Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RNA helicase DDX3: a novel therapeutic target in Ewing sarcoma

Abstract

RNA helicase DDX3 has oncogenic activity in breast and lung cancers and is required for translation of complex mRNA transcripts, including those encoding key cell-cycle regulatory proteins. We sought to determine the expression and function of DDX3 in sarcoma cells, and to investigate the antitumor activity of a novel small molecule DDX3 inhibitor, RK-33. Utilizing various sarcoma cell lines, xenografts and human tissue microarrays, we measured DDX3 expression at the mRNA and protein levels, and evaluated cytotoxicity of RK-33 in sarcoma cell lines. To study the role of DDX3 in Ewing sarcoma, we generated stable DDX3-knockdown Ewing sarcoma cell lines using DDX3-specific small hairpin RNA (shRNA), and assessed oncogenic activity. DDX3-knockdown and RK-33-treated Ewing sarcoma cells were compared with wild-type cells using an isobaric mass-tag quantitative proteomics approach to identify target proteins impacted by DDX3 inhibition. Overall, we found high expression of DDX3 in numerous human sarcoma subtypes compared with non-malignant mesenchymal cells, and knockdown of DDX3 by RNA interference inhibited oncogenic activity in Ewing sarcoma cells. Treatment with RK-33 was preferentially cytotoxic to sarcoma cells, including chemotherapy-resistant Ewing sarcoma stem cells, while sparing non-malignant cells. Sensitivity to RK-33 correlated with DDX3 protein expression. Growth of human Ewing sarcoma xenografts expressing high DDX3 was inhibited by RK-33 treatment in mice, without overt toxicity. DDX3 inhibition altered the Ewing sarcoma cellular proteome, especially proteins involved in DNA replication, mRNA translation and proteasome function. These data support further investigation of the role of DDX3 in sarcomas, advancement of RK-33 to Ewing sarcoma clinical trials and development of RNA helicase inhibition as a novel anti-neoplastic strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Italiano A, Mathoulin-Pelissier AS, Cesne AL, Terrier P, Bonvalot S, Collin F et al. Trends in survival for patients with metastatic soft-tissue sarcoma. Cancer 2011; 117: 1049–1054.

    Article  PubMed  Google Scholar 

  2. Abdelhaleem M . Do human RNA helicases have a role in cancer? Biochim Biophys Acta 2004; 1704: 37–46.

    CAS  PubMed  Google Scholar 

  3. Fukumura J, Noguchi E, Sekiguchi T, Nishimoto T . A temperature-sensitive mutant of the mammalian RNA helicase, DEAD-BOX X isoform, DBX, defective in the transition from G1 to S phase. J Biochem 2003; 134: 71–82.

    Article  CAS  PubMed  Google Scholar 

  4. Lai MC, Chang WC, Shieh SY, Tarn WY . DDX3 regulates cell growth through translational control of cyclin E1. Mol Cell Biol 2010; 30: 5444–5453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lai MC, Lee YH, Tarn WY . The DEAD-box RNA helicase DDX3 associates with export messenger ribonucleoproteins as well as tip-associated protein and participates in translational control. Mol Biol Cell 2008; 19: 3847–3858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Soto-Rifo R, Rubilar PS, Limousin T, Breyne S de, Décimo D, Ohlmann T . DEAD-box protein DDX3 associates with eIF4F to promote translation of selected mRNAs. EMBO J 2012; 31: 3745–3756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bol GM, Tran PT, Vesuna F, Xie M, van Diest PJ, Raman V . RK-33, a novel small molecule for lung cancer therapy via inhibition of NHEJ [5720]. Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research. Cancer Res: Chicago, IL, USA, 2012, Abstract #5720.

  8. Kondaskar A, Kondaskar S, Kumar R, Fishbein JC, Muvarak N, Lapidus RG et al. Novel, broad spectrum anti-cancer agents containing the tricyclic 5:7:5-fused diimidazodiazepine ring system. ACS Med Chem Lett 2010; 2: 252–256.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bol GM, Vesuna AF, Xie M, Zeng J, Aziz K, Gandhi N et al. Targeting DDX3 with a small molecular inhibitor for lung cancer therapy. EMBO Mol Med 2015; 7: 648–669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kirsch DG, Dinulescu DM, Miller LB, Grimm J, Santiago PM, Young NP et al. A spatially and temporally restricted mouse model of soft tissue sarcoma. Nat Med 2007; 13: 992–997.

