Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Melanocytic nevi and melanoma: unraveling a complex relationship

Abstract

Approximately 33% of melanomas are derived directly from benign, melanocytic nevi. Despite this, the vast majority of melanocytic nevi, which typically form as a result of BRAFV600E-activating mutations, will never progress to melanoma. Herein, we synthesize basic scientific insights and data from mouse models with common observations from clinical practice to comprehensively review melanocytic nevus biology. In particular, we focus on the mechanisms by which growth arrest is established after BRAFV600E mutation. Means by which growth arrest can be overcome and how melanocytic nevi relate to melanoma are also considered. Finally, we present a new conceptual paradigm for understanding the growth arrest of melanocytic nevi in vivo termed stable clonal expansion. This review builds upon the canonical hypothesis of oncogene-induced senescence in growth arrest and tumor suppression in melanocytic nevi and melanoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hayflick L, Moorhead PS . The serial cultivation of human diploid cell strains. Exp Cell Res 1961; 25: 585–621.

    CAS  PubMed  Google Scholar 

  2. Hayflick L . The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965; 37: 614–636.

    CAS  PubMed  Google Scholar 

  3. Campisi J . Aging, cellular senescence, and cancer. Annu Rev Physiol 2013; 75: 685–705.

    CAS  PubMed  Google Scholar 

  4. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS . The essence of senescence. Genes Dev 2010; 24: 2463–2479.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Harley CB, Futcher AB, Greider CW . Telomeres shorten during ageing of human fibroblasts. Nature 1990; 345: 458–460.

    CAS  PubMed  Google Scholar 

  6. d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003; 426: 194–198.

    CAS  PubMed  Google Scholar 

  7. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998; 279: 349–352.

    CAS  PubMed  Google Scholar 

  8. Newbold RF, Overell RW . Fibroblast immortality is a prerequisite for transformation by EJ c-Ha-ras oncogene. Nature 1983; 304: 648–651.

    CAS  PubMed  Google Scholar 

  9. Newbold RF, Overell RW, Connell JR . Induction of immortality is an early event in malignant transformation of mammalian cells by carcinogens. Nature 1982; 299: 633–635.

    CAS  PubMed  Google Scholar 

  10. Sager R . Senescence as a mode of tumor suppression. Environ Health Perspect 1991; 93: 59–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. O'Brien W, Stenman G, Sager R . Suppression of tumor growth by senescence in virally transformed human fibroblasts. Proc Natl Acad Sci USA 1986; 83: 8659–8663.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88: 593–602.

    CAS  PubMed  Google Scholar 

  13. Wei S, Wei S, Sedivy JM . Expression of catalytically active telomerase does not prevent premature senescence caused by overexpression of oncogenic Ha-Ras in normal human fibroblasts. Cancer Res 1999; 59: 1539–1543.

    CAS  PubMed  Google Scholar 

  14. Baek KH, Ryeom S . Detection of oncogene-induced senescence in vivo. Methods Mol Biol 2017; 1534: 185–198.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P, McLaren S et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 2015; 348: 880–886.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bastian BC . The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. Annu Rev Pathol 2014; 9: 239–271.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Schaffer JV . Update on melanocytic nevi in children. Clin Dermatol 2015; 33: 368–386.

    PubMed  Google Scholar 

  18. Barnhill RL . Pathology of Melanocytic Nevi and Melanoma, 3rd edn. Springer: New York, NY, 2014.

    Google Scholar 

  19. Bataille V, Kato BS, Falchi M, Gardner J, Kimura M, Lens M et al. Nevus size and number are associated with telomere length and represent potential markers of a decreased senescence in vivo. Cancer Epidemiol Biomarkers Prev 2007; 16: 1499–1502.

    CAS  PubMed  Google Scholar 

  20. Stegmaier OC . Natural regression of the melanocytic nevus. J Invest Dermatol 1959; 32: 413–421.

    CAS  PubMed  Google Scholar 

  21. MacKie RM, English J, Aitchison TC, Fitzsimons CP, Wilson P . The number and distribution of benign pigmented moles (melanocytic naevi) in a healthy British population. Br J Dermatol 1985; 113: 167–174.

    CAS  PubMed  Google Scholar 

  22. Eder J, Prillinger K, Korn A, Geroldinger A, Trautinger F . Prevalence of actinic keratosis among dermatology outpatients in Austria. Br J Dermatol 2014; 171: 1415–1421.

    CAS  PubMed  Google Scholar 

  23. English DR, Milne E, Simpson JA . Ultraviolet radiation at places of residence and the development of melanocytic nevi in children (Australia). Cancer Causes Control 2006; 17: 103–107.

    PubMed  Google Scholar 

  24. Luther H, Altmeyer P, Garbe C, Ellwanger U, Jahn S, Hoffmann K et al. Increase of melanocytic nevus counts in children during 5 years of follow-up and analysis of associated factors. Arch Dermatol 1996; 132: 1473–1478.

    CAS  PubMed  Google Scholar 

  25. Bishop JA, Wachsmuth RC, Harland M, Bataille V, Pinney E, Mac KP et al. Genotype/phenotype and penetrance studies in melanoma families with germline CDKN2A mutations. J Invest Dermatol 2000; 114: 28–33.

    CAS  PubMed  Google Scholar 

  26. Florell SR, Meyer LJ, Boucher KM, Porter-Gill PA, Hart M, Erickson J et al. Longitudinal assessment of the nevus phenotype in a melanoma kindred. J Invest Dermatol 2004; 123: 576–582.

    CAS  PubMed  Google Scholar 

  27. Goldgar DE, Cannon-Albright LA, Meyer LJ, Piepkorn MW, Zone JJ, Skolnick MH . Inheritance of nevus number and size in melanoma and dysplastic nevus syndrome kindreds. J Natl Cancer Inst 1991; 83: 1726–1733.

    CAS  PubMed  Google Scholar 

  28. Falchi M, Bataille V, Hayward NK, Duffy DL, Bishop JA, Pastinen T et al. Genome-wide association study identifies variants at 9p21 and 22q13 associated with development of cutaneous nevi. Nat Genet 2009; 41: 915–919.

    CAS  PubMed  Google Scholar 

  29. Karram S, Novy M, Saroufim M, Loya A, Taraif S, Houreih MA et al. Predictors of BRAF mutation in melanocytic nevi: analysis across regions with different UV radiation exposure. Am J Dermatopathol 2013; 35: 412–418.

    PubMed  Google Scholar 

  30. Hafner C, Stoehr R, van Oers JM, Zwarthoff EC, Hofstaedter F, Klein C et al. The absence of BRAF, FGFR3, and PIK3CA mutations differentiates lentigo simplex from melanocytic nevus and solar lentigo. J Invest Dermatol 2009; 129: 2730–2735.

    CAS  PubMed  Google Scholar 

  31. Tschandl P, Berghoff AS, Preusser M, Burgstaller-Muehlbacher S, Pehamberger H, Okamoto I et al. NRAS and BRAF mutations in melanoma-associated nevi and uninvolved nevi. PLoS ONE 2013; 8: e69639.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sugianto JZ, Ralston JS, Metcalf JS, McFaddin CL, Smith MT . Blue nevus and "malignant blue nevus:" A concise review. Semin Diagn Pathol 2016; 33: 219–224.

