Philipp Kaldis and Dr Michael Kastan for providing constructs, reagents and mice. The work was supported by grants from the Ministry of Science and Technology of China (The National Key Scientific Program (2012CB966901 to BL) and the National Natural Science Foundation of China (81130039, 31071229 and 81121001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Li.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, H., Cong, Q., Chua, J. et al. p57Kip2 is an unrecognized DNA damage response effector molecule that functions in tumor suppression and chemoresistance. Oncogene 34, 3568–3581 (2015). https://doi.org/10.1038/onc.2014.287

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.287

This article is cited by

Search

Quick links