Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

KrasG12D induces EGFR-MYC cross signaling in murine primary pancreatic ductal epithelial cells

Abstract

Epidermal growth factor receptor (EGFR) signaling has a critical role in oncogenic Kras-driven pancreatic carcinogenesis. However, the downstream targets of this signaling network are largely unknown. We developed a novel model system utilizing murine primary pancreatic ductal epithelial cells (PDECs), genetically engineered to allow time-specific expression of oncogenic KrasG12D from the endogenous promoter. We show that primary PDECs are susceptible to KrasG12D-driven transformation and form pancreatic ductal adenocarcinomas in vivo after Cdkn2a inactivation. In addition, we demonstrate that activation of KrasG12D induces an EGFR signaling loop to drive proliferation. Interestingly, pharmacological inhibition of EGFR fails to decrease KrasG12D-activated ERK or PI3K signaling. Instead our data provide novel evidence that EGFR signaling is needed to activate the oncogenic and pro-proliferative transcription factor c-MYC. EGFR and c-MYC have been shown to be essential for pancreatic carcinogenesis. Importantly, our data link both pathways and thereby explain the crucial role of EGFR for KrasG12D-driven carcinogenesis in the pancreas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ardito CM, Gruner BM, Takeuchi KK, Lubeseder-Martellato C, Teichmann N, Mazur PK et al. EGF receptor is required for KRAS-induced pancreatic tumorigenesis. Cancer Cell 2012; 22: 304–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Navas C, Hernandez-Porras I, Schuhmacher AJ, Sibilia M, Guerra C, Barbacid M . EGF receptor signaling is essential for k-ras oncogene-driven pancreatic ductal adenocarcinoma. Cancer Cell 2012; 22: 318–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lemmon MA, Schlessinger J, Ferguson KM . The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harb Perspect Biol 2014; 6: a020768.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Eser S, Schnieke A, Schneider G, Saur D . Oncogenic KRAS signalling in pancreatic cancer. Br J Cancer 2014; 111: 817–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Puri S, Folias AE, Hebrok M . Plasticity and dedifferentiation within the pancreas: development, homeostasis, and disease. Cell Stem Cell 2015; 16: 18–31.

    Article  CAS  PubMed  Google Scholar 

  6. Reichert M, Rustgi AK . Pancreatic ductal cells in development, regeneration, and neoplasia. J Clin Invest 2011; 121: 4572–4578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kopp JL, von Figura G, Mayes E, Liu FF, Dubois CL, Morris JP et al. Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma. Cancer Cell 2012; 22: 737–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller G, Bar-Sagi D . Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 2012; 21: 836–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee KE, Bar-Sagi D . Oncogenic KRas suppresses inflammation-associated senescence of pancreatic ductal cells. Cancer Cell 2010; 18: 448–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morton JP, Mongeau ME, Klimstra DS, Morris JP, Lee YC, Kawaguchi Y et al. Sonic hedgehog acts at multiple stages during pancreatic tumorigenesis. Proc Natl Acad Sci USA 2007; 104: 5103–5108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Appleman VA, Ahronian LG, Cai J, Klimstra DS, Lewis BC . KRAS(G12D)- and BRAF(V600E)-induced transformation of murine pancreatic epithelial cells requires MEK/ERK-stimulated IGF1R signaling. Mol Cancer Res 2012; 10: 1228–1239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang W, Nandakumar N, Shi Y, Manzano M, Smith A, Graham G et al. Downstream of mutant KRAS, the transcription regulator YAP is essential for neoplastic progression to pancreatic ductal adenocarcinoma. Sci Signal 2014; 7: ra42.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Boj SF, Hwang CI, Baker LA, Chio II, Engle DD, Corbo V et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 2015; 160: 324–338.

    Article  CAS  PubMed  Google Scholar 

  14. Conradt L, Godl K, Schaab C, Tebbe A, Eser S, Diersch S et al. Disclosure of erlotinib as a multikinase inhibitor in pancreatic ductal adenocarcinoma. Neoplasia 2011; 13: 1026–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sibilia M, Fleischmann A, Behrens A, Stingl L, Carroll J, Watt FM et al. The EGF receptor provides an essential survival signal for SOS-dependent skin tumor development. Cell 2000; 102: 211–220.

    Article  CAS  PubMed  Google Scholar 

  16. Perera RM, Bardeesy N . Ready, set, go: the EGF receptor at the pancreatic cancer starting line. Cancer Cell 2012; 22: 281–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM et al. Modelling Myc inhibition as a cancer therapy. Nature 2008; 455: 679–683.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Soucek L, Whitfield JR, Sodir NM, Masso-Valles D, Serrano E, Karnezis AN et al. Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice. Genes Dev 2013; 27: 504–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Saborowski M, Saborowski A, Morris JP, Bosbach B, Dow LE, Pelletier J et al. A modular and flexible ESC-based mouse model of pancreatic cancer. Genes Dev 2014; 28: 85–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Walz S, Lorenzin F, Morton J, Wiese KE, von Eyss B, Herold S et al. Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature 2014; 511: 483–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hessmann E, Schneider G, Ellenrieder V, Siveke JT . MYC in pancreatic cancer: novel mechanistic insights and their translation into therapeutic strategies. Oncogene 2015; e-pub ahead of print 29 June 2015; doi:10.1038/onc.2015.216.