    PubMed  Google Scholar 

  33. Ferrara G, Gianotti R, Cavicchini S, Salviato T, Zalaudek I, Argenziano G . Spitz nevus, Spitz tumor, and spitzoid melanoma: a comprehensive clinicopathologic overview. Dermatol Clin 2013; 31: 589–598, viii.

    CAS  PubMed  Google Scholar 

  34. Strazzula L, Senna MM, Yasuda M, Belazarian L . The deep penetrating nevus. J Am Acad Dermatol 2014; 71: 1234–1240.

    PubMed  Google Scholar 

  35. Ferringer T . Update on immunohistochemistry in melanocytic lesions. Dermatol Clin 2012; 30: 567–579, v.

    CAS  PubMed  Google Scholar 

  36. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.

    CAS  PubMed  Google Scholar 

  37. Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell 2015; 161: 1681–1696.

    Google Scholar 

  38. Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM et al. High frequency of BRAF mutations in nevi. Nat Genet 2003; 33: 19–20.

    CAS  PubMed  Google Scholar 

  39. Poynter JN, Elder JT, Fullen DR, Nair RP, Soengas MS, Johnson TM et al. BRAF and NRAS mutations in melanoma and melanocytic nevi. Melanoma Res 2006; 16: 267–273.

    PubMed  Google Scholar 

  40. Roh MR, Eliades P, Gupta S, Tsao H . Genetics of melanocytic nevi. Pigment Cell Melanoma Res 2015; 28: 661–672.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Piris A, Mihm MC Jr, Hoang MP . BAP1 and BRAFV600E expression in benign and malignant melanocytic proliferations. Hum Pathol 2015; 46: 239–245.

    CAS  PubMed  Google Scholar 

  42. Carr J, Mackie RM . Point mutations in the N-ras oncogene in malignant melanoma and congenital naevi. Br J Dermatol 1994; 131: 72–77.

    CAS  PubMed  Google Scholar 

  43. Bastian BC, LeBoit PE, Pinkel D . Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features. Am J Pathol 2000; 157: 967–972.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Van Raamsdonk CD, Bezrookove V, Green G, Bauer J, Gaugler L, O'Brien JM et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 2009; 457: 599–602.

    CAS  PubMed  Google Scholar 

  45. Cisowski J, Sayin VI, Liu M, Karlsson C, Bergo MO . Oncogene-induced senescence underlies the mutual exclusive nature of oncogenic KRAS and BRAF. Oncogene 2016; 35: 1328–1333.

    CAS  PubMed  Google Scholar 

  46. Robinson WA, Lemon M, Elefanty A, Harrison-Smith M, Markham N, Norris D . Human acquired naevi are clonal. Melanoma Res 1998; 8: 499–503.

    CAS  PubMed  Google Scholar 

  47. Yeh I, von Deimling A, Bastian BC . Clonal BRAF mutations in melanocytic nevi and initiating role of BRAF in melanocytic neoplasia. J Natl Cancer Inst 2013; 105: 917–919.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hui P, Perkins A, Glusac E . Assessment of clonality in melanocytic nevi. J Cutan Pathol 2001; 28: 140–144.

    CAS  PubMed  Google Scholar 

  49. Harada M, Suzuki M, Ikeda T, Kaneko T, Harada S, Fukayama M . Clonality in nevocellular nevus and melanoma: an expression-based clonality analysis at the X-linked genes by polymerase chain reaction. J Invest Dermatol 1997; 109: 656–660.

    CAS  PubMed  Google Scholar 

  50. Masaki T, Wang Y, DiGiovanna JJ, Khan SG, Raffeld M, Beltaifa S et al. High frequency of PTEN mutations in nevi and melanomas from xeroderma pigmentosum patients. Pigment Cell Melanoma Res 2014; 27: 454–464.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Shain AH, Bastian BC . From melanocytes to melanomas. Nat Rev Cancer 2016; 16: 345–358.

    CAS  PubMed  Google Scholar 

  52. Chandeck C, Mooi WJ . Oncogene-induced cellular senescence. Adv Anat Pathol. 2010; 17: 42–48.

    CAS  PubMed  Google Scholar 

  53. Lott JP, Gross CP, Bosenberg M . County-level association of melanoma and papillary thyroid cancer: evidence of shared environmental risk? Pigment Cell Melanoma Res 2015; 28: 120–123.

    PubMed  Google Scholar 

  54. Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 2005; 436: 720–724.

    CAS  PubMed  Google Scholar 

  55. Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T, Abdel-Malek ZA et al. Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer 2006; 95: 496–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF, Murphey RD et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol. 2005; 15: 249–254.

    CAS  PubMed  Google Scholar 

  57. Goel VK, Ibrahim N, Jiang G, Singhal M, Fee S, Flotte T et al. Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice. Oncogene 2009; 28: 2289–2298.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Dhomen N, Reis-Filho JS, da Rocha Dias S, Hayward R, Savage K, Delmas V et al. Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 2009; 15: 294–303.

    CAS  PubMed  Google Scholar 

  59. Dankort D, Curley DP, Cartlidge RA, Nelson B, Karnezis AN, Damsky WE Jr et al. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet 2009; 41: 544–552.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Damsky W, Micevic G, Meeth K, Muthusamy V, Curley DP, Santhanakrishnan M et al. mTORC1 activation blocks BrafV600E-induced growth arrest but is insufficient for melanoma formation. Cancer Cell 2015; 27: 41–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Clark WH Jr, Elder DE, Guerry D, Epstein MN, Greene MH, Van Horn M . A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum Pathol 1984; 15: 1147–1165.

    PubMed  Google Scholar 

  62. Miller AJ, Mihm MC Jr . Melanoma. N Engl J Med 2006; 355: 51–65.

    CAS  PubMed  Google Scholar 

  63. Damsky WE, Theodosakis N, Bosenberg M . Melanoma metastasis: new concepts and evolving paradigms. Oncogene 2014; 33: 2413–2422.

    CAS  PubMed  Google Scholar 

  64. Bevona C, Goggins W, Quinn T, Fullerton J, Tsao H . Cutaneous melanomas associated with nevi. Arch Dermatol 2003; 139: 1620–1624.

    PubMed  Google Scholar 

  65. Lin WM, Luo S, Muzikansky A, Lobo AZ, Tanabe KK, Sober AJ et al. Outcome of patients with de novo versus nevus-associated melanoma. J Am Acad Dermatol 2015; 72: 54–58.

    PubMed  Google Scholar 

  66. Haenssle HA, Mograby N, Ngassa A, Buhl T, Emmert S, Schon MP et al. Association of patient risk factors and frequency of nevus-associated cutaneous melanomas. JAMA Dermatol 2016; 152: 291–298.

    PubMed  Google Scholar 

  67. Shitara D, Nascimento MM, Puig S, Yamada S, Enokihara MM, Michalany N et al. Nevus-associated melanomas: clinicopathologic features. Am J Clin Pathol 2014; 142: 485–491.

