Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The mRNA-binding protein HuR promotes hypoxia-induced chemoresistance through posttranscriptional regulation of the proto-oncogene PIM1 in pancreatic cancer cells

Abstract

Previously, it has been shown that pancreatic ductal adenocarcinoma (PDA) tumors exhibit high levels of hypoxia, characterized by low oxygen pressure (pO2) and decreased O2 intracellular perfusion. Chronic hypoxia is strongly associated with resistance to cytotoxic chemotherapy and chemoradiation in an understudied phenomenon known as hypoxia-induced chemoresistance. The hypoxia-inducible, pro-oncogenic, serine–threonine kinase PIM1 (Proviral Integration site for Moloney murine leukemia virus 1) has emerged as a key regulator of hypoxia-induced chemoresistance in PDA and other cancers. Although its role in therapeutic resistance has been described previously, the molecular mechanism behind PIM1 overexpression in PDA is unknown. Here, we demonstrate that cis-acting AU-rich elements (ARE) present within a 38-base pair region of the PIM1 mRNA 3′-untranslated region mediate a regulatory interaction with the mRNA stability factor HuR (Hu antigen R) in the context of tumor hypoxia. Predominantly expressed in the nucleus in PDA cells, HuR translocates to the cytoplasm in response to hypoxic stress and stabilizes the PIM1 mRNA transcript, resulting in PIM1 protein overexpression. A reverse-phase protein array revealed that HuR-mediated regulation of PIM1 protects cells from hypoxic stress through phosphorylation and inactivation of the apoptotic effector BAD and activation of MEK1/2. Importantly, pharmacological inhibition of HuR by MS-444 inhibits HuR homodimerization and its cytoplasmic translocation, abrogates hypoxia-induced PIM1 overexpression and markedly enhances PDA cell sensitivity to oxaliplatin and 5-fluorouracil under physiologic low oxygen conditions. Taken together, these results support the notion that HuR has prosurvival properties in PDA cells by enabling them with growth advantages in stressful tumor microenvironment niches. Accordingly, these studies provide evidence that therapeutic disruption of HuR’s regulation of PIM1 may be a key strategy in breaking an elusive chemotherapeutic resistance mechanism acquired by PDA cells that reside in hypoxic PDA microenvironments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. ACS Cancer Facts & Figures 2013. American Cancer Society: Atlanta, GA, USA, 2014. Available at http://www.cancer.org/acs/groups/content/@editorial/documents/document/acspc-044552.pdf.

  2. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM . Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014; 74: 2913–2921.

    Article  CAS  PubMed  Google Scholar 

  3. Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 2011; 364: 1817–1825.

    Article  CAS  PubMed  Google Scholar 

  4. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 2013; 369: 1691–1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008; 321: 1801–1806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vineis P, Schatzkin A, Potter JD . Models of carcinogenesis: an overview. Carcinogenesis 2010; 31: 1703–1709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anderson AR, Weaver AM, Cummings PT, Quaranta V . Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 2006; 127: 905–915.

    Article  CAS  PubMed  Google Scholar 

  8. Koong AC, Mehta VK, Le QT, Fisher GA, Terris DJ, Brown JM et al. Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 2000; 48: 919–922.

    Article  CAS  PubMed  Google Scholar 

  9. Buchler P, Reber HA, Lavey RS, Tomlinson J, Buchler MW, Friess H et al. Tumor hypoxia correlates with metastatic tumor growth of pancreatic cancer in an orthotopic murine model. J Surg Res 2004; 120: 295–303.

    Article  PubMed  Google Scholar 

  10. Chang Q, Jurisica I, Do T, Hedley DW . Hypoxia predicts aggressive growth and spontaneous metastasis formation from orthotopically grown primary xenografts of human pancreatic cancer. Cancer Res 2011; 71: 3110–3120.

    Article  CAS  PubMed  Google Scholar 

  11. Humar R, Kiefer FN, Berns H, Resink TJ, Battegay EJ . Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling. FASEB J 2002; 16: 771–780.