    Article  CAS  PubMed  Google Scholar 

  11. Garbelli A, Radi M, Falchi F, Beermann S, Zanoli S, Manetti F et al. Targeting the human DEAD-box polypeptide 3 (DDX3) RNA helicase as a novel strategy to inhibit viral replication. Curr Med Chem 2011; 18: 3015–3027.

    Article  CAS  PubMed  Google Scholar 

  12. Awad O, Yustein JT, Shah P, Gul N, Katuri V, O'Neill A et al. High ALDH activity identifies chemotherapy-resistant Ewing's sarcoma stem cells that retain sensitivity to EWS-FLI1 inhibition. PLoS One 2010; 5: e13943.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Italiano A, Sung YS, Zhang L, Singer S, Maki RG, Coindre JM et al. High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in EWSR1-negative undifferentiated small blue round cell sarcomas. Genes Chromosomes Cancer 2012; 51: 207–218.

    Article  CAS  PubMed  Google Scholar 

  14. Specht K, Sung YS, Zhang L, Richter GH, Fletcher CD, Antonescu CR . Distinct transcriptional signature and immunoprofile of CIC-DUX4 fusion-positive round cell tumors compared to EWSR1-rearranged Ewing sarcomas: further evidence toward distinct pathologic entities. Genes Chromosomes Cancer 2014; 53: 622–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miao X, Yang ZL, Xiong L, Zou Q, Yuan Y, Li J et al. Nectin-2 and DDX3 are biomarkers for metastasis and poor prognosis of squamous cell/adenosquamous carcinomas and adenocarcinoma of the gallbladder. Int J Clin Exp Pharm 2013; 6: 179–190.

    CAS  Google Scholar 

  16. Bol GM, Raman V, Groep P, van der, Vermeulen JF, PAtel AH, Van der Wall E et al. Expression of the RNA helicase DDX3 and the hypoxia response in breast cancer. PLoS One 2013; 8: e63548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Geissler R, Golbik RP, Behrens SE . The DEAD-box helicase DDX3 supports the assembly of functional 80 S ribosomes. Nucleic Acids Res 2012; 40: 4998–5011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee CS, Dias AP, Jedrychowski M, Patel AH, Hsu JL, Reed R . Human DDX3 functions in translation and interacts with the translation initiation factor eIF3. Nucleic Acids Res 2008; 36: 4708–4718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shih JW, Tsai TY, Chao CH, Wu Lee YH . Candidate tumor suppressor DDX3 RNA helicase specifically represses cap-dependent translation by acting as an eIF4E inhibitory protein. Oncogene 2008; 27: 700–714.

    Article  CAS  PubMed  Google Scholar 

  20. Robinson G, Parker M, Kranenburg TA, Lu C, Chen X, Ding L et al. Novel mutations target distinct subgroups of medulloblastoma. Nature 2012; 488: 43–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chang PC, Chi CW, Chau GY, Li FY, Tsai YH, Wu JC et al. DDX3, a DEAD box RNA helicase, is deregulated in hepatitis virus-associated hepatocellular carcinoma and is involved in cell growth control. Oncogene 2006; 25: 1991–2003.

    CAS  PubMed  Google Scholar 

  22. Wu DW, Lee MC, Wang J, Chen CY, Cheng YQ, Lee H . DDX3 loss by p53 inactivation promotes tumor malignancy via the MDM2/Slug/E-cadherin pathway and poor patient outcomes in non-small-cell lung cancer. Oncogene 2014; 33: 1515–1516.

    Article  CAS  PubMed  Google Scholar 

  23. Sun M, Song L, Zhou T, Gillespie GY, Jope RS . The role of DDX3 in regulating Snail. Biochim Biophys Acta 2011; 1813: 438–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun M, Song L, Li Y, Zhou T, Jope RS . Identification of an antiapoptotic protein complex at death receptors. Cell Death Differ 2008; 15: 1887–1900.

    Article  CAS  PubMed  Google Scholar 

  25. Sun M, Zhou T, Jonasch E, Jope RS . DDX3 regulates DNA damage-induced apoptosis and p53 stabilization. Biochim Biophys Acta 2013; 1833: 1489–1497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Botlagunta M, Vesuna F, Mironchik Y, Raman A, Lisok A Jr, Winnard P et al. Oncogenic role of DDX3 in breast cancer biogenesis. Oncogene 2008; 27: 3912–3922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nygren P, Larsson R . Differential in vitro sensitivity of human tumor and normal cells to chemotherapeutic agents and resistance modulators. Int J Cancer 1991; 48: 598–604.