    PubMed  Google Scholar 

  68. Dadzie OE, Yang S, Emley A, Keady M, Bhawan J, Mahalingam M . RAS and RAF mutations in banal melanocytic aggregates contiguous with primary cutaneous melanoma: clues to melanomagenesis. Br J Dermatol 2009; 160: 368–375.

    CAS  PubMed  Google Scholar 

  69. Kakavand H, Crainic O, Lum T, O'Toole SA, Kefford RF, Thompson JF et al. Concordant BRAFV600E mutation status in primary melanomas and associated naevi: implications for mutation testing of primary melanomas. Pathology 2014; 46: 193–198.

    CAS  PubMed  Google Scholar 

  70. Shitara D, Tell-Marti G, Badenas C, Enokihara MM, Alos L, Larque AB et al. Mutational status of naevus-associated melanomas. Br J Dermatol 2015; 173: 671–680.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bogdan I, Smolle J, Kerl H, Burg G, Boni R . Melanoma ex naevo: a study of the associated naevus. Melanoma Res 2003; 13: 213–217.

    PubMed  Google Scholar 

  72. Demunter A, Stas M, Degreef H, De Wolf-Peeters C, van den Oord JJ . Analysis of N- and K-ras mutations in the distinctive tumor progression phases of melanoma. J Invest Dermatol 2001; 117: 1483–1489.

    CAS  PubMed  Google Scholar 

  73. Tan JM, Lin LL, Lambie D, Flewell-Smith R, Jagirdar K, Schaider H et al. BRAF wild-type melanoma in situ arising in a BRAF V600E mutant dysplastic nevus. JAMA Dermatol 2015; 151: 417–421.

    PubMed  Google Scholar 

  74. Tsao H, Bevona C, Goggins W, Quinn T . The transformation rate of moles (melanocytic nevi) into cutaneous melanoma: a population-based estimate. Arch Dermatol 2003; 139: 282–288.

    PubMed  Google Scholar 

  75. Gandini S, Sera F, Cattaruzza MS, Pasquini P, Abeni D, Boyle P et al. Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi. Eur J Cancer 2005; 41: 28–44.

    PubMed  Google Scholar 

  76. Pedersen M, Viros A, Cook M, Marais R . (G12D) NRAS and kinase-dead BRAF cooperate to drive naevogenesis and melanomagenesis. Pigment Cell Melanoma Res 2014; 27: 1162–1166.

    CAS  PubMed  Google Scholar 

  77. Chai E, Ferguson B, Prow T, Soyer P, Walker G . Three-dimensional modelling for estimation of nevus count and probability of nevus-melanoma progression in a murine model. Pigment Cell Melanoma Res 2014; 27: 317–319.

    PubMed  Google Scholar 

  78. Wurm EM, Lin LL, Ferguson B, Lambie D, Prow TW, Walker GJ et al. A blueprint for staging of murine melanocytic lesions based on the Cdk4 (R24C/R24C) ::Tyr- NRAS (Q) (61K) model. Exp Dermatol 2012; 21: 676–681.

    CAS  PubMed  Google Scholar 

  79. Kittler H, Seltenheim M, Dawid M, Pehamberger H, Wolff K, Binder M . Frequency and characteristics of enlarging common melanocytic nevi. Arch Dermatol 2000; 136: 316–320.

    CAS  PubMed  Google Scholar 

  80. Menzies SW, Stevenson ML, Altamura D, Byth K . Variables predicting change in benign melanocytic nevi undergoing short-term dermoscopic imaging. Arch Dermatol 2011; 147: 655–659.

    PubMed  Google Scholar 

  81. Jimenez-Gallo D, Albarran-Planelles C, Linares-Barrios M, Martinez-Rodriguez A, Baez-Perea JM . Eruptive melanocytic nevi in a patient undergoing treatment with sunitinib. JAMA Dermatol 2013; 149: 624–626.

    PubMed  Google Scholar 

  82. Alaibac M, Piaserico S, Rossi CR, Foletto M, Zacchello G, Carli P et al. Eruptive melanocytic nevi in patients with renal allografts: report of 10 cases with dermoscopic findings. J Am Acad Dermatol 2003; 49: 1020–1022.

    PubMed  Google Scholar 

  83. Uhlenhake EE, Watson AC, Aronson P . Sorafenib induced eruptive melanocytic lesions. Dermatol Online J 2013; 19: 18184.

    PubMed  Google Scholar 

  84. Soyer HP, Smolle J, Smolle-Juettner FM, Kerl H . Proliferation antigens in cutaneous melanocytic tumors—an immunohistochemical study comparing the transferrin receptor and the Ki 67 antigen. Dermatologica 1989; 179: 3–9.

    CAS  PubMed  Google Scholar 

  85. Bastian BC . The longer your telomeres, the larger your nevus? Am J Dermatopathol 2003; 25: 83–84.

    PubMed  Google Scholar 

  86. Miracco C, Margherita De Santi M, Schurfeld K, Santopietro R, Lalinga AV, Fimiani M et al. Quantitative in situ evaluation of telomeres in fluorescence in situ hybridization-processed sections of cutaneous melanocytic lesions and correlation with telomerase activity. Br J Dermatol 2002; 146: 399–408.

    CAS  PubMed  Google Scholar 

  87. Calado RT, Dumitriu B . Telomere dynamics in mice and humans. Semin Hematol 2013; 50: 165–174.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Bauer J, Garbe C . Acquired melanocytic nevi as risk factor for melanoma development. A comprehensive review of epidemiological data. Pigment Cell Res 2003; 16: 297–306.

    PubMed  Google Scholar 

  89. Oba J, Nakahara T, Abe T, Hagihara A, Moroi Y, Furue M . Expression of c-Kit, p-ERK and cyclin D1 in malignant melanoma: an immunohistochemical study and analysis of prognostic value. J Dermatol Sci 2011; 62: 116–123.

    CAS  PubMed  Google Scholar 

  90. Zhuang L, Lee CS, Scolyer RA, McCarthy SW, Palmer AA, Zhang XD et al. Activation of the extracellular signal regulated kinase (ERK) pathway in human melanoma. J Clin Pathol 2005; 58: 1163–1169.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Uribe P, Andrade L, Gonzalez S . Lack of association between BRAF mutation and MAPK ERK activation in melanocytic nevi. J Invest Dermatol 2006; 126: 161–166.

    CAS  PubMed  Google Scholar 

  92. McClenahan P, Lin LL, Tan JM, Flewell-Smith R, Schaider H, Jagirdar K et al. BRAFV600E mutation status of involuting and stable nevi in dabrafenib therapy with or without trametinib. JAMA Dermatol 2014; 150: 1079–1082.

    PubMed  Google Scholar 

  93. Perier-Muzet M, Thomas L, Poulalhon N, Debarbieux S, Bringuier PP, Duru G et al. Melanoma patients under vemurafenib: prospective follow-up of melanocytic lesions by digital dermoscopy. J Invest Dermatol 2014; 134: 1351–1358.

    CAS  PubMed  Google Scholar 

  94. Spain L, Julve M, Larkin J . Combination dabrafenib and trametinib in the management of advanced melanoma with BRAFV600 mutations. Expert Opin Pharmacother 2016; 17: 1031–1038.