    Article  CAS  PubMed  Google Scholar 

  12. Chou CW, Wang CC, Wu CP, Lin YJ, Lee YC, Cheng YW et al. Tumor cycling hypoxia induces chemoresistance in glioblastoma multiforme by upregulating the expression and function of ABCB1. Neuro-oncology 2012; 14: 1227–1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Flamant L, Roegiers E, Pierre M, Hayez A, Sterpin C, De Backer O et al. TMEM45A is essential for hypoxia-induced chemoresistance in breast and liver cancer cells. BMC Cancer 2012; 12: 391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Harrison LB, Chadha M, Hill RJ, Hu K, Shasha D . Impact of tumor hypoxia and anemia on radiation therapy outcomes. Oncologist 2002; 7: 492–508.

    Article  PubMed  Google Scholar 

  15. Lara PC, Lloret M, Clavo B, Apolinario RM, Henriquez-Hernandez LA, Bordon E et al. Severe hypoxia induces chemo-resistance in clinical cervical tumors through MVP over-expression. Radiat Oncol 2009; 4: 29.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ayala GE, Dai H, Ittmann M, Li R, Powell M, Frolov A et al. Growth and survival mechanisms associated with perineural invasion in prostate cancer. Cancer Res 2004; 64: 6082–6090.

    Article  CAS  PubMed  Google Scholar 

  17. Chen J, Kobayashi M, Darmanin S, Qiao Y, Gully C, Zhao R et al. Hypoxia-mediated up-regulation of Pim-1 contributes to solid tumor formation. Am J Pathol 2009; 175: 400–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen J, Kobayashi M, Darmanin S, Qiao Y, Gully C, Zhao R et al. Pim-1 plays a pivotal role in hypoxia-induced chemoresistance. Oncogene 2009; 28: 2581–2592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peltola K, Hollmen M, Maula SM, Rainio E, Ristamaki R, Luukkaa M et al. Pim-1 kinase expression predicts radiation response in squamocellular carcinoma of head and neck and is under the control of epidermal growth factor receptor. Neoplasia 2009; 11: 629–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reiser-Erkan C, Erkan M, Pan Z, Bekasi S, Giese NA, Streit S et al. Hypoxia-inducible proto-oncogene Pim-1 is a prognostic marker in pancreatic ductal adenocarcinoma. Cancer Biol Ther 2008; 7: 1352–1359.

    Article  CAS  PubMed  Google Scholar 

  21. Magnuson NS, Wang Z, Ding G, Reeves R . Why target PIM1 for cancer diagnosis and treatment? Fut Oncol 2010; 6: 1461–1478.

    Article  CAS  Google Scholar 

  22. Fan XC, Steitz JA . HNS, a nuclear-cytoplasmic shuttling sequence in HuR. Proc Natl Acad Sci USA 1998; 95: 15293–15298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brennan CM, Steitz JA . HuR and mRNA stability. Cell Mol Life Sci 2001; 58: 266–277.

    Article  CAS  PubMed  Google Scholar 

  24. Burkhart RA, Pineda DM, Chand SN, Romeo C, Londin ER, Karoly ED et al. HuR is a post-transcriptional regulator of core metabolic enzymes in pancreatic cancer. RNA Biol 2013; 10: 1312–1323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lal S, Burkhart RA, Beeharry N, Bhattacharjee V, Londin ER, Cozzitorto JA et al. HuR posttranscriptionally regulates WEE1: implications for the DNA damage response in pancreatic cancer cells. Cancer Res 2014; 74: 1128–1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dixon DA, Tolley ND, King PH, Nabors LB, McIntyre TM, Zimmerman GA et al. Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells. J Clin Invest 2001; 108: 1657–1665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miyata Y, Watanabe S, Sagara Y, Mitsunari K, Matsuo T, Ohba K et al. High expression of HuR in cytoplasm, but not nuclei, is associated with malignant aggressiveness and prognosis in bladder cancer. PLoS One 2013; 8: e59095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nabors LB, Gillespie GY, Harkins L, King PH . HuR, a RNA stability factor, is expressed in malignant brain tumors and binds to adenine- and uridine-rich elements within the 3' untranslated regions of cytokine and angiogenic factor mRNAs. Cancer Res 2001; 61: 2154–2161.

    CAS  PubMed  Google Scholar 

  29. Young LE, Sanduja S, Bemis-Standoli K, Pena EA, Price RL, Dixon DA . The mRNA binding proteins HuR and tristetraprolin regulate cyclooxygenase 2 expression during colon carcinogenesis. Gastroenterology 2009; 136: 1669–1679.