    Article  PubMed  Google Scholar 

  22. Bonal C, Thorel F, Ait-Lounis A, Reith W, Trumpp A, Herrera PL . Pancreatic inactivation of c-Myc decreases acinar mass and transdifferentiates acinar cells into adipocytes in mice. Gastroenterology 2009; 136: 309–319 e309.

    Article  CAS  PubMed  Google Scholar 

  23. Nakhai H, Siveke JT, Mendoza-Torres L, Schmid RM . Conditional inactivation of Myc impairs development of the exocrine pancreas. Development 2008; 135: 3191–3196.

    Article  CAS  PubMed  Google Scholar 

  24. Schild C, Wirth M, Reichert M, Schmid RM, Saur D, Schneider G . PI3K signaling maintains c-myc expression to regulate transcription of E2F1 in pancreatic cancer cells. Mol Carcinog 2009; 48: 1149–1158.

    Article  CAS  PubMed  Google Scholar 

  25. Schönhuber N, Seidler B, Schuck K, Veltkamp C, Schachtler C, Zukowska M et al. A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nat Med 2014; 20: 1340–1347.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hann SR . Role of post-translational modifications in regulating c-Myc proteolysis, transcriptional activity and biological function. Semin Cancer Biol 2006; 16: 288–302.

    Article  CAS  PubMed  Google Scholar 

  27. Vervoorts J, Luscher-Firzlaff J, Luscher B . The ins and outs of MYC regulation by posttranslational mechanisms. J Biol Chem 2006; 281: 34725–34729.

    Article  CAS  PubMed  Google Scholar 

  28. Pinho AV, Rooman I, Reichert M, De Medts N, Bouwens L, Rustgi AK et al. Adult pancreatic acinar cells dedifferentiate to an embryonic progenitor phenotype with concomitant activation of a senescence programme that is present in chronic pancreatitis. Gut 2011; 60: 958–966.

    Article  CAS  PubMed  Google Scholar 

  29. Pinho AV, Rooman I, Real FX . p53-dependent regulation of growth, epithelial-mesenchymal transition and stemness in normal pancreatic epithelial cells. Cell Cycle 2011; 10: 1312–1321.

    Article  CAS  PubMed  Google Scholar 

  30. Solar M, Cardalda C, Houbracken I, Martin M, Maestro MA, De Medts N et al. Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev Cell 2009; 17: 849–860.

    Article  CAS  PubMed  Google Scholar 

  31. Jörs S, Jeliazkova P, Ringelhan M, Thalhammer J, Durl S, Ferrer J et al. Lineage fate of ductular reactions in liver injury and carcinogenesis. J Clin Invest 2015; 125: 2445–2457.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yin X, Giap C, Lazo JS, Prochownik EV . Low molecular weight inhibitors of Myc-Max interaction and function. Oncogene 2003; 22: 6151–6159.

    Article  CAS  PubMed  Google Scholar 

  33. Schreiber FS, Deramaudt TB, Brunner TB, Boretti MI, Gooch KJ, Stoffers DA et al. Successful growth and characterization of mouse pancreatic ductal cells: functional properties of the Ki-RAS(G12V) oncogene. Gastroenterology 2004; 127: 250–260.

    Article  CAS  PubMed  Google Scholar 

  34. von Burstin J, Diersch S, Schneider G, Reichert M, Rustgi AK, Schmid RM . Detection of tumor suppressor genes in cancer development by a novel shRNA-based method. Mol Cancer Res 2015; 13: 863–869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sancho R, Gruber R, Gu G, Behrens A . Loss of Fbw7 reprograms adult pancreatic ductal cells into alpha, delta, and beta cells. Cell Stem Cell 2014; 15: 139–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ischenko I, Zhi J, Moll UM, Nemajerova A, Petrenko O . Direct reprogramming by oncogenic Ras and Myc. Proc Natl Acad Sci USA 2013; 110: 3937–3942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ischenko I, Petrenko O, Hayman MJ . Analysis of the tumor-initiating and metastatic capacity of PDX1-positive cells from the adult pancreas. Proc Natl Acad Sci USA 2014; 111: 3466–3471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reichert M, Takano S, von Burstin J, Kim SB, Lee JS, Ihida-Stansbury K et al. The Prrx1 homeodomain transcription factor plays a central role in pancreatic regeneration and carcinogenesis. Genes Dev 2013; 27: 288–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Land H, Parada LF, Weinberg RA . Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 1983; 304: 596–602.