    CAS  PubMed  Google Scholar 

  95. Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT, Johannessen CM et al. A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 2006; 10: 459–472.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kidger AM, Keyse SM . The regulation of oncogenic Ras/ERK signalling by dual-specificity mitogen activated protein kinase phosphatases (MKPs). Semin Cell Dev Biol 2016; 50: 125–132.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Masoumi-Moghaddam S, Amini A, Morris DL . The developing story of Sprouty and cancer. Cancer Metastasis Rev 2014; 33: 695–720.

    PubMed  PubMed Central  Google Scholar 

  98. Shain AH, Yeh I, Kovalyshyn I, Sriharan A, Talevich E, Gagnon A et al. The genetic evolution of melanoma from precursor lesions. N Engl J Med 2015; 373: 1926–1936.

    PubMed  Google Scholar 

  99. LaPak KM, Burd CE . The molecular balancing act of p16(INK4a) in cancer and aging. Mol Cancer Res 2014; 12: 167–183.

    CAS  PubMed  Google Scholar 

  100. Lee Y, Dominy JE, Choi YJ, Jurczak M, Tolliday N, Camporez JP et al. Cyclin D1-Cdk4 controls glucose metabolism independently of cell cycle progression. Nature 2014; 510: 547–551.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Maggi LB Jr, Winkeler CL, Miceli AP, Apicelli AJ, Brady SN, Kuchenreuther MJ et al. ARF tumor suppression in the nucleolus. Biochim Biophys Acta 2014; 1842: 831–839.

    CAS  PubMed  Google Scholar 

  102. FitzGerald MG, Harkin DP, Silva-Arrieta S, MacDonald DJ, Lucchina LC, Unsal H et al. Prevalence of germ-line mutations in p16, p19ARF, and CDK4 in familial melanoma: analysis of a clinic-based population. Proc Natl Acad Sci USA 1996; 93: 8541–8545.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kamb A, Shattuck-Eidens D, Eeles R, Liu Q, Gruis NA, Ding W et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat Genet 1994; 8: 23–26.

    CAS  PubMed  Google Scholar 

  104. Aoude LG, Wadt KA, Pritchard AL, Hayward NK . Genetics of familial melanoma: 20 years after CDKN2A. Pigment Cell Melanoma Res 2015; 28: 148–160.

    CAS  PubMed  Google Scholar 

  105. de Snoo FA, Hayward NK . Cutaneous melanoma susceptibility and progression genes. Cancer Lett 2005; 230: 153–186.

    CAS  PubMed  Google Scholar 

  106. Liu L, Lassam NJ, Slingerland JM, Bailey D, Cole D, Jenkins R et al. Germline p16INK4A mutation and protein dysfunction in a family with inherited melanoma. Oncogene 1995; 11: 405–412.

    CAS  PubMed  Google Scholar 

  107. Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, Lowe SW . Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 1998; 12: 3008–3019.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sviderskaya EV, Hill SP, Evans-Whipp TJ, Chin L, Orlow SJ, Easty DJ et al. p16(Ink4a) in melanocyte senescence and differentiation. J Natl Cancer Inst 2002; 94: 446–454.

    CAS  PubMed  Google Scholar 

  109. Talve L, Sauroja I, Collan Y, Punnonen K, Ekfors T . Loss of expression of the p16INK4/CDKN2 gene in cutaneous malignant melanoma correlates with tumor cell proliferation and invasive stage. Int J Cancer 1997; 74: 255–259.

    CAS  PubMed  Google Scholar 

  110. Radhi JM . Malignant melanoma arising from nevi, p53, p16, and Bcl-2: expression in benign versus malignant components. J Cutan Med Surg 1999; 3: 293–297.

    CAS  PubMed  Google Scholar 

  111. Funk JO, Schiller PI, Barrett MT, Wong DJ, Kind P, Sander CA . p16INK4a expression is frequently decreased and associated with 9p21 loss of heterozygosity in sporadic melanoma. J Cutan Pathol 1998; 25: 291–296.

    CAS  PubMed  Google Scholar 

  112. Karim RZ, Li W, Sanki A, Colman MH, Yang YH, Thompson JF et al. Reduced p16 and increased cyclin D1 and pRb expression are correlated with progression in cutaneous melanocytic tumors. Int J Surg Pathol 2009; 17: 361–367.

    PubMed  Google Scholar 

  113. Haferkamp S, Scurr LL, Becker TM, Frausto M, Kefford RF, Rizos H . Oncogene-induced senescence does not require the p16(INK4a) or p14ARF melanoma tumor suppressors. J Invest Dermatol 2009; 129: 1983–1991.

    CAS  PubMed  Google Scholar 

  114. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 2006; 444: 638–642.

    CAS  PubMed  Google Scholar 

  115. Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 2006; 444: 633–637.

    CAS  PubMed  Google Scholar 

  116. Aird KM, Zhang G, Li H, Tu Z, Bitler BG, Garipov A et al. Suppression of nucleotide metabolism underlies the establishment and maintenance of oncogene-induced senescence. Cell Rep 2013; 3: 1252–1265.

    CAS  PubMed  Google Scholar 

  117. Bester AC, Roniger M, Oren YS, Im MM, Sarni D, Chaoat M et al. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 2011; 145: 435–446.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Mannava S, Moparthy KC, Wheeler LJ, Natarajan V, Zucker SN, Fink EE et al. Depletion of deoxyribonucleotide pools is an endogenous source of DNA damage in cells undergoing oncogene-induced senescence. Am J Pathol 2013; 182: 142–151.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 2005; 434: 907–913.

    CAS  PubMed  Google Scholar 

  120. Tran SL, Haferkamp S, Scurr LL, Gowrishankar K, Becker TM, Desilva C et al. Absence of distinguishing senescence traits in human melanocytic nevi. J Invest Dermatol 2012; 132: 2226–2234.

    CAS  PubMed  Google Scholar 

  121. Wasco MJ, Pu RT, Yu L, Su L, Ma L . Expression of gamma-H2AX in melanocytic lesions. Hum Pathol 2008; 39: 1614–1620.

    CAS  PubMed  Google Scholar 

  122. Nowsheen S, Yang ES . The intersection between DNA damage response and cell death pathways. Exp Oncol 2012; 34: 243–254.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang X, Simpson ER, Brown KA . p53: Protection against tumor growth beyond effects on cell cycle and apoptosis. Cancer Res 2015; 75: 5001–5007.

    CAS  PubMed  Google Scholar 

  124. Viros A, Sanchez-Laorden B, Pedersen M, Furney SJ, Rae J, Hogan K et al. Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53. Nature 2014; 511: 478–482.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Berdasco M, Esteller M . Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 2010; 19: 698–711.

    CAS  PubMed  Google Scholar 

  126. Curran RC, McCann BG . The ultrastructure of benign pigmented naevi and melanocarcinomas in man. J Pathol 1976; 119: 135–146.

    CAS  PubMed  Google Scholar 

  127. Stolz W, Abmayr W, Schmoeckel C, Landthaler M, Massoudy P, Braun-Falco O . Ultrastructural discrimination between malignant melanomas and benign nevocytic nevi using high-resolution image and multivariate analyses. J Invest Dermatol 1991; 97: 903–910.

