Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The origin of breast tumor heterogeneity

Abstract

How breast diversity is generated is a fascinating and fundamental question with important clinical implications. It is clear that the diversity of phenotypes displayed by breast cancer cells reflects the array of cell types present in the disease-free breast epithelium, including luminal, basal and stem cells. Therefore, it is hypothesized that the molecular regulators governing normal development of the breast epithelium may double as engines of breast tumor diversity. In the past few years, a deepened understanding of the mammary epithelial hierarchy has prompted the search for the cellular precursors of breast tumors. At the same time, the use of novel experimental strategies including the new technology of massively parallel sequencing has provided insight into the origin and evolution of breast tumors. Here, we review the current understanding of the basis of the intrinsic subtypes and the sources of inter-tumor heterogeneity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA . Hallmarks of cancer: The next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  3. Perouklk CM, Sørile T, Eisen MB, Van De Rijn M, Jeffrey SS, Ress CA et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752.

    Google Scholar 

  4. Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98: 10869–10874.

    PubMed  PubMed Central  Google Scholar 

  5. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 2007; 8: R76.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Prat A, Perou CM . Deconstructing the molecular portraits of breast cancer. Mol Oncol 2011; 5: 5–23.

    CAS  PubMed  Google Scholar 

  7. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 2010; 12: R68.

    PubMed  PubMed Central  Google Scholar 

  8. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 2004; 10: 5367–5374.

    CAS  PubMed  Google Scholar 

  9. Cheang MCU, Chia SK, Voduc D, Gao D, Leung S, Snider J et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 2009; 101: 736–750.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF et al. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 2006; 7: 96.

    PubMed  PubMed Central  Google Scholar 

  11. Weigelt B, Hu Z, He X, Livasy C, Carey LA, Ewend MG et al. Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res 2005; 65: 9155–9158.

    CAS  PubMed  Google Scholar 

  12. Visvader JE, Stingl J . Mammary stem cells and the differentiation hierarchy: Current status and perspectives. Gene Dev 2014; 28: 1143–1158.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Macias H, Hinck L . Mammary gland development. Wiley Interdisciplinary Reviews. Dev Biol 2012; 1: 533–557.

    CAS  Google Scholar 

  14. Hoshino K, Gardner WU . Transplantability and life span of mammary gland during serial transplantation in mice. Nature 1967; 213: 193–194.

    CAS  PubMed  Google Scholar 

  15. Daniel CW, De Ome KB, Young JT, Blair PB, Faulkin Jr LJ . The in vivo life span of normal and preneoplastic mouse mammary glands: a serial transplantation study. Proc Natl Acad Sci USA 1968; 61: 53–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. DeOme KB, Faulklin LJ, Bern HA, Blair PB . Development of mammary tumors from hyperplastic alveolar nodules. Cancer Res 1959; 19: 515–520.

    CAS  PubMed  Google Scholar 

  17. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D et al. Purification and unique properties of mammary epithelial stem cells. Nature 2006; 439: 993–997.

    CAS  PubMed  Google Scholar 

  18. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat M et al. Generation of a functional mammary gland from a single stem cell. Nature 2006; 439: 84–88.

    CAS  PubMed  Google Scholar 

  19. Tsai YC, Lu Y, Nichols PW, Zlotnikov G, Jones PS, Smith HS . Contiguous patches of normal human mammary epithelium derived from a single stem cell: Implications for breast carcinogenesis. Cancer Res 1996; 56: 402–404.

    CAS  PubMed  Google Scholar 

  20. Stingl J, Eaves CJ, Zandieh I, Emerman JT . Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat 2001; 67: 93–109.

    CAS  PubMed  Google Scholar 

  21. Stingl J, Raouf A, Emerman JT, Eaves CJ . Epithelial progenitors in the normal human mammary gland. J Mammary Gland Biol Neoplasia 2005; 10: 49–59.

    PubMed  Google Scholar 

  22. Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci USA 2004; 101: 4966–4971.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 2009; 15: 907–913.

