Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pot1 OB-fold mutations unleash telomere instability to initiate tumorigenesis

Abstract

Chromosomal aberrations are a hallmark of human cancers, with complex cytogenetic rearrangements leading to genetic changes permissive for cancer initiation and progression. Protection of Telomere 1 (POT1) is an essential component of the shelterin complex and functions to maintain chromosome stability by repressing the activation of aberrant DNA damage and repair responses at telomeres. Sporadic and familial mutations in the oligosaccharide-oligonucleotide (OB) folds of POT1 have been identified in many human cancers, but the mechanism underlying how hPOT1 mutations initiate tumorigenesis has remained unclear. Here we show that the human POT1’s OB-folds are essential for the protection of newly replicated telomeres. Oncogenic mutations in hPOT1 OB-fold fail to bind to single-stranded telomeric DNA, eliciting a DNA damage response at telomeres that promote inappropriate chromosome fusions via the mutagenic alternative non-homologous end joining (A-NHEJ) pathway. hPOT1 mutations also result in telomere elongation and the formation of transplantable hematopoietic malignancies. Strikingly, conditional deletion of both mPot1a and p53 in mouse mammary epithelium resulted in development of highly invasive breast carcinomas and the formation of whole chromosomes containing massive arrays of telomeric fusions indicative of multiple breakage-fusion-bridge cycles. Our results reveal that hPOT1 OB-folds are required to protect and prevent newly replicated telomeres from engaging in A-NHEJ mediated fusions that would otherwise promote genome instability to fuel tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Greider CW . Telomere length regulation. Annu Rev Biochem 1996; 65: 337–365.

    Article  CAS  PubMed  Google Scholar 

  2. Verdun RE, Karlseder J . Replication and protection of telomeres. Nature 2007; 447: 924–931.

    Article  CAS  PubMed  Google Scholar 

  3. Palm W, de Lange T . How shelterin protects mammalian telomeres. Annu Rev Genet 2008; 42: 301–334.

    Article  CAS  PubMed  Google Scholar 

  4. Baumann P, Cech TR . Pot1, the putative telomere end-binding protein in fission yeast and humans. Science (New York, NY) 2001; 292: 1171–1175.

    Article  CAS  Google Scholar 

  5. Baumann P, Podell E, Cech TR . Human Pot1 (protection of telomeres) protein: cytolocalization, gene structure, and alternative splicing. Mol Cell Biol 2002; 22: 8079–8087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu D, Safari A, O'Connor MS, Chan DW, Laegeler A, Qin J et al. PTOP interacts with POT1 and regulates its localization to telomeres. Nat Cell Biol 2004; 6: 673–680.

    Article  CAS  PubMed  Google Scholar 

  7. Ye JZ, Hockemeyer D, Krutchinsky AN, Loayza D, Hooper SM, Chait BT et al. POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev 2004; 18: 1649–1654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang F, Podell ER, Zaug AJ, Yang Y, Baciu P, Cech TR et al. The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature 2007; 445: 506–510.

    Article  CAS  PubMed  Google Scholar 

  9. Xin H, Liu D, Wan M, Safari A, Kim H, Sun W et al. TPP1 is a homologue of ciliate TEBP-beta and interacts with POT1 to recruit telomerase. Nature 2007; 445: 559–562.

    Article  CAS  PubMed  Google Scholar 

  10. Lei M, Podell ER, Baumann P, Cech TR . DNA self-recognition in the structure of Pot1 bound to telomeric single-stranded DNA. Nature 2003; 426: 198–203.

    Article  CAS  PubMed  Google Scholar 

  11. Lei M, Podell ER, Cech TR . Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat Struct Mol Biol 2004; 11: 1223–1229.

    Article  CAS  PubMed  Google Scholar 

  12. Nandakumar J, Bell CF, Weidenfeld I, Zaug AJ, Leinwand LA, Cech TR . The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature 2012; 492: 285–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He H, Multani AS, Cosme-Blanco W, Tahara H, Ma J, Pathak S et al. POT1b protects telomeres from end-to-end chromosomal fusions and aberrant homologous recombination. EMBO J 2006; 25: 5180–5190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu L, Multani AS, He H, Cosme-Blanco W, Deng Y, Deng JM et al. Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 2006; 126: 49–62.