    CAS  PubMed  Google Scholar 

  128. Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 2003; 113: 703–716.

    CAS  PubMed  Google Scholar 

  129. Bandyopadhyay D, Curry JL, Lin Q, Richards HW, Chen D, Hornsby PJ et al. Dynamic assembly of chromatin complexes during cellular senescence: implications for the growth arrest of human melanocytic nevi. Aging Cell 2007; 6: 577–591.

    CAS  PubMed  Google Scholar 

  130. Kapoor A, Goldberg MS, Cumberland LK, Ratnakumar K, Segura MF, Emanuel PO et al. The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature 2010; 468: 1105–1109.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Chen H, Ruiz PD, McKimpson WM, Novikov L, Kitsis RN, Gamble MJ . MacroH2A1 and ATM play opposing roles in paracrine senescence and the senescence-associated secretory phenotype. Mol Cell 2015; 59: 719–731.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Sarkar D, Leung EY, Baguley BC, Finlay GJ, Askarian-Amiri ME . Epigenetic regulation in human melanoma: past and future. Epigenetics 2015; 10: 103–121.

    PubMed  PubMed Central  Google Scholar 

  133. Muthusamy V, Duraisamy S, Bradbury CM, Hobbs C, Curley DP, Nelson B et al. Epigenetic silencing of novel tumor suppressors in malignant melanoma. Cancer Res 2006; 66: 11187–11193.

    CAS  PubMed  Google Scholar 

  134. Walesch SK, Richter AM, Helmbold P, Dammann RH . Claudin11 promoter hypermethylation is frequent in malignant melanoma of the skin, but uncommon in nevus cell nevi. Cancers 2015; 7: 1233–1243.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Gao L, van den Hurk K, Moerkerk PT, Goeman JJ, Beck S, Gruis NA et al. Promoter CpG island hypermethylation in dysplastic nevus and melanoma: CLDN11 as an epigenetic biomarker for malignancy. J Invest Dermatol 2014; 134: 2957–2966.

    CAS  PubMed  Google Scholar 

  136. Helmbold P, Richter AM, Walesch S, Skorokhod A, Marsch W, Enk A et al. RASSF10 promoter hypermethylation is frequent in malignant melanoma of the skin but uncommon in nevus cell nevi. J Invest Dermatol 2012; 132: 687–694.

    CAS  PubMed  Google Scholar 

  137. Conway K, Edmiston SN, Khondker ZS, Groben PA, Zhou X, Chu H et al. DNA-methylation profiling distinguishes malignant melanomas from benign nevi. Pigment Cell Melanoma Res 2011; 24: 352–360.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Martinez-Cardus A, Vizoso M, Moran S, Manzano JL . Epigenetic mechanisms involved in melanoma pathogenesis and chemoresistance. Ann Transl Med 2015; 3: 209.

    PubMed  PubMed Central  Google Scholar 

  139. Lian CG, Xu Y, Ceol C, Wu F, Larson A, Dresser K et al. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 2012; 150: 1135–1146.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Rodic N, Zampella J, Sharma R, Burns KH, Taube JM . Diagnostic utility of 5-hydroxymethylcytosine immunohistochemistry in melanocytic proliferations. J Cutan Pathol 2015; 42: 807–814.

    PubMed  PubMed Central  Google Scholar 

  141. Ferreira Gomes CB, Zechin KG, Xu S, Stelini RF, Nishimoto IN, Zhan Q et al. TET2 negatively regulates nestin expression in human melanoma. Am J Pathol 2016; 186: 1427–1434.

    Google Scholar 

  142. Micevic G, Muthusamy V, Damsky W, Theodosakis N, Liu X, Meeth K et al. DNMT3b modulates melanoma growth by controlling levels of mTORC2 component RICTOR. Cell Rep 2016; 14: 2180–2192.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Kuzbicki L, Lange D, Straczynska-Niemiec A, Chwirot BW . JARID1B expression in human melanoma and benign melanocytic skin lesions. Melanoma Res 2013; 23: 8–12.

    CAS  PubMed  Google Scholar 

  144. Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 2010; 141: 583–594.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Held M, Bosenberg M . A role for the JARID1B stem cell marker for continuous melanoma growth. Pigment Cell Melanoma Res 2010; 23: 481–483.

    PubMed  Google Scholar 

  146. Ceol CJ, Houvras Y, Jane-Valbuena J, Bilodeau S, Orlando DA, Battisti V et al. The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature 2011; 471: 513–517.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Macgregor S, Montgomery GW, Liu JZ, Zhao ZZ, Henders AK, Stark M et al. Genome-wide association study identifies a new melanoma susceptibility locus at 1q21.3. Nat Genet 2011; 43: 1114–1118.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A, McCusker JP et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet 2012; 44: 1006–1014.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP et al. A landscape of driver mutations in melanoma. Cell 2012; 150: 251–263.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Kampilafkos P, Melachrinou M, Kefalopoulou Z, Lakoumentas J, Sotiropoulou-Bonikou G . Epigenetic modifications in cutaneous malignant melanoma: EZH2, H3K4me2, and H3K27me3 immunohistochemical expression is enhanced at the invasion front of the tumor. Am J Dermatopathol 2015; 37: 138–144.

    PubMed  Google Scholar 

  151. Liu S, Tetzlaff MT, Liu A, Liegl-Atzwanger B, Guo J, Xu X . Loss of microRNA-205 expression is associated with melanoma progression. Lab Invest 2012; 92: 1084–1096.

    CAS  PubMed  Google Scholar 

  152. Xu Y, Brenn T, Brown ER, Doherty V, Melton DW . Differential expression of microRNAs during melanoma progression: miR-200c, miR-205 and miR-211 are downregulated in melanoma and act as tumour suppressors. Br J Cancer 2012; 106: 553–561.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Mannavola F, Tucci M, Felici C, Stucci S, Silvestris F . miRNAs in melanoma: a defined role in tumor progression and metastasis. Expert Rev Clin Immunol 2016; 12: 79–89.

    CAS  PubMed  Google Scholar 

  154. Montes M, Nielsen MM, Maglieri G, Jacobsen A, Hojfeldt J, Agrawal-Singh S et al. The lncRNA MIR31HG regulates p16(INK4A) expression to modulate senescence. Nat Commun 2015; 6: 6967.

    CAS  PubMed  Google Scholar 

  155. Montes M, Lund AH . Emerging roles of lncRNAs in senescence. FEBS J 2016; 283: 2414–2426.

    CAS  PubMed  Google Scholar 

  156. Cantor JR, Sabatini DM . Cancer cell metabolism: one hallmark, many faces. Cancer Discov 2012; 2: 881–898.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Vander Heiden MG, Cantley LC, Thompson CB . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Di Leonardo A, Linke SP, Clarkin K, Wahl GM . DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev 1994; 8: 2540–2551.

    CAS  PubMed  Google Scholar 

  159. Campisi J . Replicative senescence: an old lives' tale? Cell 1996; 84: 497–500.

    CAS  PubMed  Google Scholar 

  160. Kaplon J, Zheng L, Meissl K, Chaneton B, Selivanov VA, Mackay G et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 2013; 498: 109–112.