    CAS  PubMed  Google Scholar 

  24. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007; 1: 555–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sleeman KE, Kendrick H, Robertson D, Isacke CM, Ashworth A, Smalley MJ . Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J Cell Biol 2007; 176: 19–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Asselin-Labat M-, Vaillant F, Shackleton M, Bouras T, Lindeman GJ, Visvader JE . Delineating the epithelial hierarchy in the mouse mammary gland. Cold Spring Harbor Symp Quant Biol 2008; 73: 469–478.

    CAS  PubMed  Google Scholar 

  27. Van Amerongen R, Bowman AN, Nusse R . Developmental stage and time dictate the fate of Wnt/ß-catenin- responsive stem cells in the mammary gland. Cell Stem Cell 2012; 11: 387–400.

    CAS  PubMed  Google Scholar 

  28. Tao L, Van Bragt MPA, Laudadio E, Li Z . Lineage tracing of mammary epithelial cells using cell-type-specific cre-expressing adenoviruses. Stem Cell Rep 2014; 2: 770–779.

    CAS  Google Scholar 

  29. Rios AC, Fu NY, Lindeman GJ, Visvader JE . In situ identification of bipotent stem cells in the mammary gland. Nature 2014; 506: 322–327.

    CAS  PubMed  Google Scholar 

  30. Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature 2011; 479: 189–193.

    Article  CAS  PubMed  Google Scholar 

  31. Prater MD, Petit V, Alasdair RI, Giraddi RR, Shehata M, Menon S et al. Mammary stem cells have myoepithelial cell properties. Nat Cell Biol 2014; 16: 942–950.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Visvader JE . Cells of origin in cancer. Nature 2011; 469: 314–322.

    CAS  PubMed  Google Scholar 

  33. Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 2012; 486: 405–409.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 2012; 486: 395–399.

    CAS  PubMed  Google Scholar 

  35. Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J, McMichael JF et al. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61–70.

    CAS  Google Scholar 

  36. Smalley M, Ashworth A . Stem cells and breast cancer: a field in transit. Nat Rev Cancer 2003; 3: 832–844.

    CAS  PubMed  Google Scholar 

  37. Polyak K . Breast cancer: Origins and evolution. J Clin Invest 2007; 117: 3155–3163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci USA 2003; 100: 15853–15858.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Cleary AS, Leonard TL, Gestl SA, Gunther EJ . Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers. Nature 2014; 508: 113–117.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu BY, McDermott SP, Khwaja SS, Alexander CM . The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci USA 2004; 101: 4158–4163.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu BY, Kim YC, Leatherberry V, Cowin P, Alexander CM . Mammary gland development requires syndecan-1 to create a β-catenin/TCF-responsive mammary epithelial subpopulation. Oncogene 2003; 22: 9243–9253.

    CAS  PubMed  Google Scholar 

  42. Vaillant F, Asselin-Labat M-, Shackleton M, Forrest NC, Lindeman GJ, Visvader JE . The mammary progenitor marker CD61/β3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res 2008; 68: 7711–7717.

    CAS  PubMed  Google Scholar 

  43. Lim E, Wu D, Pal B, Bouras T, Asselin-Labat M, Vaillant F et al. Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast Cancer Res 2010; 12: R21.

    PubMed  PubMed Central  Google Scholar 

  44. Imbert A, Eelkema R, Jordan S, Feiner H, Cowin P . ΔN89β-catenin induces precocious development, differentiation, neoplasia in mammary gland. J Cell Biol 2001; 152: 555–568.

    Google Scholar 

  45. Moser AR, Mattes EM, Dove WF, Lindstrom MJ, Haag JD, Gould MN . Apc(Min), a mutation in the murine APC gene, predisposes to mammary carcinomas and focal alveolar hyperplasias. Proc Natl Acad Sci USA 1993; 90: 8977–8981.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kuraguchi M, Ohene-Baah NY, Sonkin D, Bronson RT, Kucherlapati R . Genetic mechanisms in Apc-mediated mammary tumorigenesis. PLoS Genet 2009; 5: e1000367.