    Article  CAS  PubMed  Google Scholar 

  30. Sullivan R, Pare GC, Frederiksen LJ, Semenza GL, Graham CH . Hypoxia-induced resistance to anticancer drugs is associated with decreased senescence and requires hypoxia-inducible factor-1 activity. Mol Cancer Ther 2008; 7: 1961–1973.

    Article  CAS  PubMed  Google Scholar 

  31. Abdelmohsen K, Gorospe M . Posttranscriptional regulation of cancer traits by HuR. Wiley Interdiscip Rev RNA 2010; 1: 214–229.

    Article  CAS  PubMed  Google Scholar 

  32. Costantino CL, Witkiewicz AK, Kuwano Y, Cozzitorto JA, Kennedy EP, Dasgupta A et al. The role of HuR in gemcitabine efficacy in pancreatic cancer: HuR Up-regulates the expression of the gemcitabine metabolizing enzyme deoxycytidine kinase. Cancer Res 2009; 69: 4567–4572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liao WL, Wang WC, Chang WC, Tseng JT . The RNA-binding protein HuR stabilizes cytosolic phospholipase A2alpha mRNA under interleukin-1beta treatment in non-small cell lung cancer A549 Cells. J Biol Chem 2011; 286: 35499–35508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mukherjee N, Corcoran DL, Nusbaum JD, Reid DW, Georgiev S, Hafner M et al. Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol Cell 2011; 43: 327–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kishore S, Jaskiewicz L, Burger L, Hausser J, Khorshid M, Zavolan M . A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat Methods 2011; 8: 559–564.

    Article  CAS  PubMed  Google Scholar 

  36. Pineda DM, Rittenhouse DW, Valley CC, Cozzitorto JA, Burkhart RA, Leiby B et al. HuR's post-transcriptional regulation of Death Receptor 5 in pancreatic cancer cells. Cancer Biol Ther 2012; 13: 946–955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dixon DA, Kaplan CD, McIntyre TM, Zimmerman GA, Prescott SM . Post-transcriptional control of cyclooxygenase-2 gene expression. The role of the 3'-untranslated region. J Biol Chem 2000; 275: 11750–11757.

    Article  CAS  PubMed  Google Scholar 

  38. Federici G, Gao X, Slawek J, Arodz T, Shitaye A, Wulfkuhle JD et al. Systems analysis of the NCI-60 cancer cell lines by alignment of protein pathway activation modules with ‘-OMIC’ data fields and therapeutic response signatures. Mol Cancer Res 2013; 11: 676–685.

    Article  CAS  PubMed  Google Scholar 

  39. Improta G, Zupa A, Fillmore H, Deng J, Aieta M, Musto P et al. Protein pathway activation mapping of brain metastasis from lung and breast cancers reveals organ type specific drug target activation. J Proteom Res 2011; 10: 3089–3097.

    Article  CAS  Google Scholar 

  40. Aho TL, Sandholm J, Peltola KJ, Mankonen HP, Lilly M, Koskinen PJ . Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site. FEBS Lett 2004; 571: 43–49.

    Article  CAS  PubMed  Google Scholar 

  41. Bermudez O, Jouandin P, Rottier J, Bourcier C, Pages G, Gimond C . Post-transcriptional regulation of the DUSP6/MKP-3 phosphatase by MEK/ERK signaling and hypoxia. J Cell Physiol 2011; 226: 276–284.

    Article  CAS  PubMed  Google Scholar 

  42. Bachmann M, Hennemann H, Xing PX, Hoffmann I, Moroy T . The oncogenic serine/threonine kinase Pim-1 phosphorylates and inhibits the activity of Cdc25C-associated kinase 1 (C-TAK1): a novel role for Pim-1 at the G2/M cell cycle checkpoint. J Biol Chem 2004; 279: 48319–48328.

    Article  CAS  PubMed  Google Scholar 

  43. Mochizuki T, Kitanaka C, Noguchi K, Muramatsu T, Asai A, Kuchino Y . Physical and functional interactions between Pim-1 kinase and Cdc25A phosphatase. Implications for the Pim-1-mediated activation of the c-Myc signaling pathway. J Biol Chem 1999; 274: 18659–18666.