    CAS  PubMed  Google Scholar 

  161. Li M, Durbin KR, Sweet SM, Tipton JD, Zheng Y, Kelleher NL . Oncogene-induced cellular senescence elicits an anti-Warburg effect. Proteomics 2013; 13: 2585–2596.

    CAS  PubMed  Google Scholar 

  162. Perez-Mancera PA, Young AR, Narita M . Inside and out: the activities of senescence in cancer. Nat Rev Cancer 2014; 14: 547–558.

    CAS  PubMed  Google Scholar 

  163. Quijano C, Cao L, Fergusson MM, Romero H, Liu J, Gutkind S et al. Oncogene-induced senescence results in marked metabolic and bioenergetic alterations. Cell Cycle 2012; 11: 1383–1392.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008; 452: 230–233.

    CAS  PubMed  Google Scholar 

  165. Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K et al. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal 2009; 2: ra73.

    PubMed  PubMed Central  Google Scholar 

  166. Vazquez F, Lim JH, Chim H, Bhalla K, Girnun G, Pierce K et al. PGC1alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 2013; 23: 287–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Populo H, Caldas R, Lopes JM, Pardal J, Maximo V, Soares P . Overexpression of pyruvate dehydrogenase kinase supports dichloroacetate as a candidate for cutaneous melanoma therapy. Expert Opin Ther Targets 2015; 19: 733–745.

    CAS  PubMed  Google Scholar 

  168. Keith B, Johnson RS, Simon MC . HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 2012; 12: 9–22.

    CAS  Google Scholar 

  169. Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV . MYC, metabolism, and cancer. Cancer Discov 2015; 5: 1024–1039.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Abildgaard C, Guldberg P . Molecular drivers of cellular metabolic reprogramming in melanoma. Trends Mol Med 2015; 21: 164–171.

    CAS  PubMed  Google Scholar 

  171. Zhuang D, Mannava S, Grachtchouk V, Tang WH, Patil S, Wawrzyniak JA et al. C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells. Oncogene 2008; 27: 6623–6634.

    CAS  PubMed  Google Scholar 

  172. Kraehn GM, Utikal J, Udart M, Greulich KM, Bezold G, Kaskel P et al. Extra c-myc oncogene copies in high risk cutaneous malignant melanoma and melanoma metastases. Br J Cancer 2001; 84: 72–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Slominski A, Kim TK, Brozyna AA, Janjetovic Z, Brooks DL, Schwab LP et al. The role of melanogenesis in regulation of melanoma behavior: melanogenesis leads to stimulation of HIF-1alpha expression and HIF-dependent attendant pathways. Arch Biochem Biophys 2014; 563: 79–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Hanna SC, Krishnan B, Bailey ST, Moschos SJ, Kuan PF, Shimamura T et al. HIF1alpha and HIF2alpha independently activate SRC to promote melanoma metastases. J Clin Invest 2013; 123: 2078–2093.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC et al. Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell 2013; 23: 302–315.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. McArthur GA, Puzanov I, Amaravadi R, Ribas A, Chapman P, Kim KB et al. Marked, homogeneous, and early [18F]fluorodeoxyglucose-positron emission tomography responses to vemurafenib in BRAF-mutant advanced melanoma. J Clin Oncol 2012; 30: 1628–1634.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Theodosakis N, Held MA, Marzuka-Alcala A, Meeth KM, Micevic G, Long GV et al. BRAF inhibition decreases cellular glucose uptake in melanoma in association with reduction in cell volume. Mol Cancer Ther 2015; 14: 1680–1692.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Mizushima N, Komatsu M . Autophagy: renovation of cells and tissues. Cell 2011; 147: 728–741.

    CAS  PubMed  Google Scholar 

  179. Young AR, Narita M, Ferreira M, Kirschner K, Sadaie M, Darot JF et al. Autophagy mediates the mitotic senescence transition. Genes Dev 2009; 23: 798–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 2006; 5: 187–195.

    CAS  PubMed  Google Scholar 

  181. Gerland LM, Peyrol S, Lallemand C, Branche R, Magaud JP, Ffrench M . Association of increased autophagic inclusions labeled for beta-galactosidase with fibroblastic aging. Exp Gerontol 2003; 38: 887–895.

    CAS  PubMed  Google Scholar 

  182. Meng XX, Yao M, Zhang XD, Xu HX, Dong Q . ER stress-induced autophagy in melanoma. Clin Exp Pharmacol Physiol 2015; 42: 811–816.

    CAS  PubMed  Google Scholar 

  183. Ma XH, Piao SF, Dey S, McAfee Q, Karakousis G, Villanueva J et al. Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma. J Clin Invest 2014; 124: 1406–1417.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Rosenfeldt MT, O'Prey J, Morton JP, Nixon C, MacKay G, Mrowinska A et al. p53 status determines the role of autophagy in pancreatic tumour development. Nature 2013; 504: 296–300.

    CAS  PubMed  Google Scholar 

  185. Liu H, He Z, von Rutte T, Yousefi S, Hunger RE, Simon HU . Down-regulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma. Sci Transl Med 2013; 5: 202ra123.

    PubMed  Google Scholar 

  186. Liu H, He Z, Simon HU . Autophagy suppresses melanoma tumorigenesis by inducing senescence. Autophagy 2014; 10: 372–373.

    CAS  PubMed  Google Scholar 

  187. Miracco C, Cevenini G, Franchi A, Luzi P, Cosci E, Mourmouras V et al. Beclin 1 and LC3 autophagic gene expression in cutaneous melanocytic lesions. Hum Pathol 2010; 41: 503–512.

    CAS  PubMed  Google Scholar 

  188. Lazova R, Camp RL, Klump V, Siddiqui SF, Amaravadi RK, Pawelek JM . Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome. Clin Cancer Res 2012; 18: 370–379.

    CAS  PubMed  Google Scholar 

  189. Lazova R, Klump V, Pawelek J . Autophagy in cutaneous malignant melanoma. J Cutan Pathol 2010; 37: 256–268.

    PubMed  Google Scholar 

  190. Goovaerts G, Buyssens N . Nevus cell maturation or atrophy? Am J Dermatopathol 1988; 10: 20–27.

    CAS  PubMed  Google Scholar 

  191. Ivanov A, Pawlikowski J, Manoharan I, van Tuyn J, Nelson DM, Rai TS et al. Lysosome-mediated processing of chromatin in senescence. J Cell Biol 2013; 202: 129–143.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Pluquet O, Pourtier A, Abbadie C . The unfolded protein response and cellular senescence. A review in the theme: cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. Am J Physiol Cell Physiol 2015; 308: C415–C425.

    CAS  PubMed  Google Scholar 

  193. Denoyelle C, Abou-Rjaily G, Bezrookove V, Verhaegen M, Johnson TM, Fullen DR et al. Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nat Cell Biol 2006; 8: 1053–1063.

    CAS  PubMed  Google Scholar 

  194. Zhuang L, Scolyer RA, Lee CS, McCarthy SW, Cooper WA, Zhang XD et al. Expression of glucose-regulated stress protein GRP78 is related to progression of melanoma. Histopathology 2009; 54: 462–470.