    Article  CAS  PubMed  Google Scholar 

  15. Hockemeyer D, Daniels JP, Takai H, de Lange T . Recent expansion of the telomeric complex in rodents: Two distinct POT1 proteins protect mouse telomeres. Cell 2006; 126: 63–77.

    Article  CAS  PubMed  Google Scholar 

  16. Hockemeyer D, Palm W, Else T, Daniels JP, Takai KK, Ye JZ et al. Telomere protection by mammalian Pot1 requires interaction with Tpp1. Nat Struct Mol Biol 2007; 14: 754–761.

    Article  CAS  PubMed  Google Scholar 

  17. Denchi EL, de Lange T . Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 2007; 448: 1068–1071.

    Article  CAS  PubMed  Google Scholar 

  18. Flynn RL, Centore RC, O'Sullivan RJ, Rai R, Tse A, Songyang Z et al. TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA. Nature 2011; 471: 532–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo X, Deng Y, Lin Y, Cosme-Blanco W, Chan S, He H et al. Dysfunctional telomeres activate an ATM-ATR-dependent DNA damage response to suppress tumorigenesis. EMBO J 2007; 26: 4709–4719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thanasoula M, Escandell JM, Suwaki N, Tarsounas M . ATM/ATR checkpoint activation downregulates CDC25C to prevent mitotic entry with uncapped telomeres. EMBO J 2012; 31: 3398–3410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Palm W, Hockemeyer D, Kibe T, de Lange T . Functional dissection of human and mouse POT1 proteins. Mol Cell Biol 2009; 29: 471–482.

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y, Shen MF, Chang S . Essential roles for Pot1b in HSC self-renewal and survival. Blood 2011; 118: 6068–6077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Y, Sharpless N, Chang S . p16(INK4a) protects against dysfunctional telomere-induced ATR-dependent DNA damage responses. J Clin Invest 2013; 123: 4489–4501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rai R, Zheng H, He H, Luo Y, Multani A, Carpenter PB et al. The function of classical and alternative non-homologous end-joining pathways in the fusion of dysfunctional telomeres. EMBO J 2010; 29: 2598–2610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rai R, Li JM, Zheng H, Lok GT, Deng Y, Huen MS et al. The E3 ubiquitin ligase Rnf8 stabilizes Tpp1 to promote telomere end protection. Nat Struct Mol Biol 2011; 18: 1400–1407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sfeir A, de Lange T . Removal of shelterin reveals the telomere end-protection problem. Science (New York, NY) 2012; 336: 593–597.

    Article  CAS  Google Scholar 

  27. Bennardo N, Cheng A, Huang N, Stark JM . Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet 2008; 4: e1000110.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Badie S, Carlos AR, Folio C, Okamoto K, Bouwman P, Jonkers J et al. BRCA1 and CtIP promote alternative non-homologous end-joining at uncapped telomeres. EMBO J 2015; 34: 828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Symington LS, Gautier J . Double-strand break end resection and repair pathway choice. Ann Rev Genet 2011; 45: 247–271.

    Article  CAS  PubMed  Google Scholar 

  30. Ceccaldi R, Rondinelli B, D'Andrea AD . Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 2016; 26: 52–64.

    Article  CAS  PubMed  Google Scholar 

  31. Fan J, Li L, Small D, Rassool F . Cells expressing FLT3/ITD mutations exhibit elevated repair errors generated through alternative NHEJ pathways: implications for genomic instability and therapy. Blood 2010; 116: 5298–5305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tobin LA, Robert C, Nagaria P, Chumsri S, Twaddell W, Ioffe OB et al. Targeting abnormal DNA repair in therapy-resistant breast cancers. Mol Cancer Res: MCR 2012; 10: 96–107.