    Article  CAS  PubMed  Google Scholar 

  28. Velikodvorskaya T, Fatima N, Fountain RQ, DeSoto JA . The comparative efficacy of the PARP inhibitors AG14361, ABT888 and AZD2281 in the treatment of triple negative and BRCA1 breast cancer. Cancer Res 2010; 70: 663.

    Article  Google Scholar 

  29. Toretsky JA, Erkizan V, Levenson A, Abaan OD, Parvin JD, Cripe TP et al. Oncoprotein EWS-FLI1 activity is enhanced by RNA helicase A. Cancer Res 2006; 1: 5574–5581.

    Article  Google Scholar 

  30. Erkizan HV, Kong Y, Merchant M, Schlottmann S, Barber-Rotenberg JS, Yuan L et al. A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing's sarcoma. Nat Med 2009; 15: 750–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sison EA, Rau RE, McIntyre E, Li L, Small S, Brown P . MLL-rearranged acute lymphoblastic leukaemia stem cell interactions with bone marrow stroma promote survival and therapeutic resistance that can be overcome with CXCR4 antagonism. Br J Haematol 2013; 160: 785–797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hazelton BJ, Houghton JA, Parham DM, Douglass EC, Torrance PM, Holt H et al. Characterization of cell lines derived from xenografts of childhood rhabdomyosarcoma. Cancer Res 1987; 47: 4501–4507.

    CAS  PubMed  Google Scholar 

  33. Gonzalez-Nieto D, Li L, Kohler A, Ghiaur G, Ishikawa E, Sengupta A et al. Connexin-43 in the osteogenic BM niche regulates its cellular composition and the bidirectional traffic of hematopoietic stem cells and progenitors. Blood 2012; 119: 5144–5154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Herbrich SM, Cole RN Jr, West KP, Schulze K, Yager DJ, Groopman JD et al. Statistical inference from multiple iTRAQ experiments without using common reference standards. J Proteome Res 2013; 12: 594–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pierce A, Unwin RD, Evans CA, Griffiths S, Carney L, Zhang L et al. Eight-channel iTRAQ enables comparison of the activity of six leukemogenic tyrosine kinases. Mol Cell Proteomics 2008; 7: 853–863.

    Article  CAS  PubMed  Google Scholar 

  36. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 2004; 3: 1154–1169.

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Yang F, Gritsenko MA, Wang Y, Clauss T, Liu T et al. Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics 2011; 11: 2019–2026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J et al. STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 2009; 37: D412–D416.

    Article  CAS  PubMed  Google Scholar 

  39. Smyth GK . Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004; 3: 1.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Jeffrey Toretsky (Georgetown University), Jonathan Powell (JHU), Lee Helman (NIH), Chand Khanna (Pediatric Oncology Branch NCI) and Nita Ahuja (JHU) for providing cell lines and xenografts. They also credit Richard Jones, MD, Milada Vala and Gabriel Ghaiur, MD, PhD (JHU) for assistance with hematopoietic stem cells experiments; Hao Zhang, PhD (JHU) for assistance with flow cytometry; and Enrico Capobianco at the Center for Computational Analysis at the University of Miami for assistance with STRING networking. This work was supported by grants from the NIH (R01 CA138212 (DL),T32 CA009071-31 (BW), P30 CA006973 and HHSN268201000032C) (RC); a 2013 Reach Award from Alex’s Lemonade Stand Foundation, LLC (DL); a Conquer Cancer Foundation/ASCO 2012 Young Investigator Award sponsored by WWW.W Foundation, Inc. (QuadW) (BW); additional funding provided from the Giant Food Children’s Cancer Research Fund (DL), the Heather Brooke Foundation (DL), German Research Foundation (KA 3884/1-1) (KK), Flight Attendant Medical Research Institute (FAMRI) (VR), and a 2012 Alpha Omega Alpha Postgraduate Award (BW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B A Wilky.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilky, B., Kim, C., McCarty, G. et al. RNA helicase DDX3: a novel therapeutic target in Ewing sarcoma. Oncogene 35, 2574–2583 (2016). https://doi.org/10.1038/onc.2015.336

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.336

This article is cited by

Search

Quick links