    PubMed  Google Scholar 

  195. Perez LJ, Penas PF, Atienzar M, Garcia-Diez A . Implication of MT1-MMP in the maturation steps of benign melanocytic nevi. J Cutan Pathol 2006; 33: 139–144.

    CAS  PubMed  Google Scholar 

  196. Van Duinen CM, Fleuren GJ, Bruijn JA . The extracellular matrix in pigmented skin lesions: an immunohistochemical study. Histopathology 1994; 24: 33–40.

    CAS  PubMed  Google Scholar 

  197. Nikitovic D, Mytilinaiou M, Berdiaki A, Karamanos NK, Tzanakakis GN . Heparan sulfate proteoglycans and heparin regulate melanoma cell functions. Biochim Biophys Acta 2014; 1840: 2471–2481.

    CAS  PubMed  Google Scholar 

  198. Godwin LS, Castle JT, Kohli JS, Goff PS, Cairney CJ, Keith WN et al. Isolation, culture, and transfection of melanocytes. Curr Protoc Cell Biol 2014; 63: 1. 8. 1–20.

    Google Scholar 

  199. Coppe JP, Desprez PY, Krtolica A, Campisi J . The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 2010; 5: 99–118.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 2013; 15: 978–990.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 2008; 133: 1019–1031.

    CAS  PubMed  Google Scholar 

  202. Katlinskaya YV, Katlinski KV, Yu Q, Ortiz A, Beiting DP, Brice A et al. Suppression of type I interferon signaling overcomes oncogene-induced senescence and mediates melanoma development and progression. Cell Rep 2016; 15: 171–180.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR . Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 2008; 132: 363–374.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Scurr LL, Pupo GM, Becker TM, Lai K, Schrama D, Haferkamp S et al. IGFBP7 is not required for B-RAF-induced melanocyte senescence. Cell 2010; 141: 717–727.

    CAS  PubMed  Google Scholar 

  205. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR . Role for IGFBP7 in senescence induction by BRAF. Cell 2010; 141: 746–747.

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Evdokimova V, Tognon CE, Benatar T, Yang W, Krutikov K, Pollak M et al. IGFBP7 binds to the IGF-1 receptor and blocks its activation by insulin-like growth factors. Sci Signal 2012; 5: ra92.

    PubMed  Google Scholar 

  207. Kanter-Lewensohn L, Dricu A, Girnita L, Wejde J, Larsson O . Expression of insulin-like growth factor-1 receptor (IGF-1R) and p27Kip1 in melanocytic tumors: a potential regulatory role of IGF-1 pathway in distribution of p27Kip1 between different cyclins. Growth Factors 2000; 17: 193–202.

    CAS  PubMed  Google Scholar 

  208. Ahmed AA, Nordlind K, Hedblad M, Lagerholm B, Schultzberg M, Liden S . Interleukin (IL)-1 alpha- and -1 beta-, IL-6-, and tumor necrosis factor-alpha-like immunoreactivities in human common and dysplastic nevocellular nevi and malignant melanoma. Am J Dermatopathol 1995; 17: 222–229.

    CAS  PubMed  Google Scholar 

  209. Ezzedine K, Eleftheriadou V, Whitton M, van Geel N . Vitiligo. Lancet 2015; 386: 74–84.

    PubMed  Google Scholar 

  210. Sanchez-Sosa S, Aguirre-Lombardo M, Jimenez-Brito G, Ruiz-Arguelles A . Immunophenotypic characterization of lymphoid cell infiltrates in vitiligo. Clin Exp Immunol 2013; 173: 179–183.

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Aouthmany M, Weinstein M, Zirwas MJ, Brodell RT . The natural history of halo nevi: a retrospective case series. J Am Acad Dermatol 2012; 67: 582–586.

    PubMed  Google Scholar 

  212. Zeff RA, Freitag A, Grin CM, Grant-Kels JM . The immune response in halo nevi. J Am Acad Dermatol 1997; 37: 620–624.

    CAS  PubMed  Google Scholar 

  213. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV et al. Signatures of mutational processes in human cancer. Nature 2013; 500: 415–421.

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Kalialis LV, Drzewiecki KT, Klyver H . Spontaneous regression of metastases from melanoma: review of the literature. Melanoma Res 2009; 19: 275–282.

    PubMed  Google Scholar 

  215. Morton D, Eilber FR, Malmgren RA, Wood WC . Immunological factors which influence response to immunotherapy in malignant melanoma. Surgery 1970; 68: 158–163.

    CAS  PubMed  Google Scholar 

  216. Gutterman JU, Mavligit G, McBride C, Frei E 3rd, Freireich EJ, Hersh EM . Active immunotherapy with B.C.G. for recurrent malignant melanoma. Lancet 1973; 1: 1208–1212.

    CAS  PubMed  Google Scholar 

  217. Baker MA, Taub RN . B.C.G. in malignant melanoma. Lancet 1973; 1: 1117–1118.

    CAS  PubMed  Google Scholar 

  218. Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 1999; 17: 2105–2116.

    CAS  PubMed  Google Scholar 

  219. Ascierto ML, Melero I, Ascierto PA . Melanoma: from incurable beast to a curable bet. the success of immunotherapy. Front Oncol 2015; 5: 152.

    PubMed  PubMed Central  Google Scholar 

  220. Libon F, Arrese JE, Rorive A, Nikkels AF . Ipilimumab induces simultaneous regression of melanocytic naevi and melanoma metastases. Clin Exp Dermatol 2013; 38: 276–279.

    CAS  PubMed  Google Scholar 

  221. Teulings HE, Limpens J, Jansen SN, Zwinderman AH, Reitsma JB, Spuls PI et al. Vitiligo-like depigmentation in patients with stage III-IV melanoma receiving immunotherapy and its association with survival: a systematic review and meta-analysis. J Clin Oncol 2015; 33: 773–781.

    CAS  PubMed  Google Scholar 

  222. Robbins HA, Clarke CA, Arron ST, Tatalovich Z, Kahn AR, Hernandez BY et al. Melanoma risk and survival among organ transplant recipients. J Invest Dermatol 2015; 135: 2657–2665.

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Brewer JD, Shanafelt TD, Call TG, Cerhan JR, Roenigk RK, Weaver AL et al. Increased incidence of malignant melanoma and other rare cutaneous cancers in the setting of chronic lymphocytic leukemia. Int J Dermatol 2015; 54: e287–e293.

    PubMed  Google Scholar 

  224. Famenini S, Martires KJ, Zhou H, Xavier MF, Wu JJ . Melanoma in patients with chronic lymphocytic leukemia and non-Hodgkin lymphoma. J Am Acad Dermatol 2015; 72: 78–84.

    PubMed  Google Scholar 

  225. Lindelof B, Sigurgeirsson B, Gabel H, Stern RS . Incidence of skin cancer in 5356 patients following organ transplantation. Br J Dermatol 2000; 143: 513–519.