    Article  CAS  PubMed  Google Scholar 

  33. He H, Wang Y, Guo X, Ramchandani S, Ma J, Shen MF et al. Pot1b deletion and telomerase haploinsufficiency in mice initiate an ATR-dependent DNA damage response and elicit phenotypes resembling dyskeratosis congenita. Mol Cell Biol 2009; 29: 229–240.

    Article  CAS  PubMed  Google Scholar 

  34. Quesada V, Conde L, Villamor N, Ordóñez GR, Jares P, Bassaganyas L et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 2012; 44: 47–52.

    Article  CAS  Google Scholar 

  35. Ramsay AJ, Quesada V, Foronda M, Conde L, Martínez-Trillos A, Villamor N et al. POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia. Nat Genet 2013; 45: 526–530.

    Article  CAS  PubMed  Google Scholar 

  36. Robles-Espinoza CD, Harland M, Ramsay AJ, Aoude LG, Quesada V, Ding Z et al. POT1 loss-of-function variants predispose to familial melanoma. Nat Genet 2014; 46: 478–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shi J, Yang XR, Ballew B, Rotunno M, Calista D, Fargnoli MC et al. Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma. Nat Genet 2014; 46: 482–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Loayza D, Parsons H, Donigian J, Hoke K, de Lange T . DNA binding features of human POT1: a nonamer 5'-TAGGGTTAG-3' minimal binding site, sequence specificity, and internal binding to multimeric sites. J Biol Chem 2004; 279: 13241–13248.

    Article  CAS  PubMed  Google Scholar 

  39. Nussenzweig A, Nussenzweig MC . A backup DNA repair pathway moves to the forefront. Cell 2007; 131: 223–225.

    Article  CAS  PubMed  Google Scholar 

  40. Guirouilh-Barbat J, Rass E, Plo I, Bertrand P, Lopez BS . Defects in XRCC4 and KU80 differentially affect the joining of distal nonhomologous ends. Proc Natl Acad Sci USA 2007; 104: 20902–20907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boboila C, Jankovic M, Yan CT, Wang JH, Wesemann DR, Zhang T et al. Alternative end-joining catalyzes robust IgH locus deletions and translocations in the combined absence of ligase 4 and Ku70. Proc Natl Acad Sci USA 2010; 107: 3034–3039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lei M, Zaug AJ, Podell ER, Cech TR . Switching human telomerase on and off with hPOT1 protein in vitro. J Biol Chem 2005; 280: 20449–20456.

    Article  CAS  PubMed  Google Scholar 

  43. Zhong FL, Batista LF, Freund A, Pech MF, Venteicher AS, Artandi SE . TPP1 OB-fold domain controls telomere maintenance by recruiting telomerase to chromosome ends. Cell 2012; 150: 481–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Loayza D, De Lange T . POT1 as a terminal transducer of TRF1 telomere length control. Nature 2003; 423: 1013–1018.

    Article  CAS  PubMed  Google Scholar 

  45. Lam YC, Akhter S, Gu P, Ye J, Poulet A, Giraud-Panis MJ et al. SNMIB/Apollo protects leading-strand telomeres against NHEJ-mediated repair. EMBO J 2010; 29: 2230–2241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Artandi SE, DePinho RA . Telomeres and telomerase in cancer. Carcinogenesis 2010; 31: 9–18.

    Article  CAS  PubMed  Google Scholar 

  47. McClintock B . The stability of broken ends of chromosomes in zea mays. Genetics 1941; 26: 234–282.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Halazonetis TD, Gorgoulis VG, Bartek J . An oncogene-induced DNA damage model for cancer development. Science 2008; 319: 1352–1355.

    Article  CAS  PubMed  Google Scholar 

  49. Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 1999; 96: 701–712.

    Article  CAS  PubMed  Google Scholar 

  50. Gonzalez-Suarez E, Samper E, Flores JM, Blasco MA . Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nat Genet 2000; 26: 114–117.

    Article  CAS  PubMed  Google Scholar 

  51. Artandi SE, DePinho RA . Mice without telomerase: what can they teach us about human cancer? Nat Med 2000; 6: 852–855.