    Article  CAS  PubMed  Google Scholar 

  44. Meisner NC, Hintersteiner M, Mueller K, Bauer R, Seifert JM, Naegeli HU et al. Identification and mechanistic characterization of low-molecular-weight inhibitors for HuR. Nat Chem Biol 2007; 3: 508–515.

    Article  CAS  PubMed  Google Scholar 

  45. Selvendiran K, Bratasz A, Kuppusamy ML, Tazi MF, Rivera BK, Kuppusamy P . Hypoxia induces chemoresistance in ovarian cancer cells by activation of signal transducer and activator of transcription 3. Int J Cancer 2009; 125: 2198–2204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zou J, Li P, Lu F, Liu N, Dai J, Ye J et al. Notch1 is required for hypoxia-induced proliferation, invasion and chemoresistance of T-cell acute lymphoblastic leukemia cells. J Hematol Oncol 2013; 6: 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu D, Allsop SA, Witherspoon SM, Snider JL, Yeh JJ, Fiordalisi JJ et al. The oncogenic kinase Pim-1 is modulated by K-Ras signaling and mediates transformed growth and radioresistance in human pancreatic ductal adenocarcinoma cells. Carcinogenesis 2011; 32: 488–495.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Block KM, Hanke NT, Maine EA, Baker AF . IL-6 stimulates STAT3 and Pim-1 kinase in pancreatic cancer cell lines. Pancreas 2012; 41: 773–781.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Shay KP, Wang Z, Xing PX, McKenzie IF, Magnuson NS . Pim-1 kinase stability is regulated by heat shock proteins and the ubiquitin-proteasome pathway. Mol Cancer Res 2005; 3: 170–181.

    Article  PubMed  Google Scholar 

  50. Wang J, Kim J, Roh M, Franco OE, Hayward SW, Wills ML et al. Pim1 kinase synergizes with c-MYC to induce advanced prostate carcinoma. Oncogene 2010; 29: 2477–2487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang PY, Rao JN, Zou T, Liu L, Xiao L, Yu TX et al. Post-transcriptional regulation of MEK-1 by polyamines through the RNA-binding protein HuR modulating intestinal epithelial apoptosis. Biochem J 2010; 426: 293–306.

    Article  CAS  PubMed  Google Scholar 

  52. Chen LS, Redkar S, Bearss D, Wierda WG, Gandhi V . Pim kinase inhibitor, SGI-1776, induces apoptosis in chronic lymphocytic leukemia cells. Blood 2009; 114: 4150–4157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cohen AM, Grinblat B, Bessler H, Kristt D, Kremer A, Schwartz A et al. Increased expression of the hPim-2 gene in human chronic lymphocytic leukemia and non-Hodgkin lymphoma. Leuk Lymphoma 2004; 45: 951–955.

    Article  CAS  PubMed  Google Scholar 

  54. Hsi ED, Jung SH, Lai R, Johnson JL, Cook JR, Jones D et al. Ki67 and PIM1 expression predict outcome in mantle cell lymphoma treated with high dose therapy, stem cell transplantation and rituximab: a Cancer and Leukemia Group B 59909 correlative science study. Leuk Lymphoma 2008; 49: 2081–2090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tamburini J, Green AS, Bardet V, Chapuis N, Park S, Willems L et al. Protein synthesis is resistant to rapamycin and constitutes a promising therapeutic target in acute myeloid leukemia. Blood 2009; 114: 1618–1627.

    Article  CAS  PubMed  Google Scholar 

  56. Zhu Y, Hollmen J, Raty R, Aalto Y, Nagy B, Elonen E et al. Investigatory and analytical approaches to differential gene expression profiling in mantle cell lymphoma. Br J Haematol 2002; 119: 905–915.

    Article  CAS  PubMed  Google Scholar 

  57. Martelli M, Ferreri AJ, Johnson P . Primary mediastinal large B-cell lymphoma. Crit Rev Oncol Hematol 2008; 68: 256–263.

    Article  PubMed  Google Scholar 

  58. Tu ML, Wang HQ, Sun XD, Chen LJ, Peng XC, Yuan YH et al. Pim-1 is up-regulated by shear stress and is involved in shear stress-induced proliferation of rat mesenchymal stem cells. Life Sci 2010; 88: 233–238.