    PubMed  PubMed Central  Google Scholar 

  47. Holland JD, Klaus A, Garratt AN, Birchmeier W . Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol 2013; 25: 254–264.

    CAS  PubMed  Google Scholar 

  48. Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT et al. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol 2006; 19: 264–271.

    CAS  PubMed  Google Scholar 

  49. Foulkes WD . BRCA1 functions as a breast stem cell regulator. J Med Genet 2004; 41: 1–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu S, Ginestier C, Charafe-Jauffret E, Foco H, Kleer CG, Merajver SD et al. BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci USA 2008; 105: 1680–1685.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Foulkes WD, Stefansson IM, Chappuis PO, Bégin LR, Goffin JR, Wong N et al. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst 2003; 95: 1482–1485.

    CAS  PubMed  Google Scholar 

  52. Liu X, Holstege H, Van Der Gulden H, Treur-Mulder M, Zevenhoven J, Velds A et al. Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proc Natl Acad Sci USA 2007; 104: 12111–12116.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Molyneux G, Geyer FC, Magnay F, McCarthy A, Kendrick H, Natrajan R et al. BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 2010; 7: 403–417.

    CAS  PubMed  Google Scholar 

  54. Proia TA, Keller PJ, Gupta PB, Klebba I, Jones AD, Sedic M et al. Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell 2011; 8: 149–163.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Phillips S, Prat A, Sedic M, Proia T, Wronski A, Mazumdar S et al. Cell-state transitions regulated by SLUG are critical for tissue regeneration and tumor initiation. Stem Cell Rep 2014; 2: 633–647.

    CAS  Google Scholar 

  56. Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, Reinhardt F et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 2012; 148: 1015–1028.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Meyer DS, Brinkhaus H, Müller U, Müller M, Cardiff RD, Bentires-Alj M . Luminal expression of PIK3CA mutant H1047R in the mammary gland induces heterogeneous tumors. Cancer Res 2011; 71: 4344–4351.

    CAS  PubMed  Google Scholar 

  58. Melchor L, Molyneux G, Mackay A, Magnay F, Atienza M, Kendrick H et al. Identification of cellular and genetic drivers of breast cancer heterogeneity in genetically engineered mouse tumour models. J Pathol 2014; 233: 124–137.

    CAS  PubMed  Google Scholar 

  59. Keller PJ, Arendt LM, Skibinski A, Logvinenko T, Klebba I, Dong S et al. Defining the cellular precursors to human breast cancer. Proc Natl Acad Sci USA 2012; 109: 2772–2777.

    CAS  PubMed  Google Scholar 

  60. Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Donaher JL et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Gene Dev 2001; 15: 50–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Booth BW, Smith GH . Estrogen receptor-α and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands. Breast Cancer Res 2006; 8: R49.

    PubMed  PubMed Central  Google Scholar 

  62. Shehata M, Teschendorff A, Sharp G, Novcic N, Russell IA, Avril S et al. Phenotypic and functional characterisation of the luminal cell hierarchy of the mammary gland. Breast Cancer Res 2012; 14: R134.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z . GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 2006; 127: 1041–1055.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. De Ruijter TC, Veeck J, De Hoon JPJ, Van Engeland M, Tjan-Heijnen VC . Characteristics of triple-negative breast cancer. J Cancer Res Clin Oncol 2011; 137: 183–192.