    Article  CAS  PubMed  Google Scholar 

  52. Martinez P, Thanasoula M, Munoz P, Liao C, Tejera A, McNees C et al. Increased telomere fragility and fusions resulting from TRF1 deficiency lead to degenerative pathologies and increased cancer in mice. Genes Dev 2009; 23: 2060–2075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bainbridge MN, Armstrong GN, Gramatges MM, Bertuch AA, Jhangiani SN, Doddapaneni H et al. Germline mutations in shelterin complex genes are associated with familial glioma. J Natl Cancer Inst 2015; 107: 384.

    Article  PubMed  Google Scholar 

  54. Calvete O, Martinez P, Garcia-Pavia P, Benitez-Buelga C, Paumard-Hernández B, Fernandez V et al. A mutation in the POT1 gene is responsible for cardiac angiosarcoma in TP53-negative Li-Fraumeni-like families. Nat Commun 2015; 6: 8383.

    Article  CAS  PubMed  Google Scholar 

  55. Nandakumar J, Podell ER, Cech TR . How telomeric protein POT1 avoids RNA to achieve specificity for single-stranded DNA. Proc Natl Acad Sci USA 2010; 107: 651–656.

    Article  CAS  PubMed  Google Scholar 

  56. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 2011; 144: 27–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jones MJ, Jallepalli PV . Chromothripsis: chromosomes in crisis. Dev Cell 2012; 23: 908–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li Y, Schwab C, Ryan SL, Papaemmanuil E, Robinson HM, Jacobs P et al. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature 2014; 508: 98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Maciejowski J, Li Y, Bosco N, Campbell PJ, de Lange T . Chromothripsis and kataegis induced by telomere crisis. Cell 2015; 163: 1641–1654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang CZ, Spektor A, Cornils H, Francis JM, Jackson EK, Liu S et al. Chromothripsis from DNA damage in micronuclei. Nature 2015; 522: 179–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gu P, Deng W, Lei M, Chang S . Single strand DNA binding proteins 1 and 2 protect newly replicated telomeres. Cell Res 2013; 23: 705–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chang S . Cancer chromosomes going to POT1. Nat Genet 2013; 45: 473–475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Multani AS, Chang S . Cytogenetic analysis of telomere dysfunction. Methods Mol Biol 2011; 735: 139–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Latrick CM, Cech TR . POT1-TPP1 enhances telomerase processivity by slowing primer dissociation and aiding translocation. EMBO J 2010; 29: 924–933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Abreu E, Terns RM, Terns MP . Visualization of human telomerase localization by fluorescence microscopy techniques. Methods Mol Biol (Clifton, NJ) 2011; 735: 125–137.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Asha Multani (MDACC, Houston, TX) for SKY analyses and Dr James You (MDACC, Houston, TX) for histological analyses and Dr Christos Hatzis (Yale university School of Medicine) for POT1 mutation analyses. We thank the Chang lab for helpful suggestions. This work was supported by the NCI (RO1 CA129037, R01 CA202816, R21 CA200506 and R21 CA182280) and the CT Department of Public Health (15-002167) to Sandy Chang. Support for Jayakrishnan Nandakumar is from the NIH (NIH R00-CA-167644-03, NIH R01-AG050509 (Jayakrishnan Nandakumar, co-investigator).

Author contributions

Sandy Chang conceived the project. Sandy Chang, Peili Gu and Jayakrishnan Nandakumar designed the experiments. Peili Gu, Yang Wang performed all the telomere biology and transplantation experiments. Ling Wu and Yang Xiao generated the breast cancer mouse model and performed tumour analyses. Kamlesh K. Bisht and Eric M. Smith performed the in vitro telomerase assay and Susan Bailey analysed the cytogenetics data. Peili Gu, Jayakrishnan Nandakumar, Ming Lei and Sandy Chang analysed and interpreted the data and composed the figures. Sandy Chang and Peili Gu wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Chang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, P., Wang, Y., Bisht, K. et al. Pot1 OB-fold mutations unleash telomere instability to initiate tumorigenesis. Oncogene 36, 1939–1951 (2017). https://doi.org/10.1038/onc.2016.405

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.405

This article is cited by

Search

Quick links