Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ets1 identified as a novel molecular target of RNA aptamer selected against metastatic cells for targeted delivery of nano-formulation

Abstract

Nanomedicine era is not far from its realization, but a major concern of targeted delivery still stands tall in its way. Herein we demonstrate the mechanism underlying the anticancer activity of an RNA aptamer (Apt) conjugated to gefitinib-loaded poly (lactic co-glycolic acid) nanoparticles (GNPs). Apt was selected through Cell-SELEX (systemic evolution of ligands by exponential enrichment) process against gefitinib-resistant H1975 lung cancer cells. The selected aptamer exhibited high specificity toward H1975 cells, both qualitatively as well as quantitatively. Software analysis using the MATCH tool predicted Ets1, a proto-oncoprotein, to be the target of the selected aptamer. Interestingly, the localization of identified aptamer varied in descending order of Ets1 expression, wherein maximum localization was observed in H1975 cells than in MDA-MB231, DU-145, H23, H460, A431, A549 and MCF-7 cells, and minimum in L132 cells. Furthermore, Apt-GNP bio-conjugate showed augmented anticancer activity specifically in Ets1-overexpressing cells. In addition, partial depletion of Ets1 in H1975 cells and overexpression of Ets1 in L132 cells reversed the targeting efficacy of the aptamer. Notably, a single intratumoral injection of the Apt-GNP bio-conjugate abrogated the growth of tumor in H1975 xenograft nude mice. Altogether, we present a pioneering platform, involving aptamers, which can be clinically used as a diagnostic marker for metastasis as well as an effective delivery system to escort the pharmaceutical cargo specifically to Ets1-overexpressing highly progressive tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Meert A-P, Martin B, Delmotte P, Berghmans T, Lafitte J-J, Mascaux C et al. The role of EGF-R expression on patient survival in lung cancer: a systematic review with meta-analysis. Eur Respir J 2002; 20: 975–981.

    Article  CAS  Google Scholar 

  2. Hynes NE, Lane HA . ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005; 5: 341–354.

    Article  CAS  Google Scholar 

  3. Arteaga CL, Johnson DH . Tyrosine kinase inhibitors-ZD1839 (Iressa). Curr Opin Oncol 2001; 13: 491–498.

    Article  CAS  Google Scholar 

  4. Ellington AD, Szostak JW . In vitro selection of RNA molecules that bind specific ligands. Nature 1990; 346: 818–822.

    Article  CAS  Google Scholar 

  5. Tuerk C, Gold L . Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990; 249: 505–510.

    Article  CAS  Google Scholar 

  6. Kim Y, Wu Q, Hamerlik P, Hitomi M, Sloan AE, Barnett GH et al. Aptamer identification of brain tumor-initiating cells. Cancer Res 2013; 73: 4923–4936.

    Article  CAS  Google Scholar 

  7. Shangguan D, Meng L, Cao ZC, Xiao Z, Fang X, Li Y et al. Identification of liver cancer-specific aptamers using whole live cells. Anal Chem 2008; 80: 721–728.

    Article  CAS  Google Scholar 

  8. Van Simaeys D, Löpez-Colön D, Sefah K, Sutphen R, Jimenez E, Tan W . Study of the molecular recognition of aptamers selected through ovarian cancer cell-SELEX. PLoS One 2010; 5: e13770.

    Article  Google Scholar 

  9. Lupold SE, Hicke BJ, Lin Y, Coffey DS . Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 2002; 62: 4029–4033.

    CAS  PubMed  Google Scholar 

  10. Mi J, Liu Y, Rabbani ZN, Yang Z, Urban JH, Sullenger BA et al. In vivo selection of tumor-targeting RNA motifs. Nat Chem Biol 2010; 6: 22–24.

    Article  CAS  Google Scholar 

  11. Keefe AD, Pai S, Ellington A . Aptamers as therapeutics. Nat Rev Drug Discov 2010; 9: 537–550.

    Article  CAS  Google Scholar 

  12. Kaur J, Tikoo K . p300/CBP dependent hyperacetylation of histone potentiates anticancer activity of gefitinib nanoparticles. Biochim Biophys Acta 2013; 1833: 1028–1040.

    Article  CAS  Google Scholar 

  13. Kel AE, Gáβling E, Reuter I, Cheremushkin E, Kel-Margoulis OV, Wingender E . MATCHTM: a tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res 2003; 31: 3576–3579.