    Article  PubMed  Google Scholar 

  59. Richards NG, Rittenhouse DW, Freydin B, Cozzitorto JA, Grenda D, Rui H et al. HuR status is a powerful marker for prognosis and response to gemcitabine-based chemotherapy for resected pancreatic ductal adenocarcinoma patients. Ann Surg 2010; 252: 499–505; discussion 505-496.

    PubMed  Google Scholar 

  60. Brody JR, Gonye GE . HuR's role in gemcitabine efficacy: an exception or opportunity? Wiley Interdiscip Rev RNA 2011; 2: 435–444.

    Article  CAS  PubMed  Google Scholar 

  61. Kurosu T, Ohga N, Hida Y, Maishi N, Akiyama K, Kakuguchi W et al. HuR keeps an angiogenic switch on by stabilising mRNA of VEGF and COX-2 in tumour endothelium. Br J Cancer 2011; 104: 819–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu X, Lan L, Wilson DM, Marquez RT, Tsao WC, Gao P et al. Identification and validation of novel small molecule disruptors of HuR-mRNA interaction. ACS Chem Biol 2015; 10: 1476–1484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ghosh M, Aguila HL, Michaud J, Ai Y, Wu MT, Hemmes A et al. Essential role of the RNA-binding protein HuR in progenitor cell survival in mice. J Clin Invest 2009; 119: 3530–3543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yiakouvaki A, Dimitriou M, Karakasiliotis I, Eftychi C, Theocharis S, Kontoyiannis DL . Myeloid cell expression of the RNA-binding protein HuR protects mice from pathologic inflammation and colorectal carcinogenesis. J Clin Invest 2012; 122: 48–61.

    Article  CAS  PubMed  Google Scholar 

  65. Liu L, Christodoulou-Vafeiadou E, Rao JN, Zou T, Xiao L, Chung HK et al. RNA-binding protein HuR promotes growth of small intestinal mucosa by activating the Wnt signaling pathway. Mol Biol Cell 2014; 25: 3308–3318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhu H, Berkova Z, Mathur R, Sehgal L, Khashab T, Tao RH et al. HuR suppresses Fas expression and correlates with patient outcome in liver cancer. Mol Cancer Res 2015; 13: 809–818.

    Article  CAS  PubMed  Google Scholar 

  67. Young LE, Dixon DA . Posttranscriptional regulation of cyclooxygenase 2 expression in colorectal cancer. Curr Colorectal Cancer Rep 2010; 6: 60–67.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Calaluce R, Gubin MM, Davis JW, Magee JD, Chen J, Kuwano Y et al. The RNA binding protein HuR differentially regulates unique subsets of mRNAs in estrogen receptor negative and estrogen receptor positive breast cancer. BMC Cancer 2010; 10: 126.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Blanco FF, Sanduja S, Deane NG, Blackshear PJ, Dixon DA . Transforming growth factor beta regulates P-body formation through induction of the mRNA decay factor tristetraprolin. Mol Cell Biol 2014; 34: 180–195.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tholey R, Lal S, Jimbo M, Burkhart R, Blanco FF, Cozzitorto JA et al. MUC1 promoter-driven diphtheria toxin A as a targeted therapeutic strategy against pancreatic cancer. Mol Cancer Res 2014; 13: 439–448.

    Article  PubMed  Google Scholar 

  71. Young LE, Moore AE, Sokol L, Meisner-Kober N, Dixon DA . The mRNA stability factor HuR inhibits microRNA-16 targeting of COX-2. Mol Cancer Res 2011; 10: 167–180.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the TJU’s Bioimaging core for their assistance with confocal image acquisition and analysis. We also acknowledge Zachary Schoepflin at the TJU Department of Orthopedic Surgery for his assistance with hypoxia chambers. This work was supported by NIH-NIGMS T32 GM008562 20 (to FFB), NIH-NCI R21 CA182692 01A1 (to JRB), American Cancer Society MRSG-14-019-01-CDD (to JMW), the Mary Halinski Pancreatic Cancer Research Fund (to JRB) and the Hirshberg Foundation (to JRB, JW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J R Brody.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanco, F., Jimbo, M., Wulfkuhle, J. et al. The mRNA-binding protein HuR promotes hypoxia-induced chemoresistance through posttranscriptional regulation of the proto-oncogene PIM1 in pancreatic cancer cells. Oncogene 35, 2529–2541 (2016). https://doi.org/10.1038/onc.2015.325

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.325

This article is cited by

Search

Quick links