    Article  CAS  PubMed  Google Scholar 

  40. Wang C, Lisanti MP, Liao DJ . Reviewing once more the c-myc and Ras collaboration: converging at the cyclin D1-CDK4 complex and challenging basic concepts of cancer biology. Cell Cycle 2011; 10: 57–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Skoudy A, Hernandez-Munoz I, Navarro P . Pancreatic ductal adenocarcinoma and transcription factors: role of c-Myc. J Gastrointest Cancer 2011; 42: 76–84.

    Article  CAS  PubMed  Google Scholar 

  42. Mazur PK, Herner A, Mello SS, Wirth M, Hausmann S, Sanchez-Rivera FJ et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat Med 2015; 21: 1163–1171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou Q, Law AC, Rajagopal J, Anderson WJ, Gray PA, Melton DA . A multipotent progenitor domain guides pancreatic organogenesis. Dev Cell 2007; 13: 103–114.

    Article  CAS  PubMed  Google Scholar 

  44. Sandgren EP, Quaife CJ, Paulovich AG, Palmiter RD, Brinster RL . Pancreatic tumor pathogenesis reflects the causative genetic lesion. Proc Natl Acad Sci USA 1991; 88: 93–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Grippo PJ, Sandgren EP . Acinar-to-ductal metaplasia accompanies c-myc-induced exocrine pancreatic cancer progression in transgenic rodents. Int J Cancer 2012; 131: 1243–1248.

    Article  CAS  PubMed  Google Scholar 

  46. Lin WC, Rajbhandari N, Liu C, Sakamoto K, Zhang Q, Triplett AA et al. Dormant cancer cells contribute to residual disease in a model of reversible pancreatic cancer. Cancer Res 2013; 73: 1821–1830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sandgren EP, Luetteke NC, Qiu TH, Palmiter RD, Brinster RL, Lee DC . Transforming growth factor alpha dramatically enhances oncogene-induced carcinogenesis in transgenic mouse pancreas and liver. Mol Cell Biol 1993; 13: 320–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L et al. Restoration of p53 function leads to tumour regression in vivo. Nature 2007; 445: 661–665.

    Article  CAS  PubMed  Google Scholar 

  49. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003; 4: 437–450.

    Article  CAS  PubMed  Google Scholar 

  50. Wirth M, Stojanovic N, Christian J, Paul MC, Stauber RH, Schmid RM et al. MYC and EGR1 synergize to trigger tumor cell death by controlling NOXA and BIM transcription upon treatment with the proteasome inhibitor bortezomib. Nucleic Acids Res 2014; 42: 10433–10447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L . A global double-fluorescent Cre reporter mouse. Genesis 2007; 45: 593–605.

    Article  CAS  PubMed  Google Scholar 

  52. de Alboran IM, O'Hagan RC, Gartner F, Malynn B, Davidson L, Rickert R et al. Analysis of C-MYC function in normal cells via conditional gene-targeted mutation. Immunity 2001; 14: 45–55.

    Article  CAS  PubMed  Google Scholar 

  53. Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 2010; 13: 133–140.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs S. Hingorani, I. Verma, D. Tuveson, H. Zeng, F. Costantini, T. Jacks, R. DePhino, J. Ferrer, I. de Alboran and F. Alt for generating or providing mouse lines/plasmids. This work was supported by the Wilhelm-Sander Foundation (2012.084.1 to GS), Deutsche Forschungsgemeinschaft (DFG) (SCHN 959/1-2, SCHN 959/2-1 to GS, GE2289/1 to FG, SI 1549/2-1 to JTS and SFB824 to GS and DS), Deutsche Krebshilfe (110908 to GS, 111273 (Max-Eder Program) to MR and 109992 to JTS) and NIH (NIH P30 DK050306 Center for Molecular Studies in Digestive and Liver Diseases (Molecular Pathology and Imaging, Molecular Biology/Gene Expression, Cell Culture, and Transgenic and Chimeric Mouse Cores) to MR and AKR and the NIH R01 DK060694 to MR and AKR).

Author contributions

Concept and design of the research: SD, MW, CS, SJ, FG, MR, RMS, DS, AKR and GS; realization of research: SD, MW, CS, SJ, FG and MR; analysis and interpretation of data: all authors; support with essential reagents/analytical tools: JTS, RR, DS, AKR; JTS, FG, DS, MR, AKR and GS obtained funding; SD, MW, MR and GS wrote the paper. All authors discussed the results, commented on the manuscript, revised it critically for important intellectual content and approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Schneider.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diersch, S., Wirth, M., Schneeweis, C. et al. KrasG12D induces EGFR-MYC cross signaling in murine primary pancreatic ductal epithelial cells. Oncogene 35, 3880–3886 (2016). https://doi.org/10.1038/onc.2015.437

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.437

This article is cited by

Search

Quick links