    PubMed  Google Scholar 

  65. Ellis MJ, Perou CM . The genomic landscape of breast cancer as a therapeutic roadmap. Cancer Disc 2013; 3: 27–34.

    CAS  Google Scholar 

  66. Liu JC, Voisin V, Wang S, Wang DY, Jones RA, Datti A, Uehling D et al. Combined deletion of Pten and p53 in mammary epithelium accelerates triple-negative breast cancer with dependency on eEF2K. EMBO Mol Med 2014; 6: 1542–1560.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K et al. Mutational processes molding the genomes of 21 breast cancers. Cell 2012; 149: 979–993.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Skibinski A, Breindel JL, Prat A, Galván P, Smith E, Rolfs A et al. The Hippo transducer TAZ interacts with the SWI/SNF complex to regulate breast epithelial lineage commitment. Cell Rep 2014; 6: 1059–1072.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen Q, Zhang N, Gray RS, Li H, Ewald AJ, Zahnow CA et al. A temporal requirement for Hippo signaling in mammary gland differentiation, growth, and tumorigenesis. Gene Dev 2014; 28: 432–437.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gusterson BA, Ross DT, Heath VJ, Stein T . Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer. Breast Cancer Res 2005; 7: 143–148.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Mani SA, Guo W, Liao M, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Morel A-, Lièvre M, Thomas C, Hinkal G, Ansieau S, Puisieux A . Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 2008; 3: 8.

    Google Scholar 

  73. Tarin D . The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res 2005; 65: 5996–6000.

    CAS  PubMed  Google Scholar 

  74. Chui MH . Insights into cancer metastasis from a clinicopathologic perspective: Epithelial-Mesenchymal Transition is not a necessary step. Int J Cancer 2013; 132: 1487–1495.

    CAS  PubMed  Google Scholar 

  75. Sarrió D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J . Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 2008; 68: 989–997.

    PubMed  Google Scholar 

  76. Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci USA 2011; 108: 7950–7955.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 2011; 146: 633–644.

    CAS  PubMed  Google Scholar 

  78. Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Göktuna SI, Ziegler PK et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 2013; 152: 25–38.

    CAS  PubMed  Google Scholar 

  79. Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ . Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 1992; 89: 10578–10582.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wagner K, Boulanger CA, Henry MD, Sgagias M, Hennighausen L, Smith GH . An adjunct mammary epithelial cell population in parous females: Its role in functional adaptation and tissue renewal. Development 2002; 129: 1377–1386.

    CAS  PubMed  Google Scholar 

  81. Boulanger CA, Wagner K, Smith GH . Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-β1 expression. Oncogene 2005; 24: 552–560.

    CAS  PubMed  Google Scholar 

  82. Matulka LA, Triplett AA, Wagner K . Parity-induced mammary epithelial cells are multipotent and express cell surface markers associated with stem cells. Dev Biol 2007; 303: 29–44.

    CAS  PubMed  Google Scholar 

  83. Chang TH, Kunasegaran K, Tarulli GA, De Silva D, Voorhoeve PM, Pietersen AM . New insights into lineage restriction of mammary gland epithelium using parity-identified mammary epithelial cells. Breast Cancer Res 2014; 16: 1.

    CAS  Google Scholar 

  84. Jeselsohn R, Brown NE, Arendt L, Klebba I, Hu MG, Kuperwasser C et al. Cyclin D1 kinase activity is required for the self-renewal of mammary stem and progenitor cells that are targets of MMTV-ErbB2 tumorigenesis. Cancer Cell 2010; 17: 65–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Henry MD, Triplett AA, Oh KB, Smith GH, Wagner K . Parity-induced mammary epithelial cells facilitate tumorigenesis in MMTV-neu transgenic mice. Oncogene 2004; 23: 6980–6985.

    CAS  PubMed  Google Scholar 

  86. Hollern DP, Andrechek ER . A genomic analysis of mouse models of breast cancer reveals molecular features of mouse models and relationships to human breast cancer. Breast Cancer Res 2014; 16: 3.

    Google Scholar 

  87. Pfefferle AD, Herschkowitz JI, Usary J, Harrell JC, Spike BT, Adams JR et al. Transcriptomic classification of genetically engineered mouse models of breast cancer identifies human subtype counterparts. Genome Biol 2013; 14: R125.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Kuperwasser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skibinski, A., Kuperwasser, C. The origin of breast tumor heterogeneity. Oncogene 34, 5309–5316 (2015). https://doi.org/10.1038/onc.2014.475

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.475

This article is cited by

Search

Quick links