    Article  CAS  Google Scholar 

  14. Sharrocks AD . The ETS-domain transcription factor family. Nat Rev Mol Cell Biol 2001; 2: 827–837.

    Article  CAS  Google Scholar 

  15. Sharrocks AD, Brown AL, Ling Y, Yates PR . The ETS-domain transcription factor family. Int J Biochem Cell Biol 1997; 29: 1371–1387.

    Article  CAS  Google Scholar 

  16. Li R, Pei H, Watson DK . Regulation of Ets function by protein-protein interactions. Oncogene 2000; 19: 55.

    CAS  Google Scholar 

  17. Dassie JP, Hernandez LI, Thomas GS, Long ME, Rockey WM, Howell CA et al. Targeted inhibition of prostate cancer metastases with an RNA aptamer to prostate-specific membrane antigen. Mol Ther 2014; 22: 1910–1922.

    Article  CAS  Google Scholar 

  18. Farokhzad OC, Jon S, Khademhosseini A, Tran T-NT, LaVan DA, Langer R . Nanoparticle-aptamer bioconjugates a new approach for targeting prostate cancer cells. Cancer Res 2004; 64: 7668–7672.

    Article  CAS  Google Scholar 

  19. Buggy Y, Maguire T, McGreal G, McDermott E, Hill A, O'Higgins N et al. Overexpression of the Ets1 transcription factor in human breast cancer. Br J Cancer 2004; 91: 1308–1315.

    Article  CAS  Google Scholar 

  20. Nakayama T, Ito M, Ohtsuru A, Naito S, Sekine I . Expression of the ets-1 proto-oncogene in human colorectal carcinoma. Mod Pathol 2001; 14: 415–422.

    Article  CAS  Google Scholar 

  21. Petros RA, DeSimone JM . Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010; 9: 615–627.

    Article  CAS  Google Scholar 

  22. Davis ME, Shin DM . Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008; 7: 771–782.

    Article  CAS  Google Scholar 

  23. Guo K-T, Ziemer G, Paul A, Wendel HP . CELL-SELEX: novel perspectives of aptamer-based therapeutics. Int J Mol Sci 2008; 9: 668–678.

    Article  CAS  Google Scholar 

  24. Li N, Nguyen HH, Byrom M, Ellington AD . Inhibition of cell proliferation by an anti-EGFR aptamer. PLoS One 2011; 6: e20299.

    Article  CAS  Google Scholar 

  25. Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 2006; 103: 6315–6320.

    Article  CAS  Google Scholar 

  26. Chu TC, Marks JW, Lavery LA, Faulkner S, Rosenblum MG, Ellington AD et al. Aptamer: toxin conjugates that specifically target prostate tumor cells. Cancer Res 2006; 66: 5989–5992.

    Article  CAS  Google Scholar 

  27. Valter MM, Hügel A, Huang HJS, Cavenee WK, Wiestler OD, Pietsch T et al. Expression of the Ets1 transcription factor in human astrocytomas is associated with Fms-like tyrosine kinase-1 (Flt-1)/vascular endothelial growth factor receptor-1 synthesis and neoangiogenesis. Cancer Res 1999; 59: 5608–5614.

    CAS  Google Scholar 

  28. Sacchi N, De Klein A, Showalter SD, Bigi G, Papas TS . High expression of ets-1 gene in human thymocytes and immature T leukemic cells. Leukemia 1988; 2: 12–18.

    CAS  PubMed  Google Scholar 

  29. Sementchenko VI, Watson DK . Ets target genes: past, present and future. Oncogene 2000; 19: 6533–6549.

    Article  CAS  Google Scholar 

  30. Xiao Z, Levy-Nissenbaum E, Alexis F, Lupták A, Teply BA, Chan JM et al. Engineering of targeted nanoparticles for cancer therapy using internalizing aptamers isolated by cell-uptake selection. ACS Nano 2012; 6: 696–704.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The intellectual property rights of the above described delivery system comprising of the aptamer-NP bio-conjugate are protected under Indian Patent Office (Indian Patent application no: 1623/DEL/2014).

Author Contributions

JK designed, performed the experiments and analyzed the data. KT designed, supervised and approved the final version of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Tikoo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, J., Tikoo, K. Ets1 identified as a novel molecular target of RNA aptamer selected against metastatic cells for targeted delivery of nano-formulation. Oncogene 34, 5216–5228 (2015). https://doi.org/10.1038/onc.2014.447

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.447

This article is cited by

Search

Quick links