    CAS  PubMed  Google Scholar 

  226. Matin RN, Mesher D, Proby CM, McGregor JM, Bouwes Bavinck JN, del Marmol V et al. Melanoma in organ transplant recipients: clinicopathological features and outcome in 100 cases. Am J Transplant 2008; 8: 1891–1900.

    CAS  PubMed  Google Scholar 

  227. Kang TW, Yevsa T, Woller N, Hoenicke L, Wuestefeld T, Dauch D et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 2011; 479: 547–551.

    CAS  PubMed  Google Scholar 

  228. Iannello A, Thompson TW, Ardolino M, Lowe SW, Raulet DH . p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. J Exp Med 2013; 210: 2057–2069.

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007; 445: 656–660.

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Hussein MR, Elsers DA, Fadel SA, Omar AE . Immunohistological characterisation of tumour infiltrating lymphocytes in melanocytic skin lesions. J Clin Pathol 2006; 59: 316–324.

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Lyle S, Salhany KE, Elder DE . TIA-1 positive tumor-infiltrating lymphocytes in nevi and melanomas. Mod Pathol 2000; 13: 52–55.

    CAS  PubMed  Google Scholar 

  232. Kang S, Barnhill RL, Mihm MC Jr, Sober AJ . Histologic regression in malignant melanoma: an interobserver concordance study. J Cutan Pathol 1993; 20: 126–129.

    CAS  PubMed  Google Scholar 

  233. Botella-Estrada R, Kutzner H . Study of the immunophenotype of the inflammatory cells in melanomas with regression and halo nevi. Am J Dermatopathol 2015; 37: 376–380.

    PubMed  Google Scholar 

  234. Romano E, Romero P . The therapeutic promise of disrupting the PD-1/PD-L1 immune checkpoint in cancer: unleashing the CD8 T cell mediated anti-tumor activity results in significant, unprecedented clinical efficacy in various solid tumors. J Immunother Cancer 2015; 3: 15.

    PubMed  PubMed Central  Google Scholar 

  235. Bastian BC . Hypothesis: a role for telomere crisis in spontaneous regression of melanoma. Arch Dermatol 2003; 139: 667–668.

    PubMed  Google Scholar 

  236. Bastian BC . Understanding the progression of melanocytic neoplasia using genomic analysis: from fields to cancer. Oncogene 2003; 22: 3081–3086.

    CAS  PubMed  Google Scholar 

  237. Pathak S, Multani AS, McConkey DJ, Imam AS, Amoss MS Jr . Spontaneous regression of cutaneous melanoma in sinclair swine is associated with defective telomerase activity and extensive telomere erosion. Int J Oncol 2000; 17: 1219–1224.

    CAS  PubMed  Google Scholar 

  238. Yu Q, Katlinskaya YV, Carbone CJ, Zhao B, Katlinski KV, Zheng H et al. DNA-damage-induced type I interferon promotes senescence and inhibits stem cell function. Cell Rep 2015; 11: 785–797.

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Mocellin S, Lens MB, Pasquali S, Pilati P, Chiarion Sileni V . Interferon alpha for the adjuvant treatment of cutaneous melanoma. Cochrane Database Syst Rev 2013; 6: CD008955.

    Google Scholar 

  240. Shalapour S, Karin M . Immunity, inflammation, and cancer: an eternal fight between good and evil. J Clin Invest 2015; 125: 3347–3355.

    PubMed  PubMed Central  Google Scholar 

  241. Hanahan D, Coussens LM . Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012; 21: 309–322.

    CAS  PubMed  Google Scholar 

  242. Di Mitri D, Toso A, Chen JJ, Sarti M, Pinton S, Jost TR et al. Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer. Nature 2014; 515: 134–137.

    CAS  PubMed  Google Scholar 

  243. Gazzaniga S, Bravo AI, Guglielmotti A, van Rooijen N, Maschi F, Vecchi A et al. Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. J Invest Dermatol 2007; 127: 2031–2041.

    CAS  PubMed  Google Scholar 

  244. Wang T, Feldman GM, Herlyn M, Kaufman RE . The macrophage: Switches from a passenger to a driver during anticancer therapy. Oncoimmunology 2015; 4: e1052929.

    PubMed  PubMed Central  Google Scholar 

  245. Vagner J, Steiniche T, Stougaard M . In-situ hybridization-based quantification of hTR: a possible biomarker in malignant melanoma. Histopathology 2015; 66: 747–751.

    PubMed  Google Scholar 

  246. Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, Gast A et al. TERT promoter mutations in familial and sporadic melanoma. Science 2013; 339: 959–961.

    CAS  PubMed  Google Scholar 

  247. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA . Highly recurrent TERT promoter mutations in human melanoma. Science 2013; 339: 957–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Glaessl A, Bosserhoff AK, Buettner R, Hohenleutner U, Landthaler M, Stolz W . Increase in telomerase activity during progression of melanocytic cells from melanocytic naevi to malignant melanomas. Arch Dermatol Res 1999; 291: 81–87.

    CAS  PubMed  Google Scholar 

  249. Rudolph P, Schubert C, Tamm S, Heidorn K, Hauschild A, Michalska I et al. Telomerase activity in melanocytic lesions: A potential marker of tumor biology. Am J Pathol 2000; 156: 1425–1432.

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Ramirez RD, D'Atri S, Pagani E, Faraggiana T, Lacal PM, Taylor RS et al. Progressive increase in telomerase activity from benign melanocytic conditions to malignant melanoma. Neoplasia 1999; 1: 42–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Heidenreich B, Rachakonda PS, Hemminki K, Kumar R . TERT promoter mutations in cancer development. Curr Opin Genet Dev 2014; 24: 30–37.

    CAS  PubMed  Google Scholar 

  252. Lee S, Opresko P, Pappo A, Kirkwood JM, Bahrami A . Association of TERT promoter mutations with telomerase expression in melanoma. Pigment Cell Melanoma Res 2016; 29: 391–393.

    PubMed  PubMed Central  Google Scholar 

  253. Koh CM, Khattar E, Leow SC, Liu CY, Muller J, Ang WX et al. Telomerase regulates MYC-driven oncogenesis independent of its reverse transcriptase activity. J Clin Invest 2015; 125: 2109–2122.

    PubMed  PubMed Central  Google Scholar 

  254. Maida Y, Masutomi K . Telomerase reverse transcriptase moonlights: Therapeutic targets beyond telomerase. Cancer Sci 2015; 106: 1486–1492.

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Suram A, Kaplunov J, Patel PL, Ruan H, Cerutti A, Boccardi V et al. Oncogene-induced telomere dysfunction enforces cellular senescence in human cancer precursor lesions. EMBO J 2012; 31: 2839–2851.

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Hewitt G, Jurk D, Marques FD, Correia-Melo C, Hardy T, Gackowska A et al. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat Commun 2012; 3: 708.

    PubMed  Google Scholar 

  257. Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D, Kaplunov JM et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol 2012; 14: 355–365.

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Robles-Espinoza CD, Harland M, Ramsay AJ, Aoude LG, Quesada V, Ding Z et al. POT1 loss-of-function variants predispose to familial melanoma. Nat Genet 2014; 46: 478–481.

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Shi J, Yang XR, Ballew B, Rotunno M, Calista D, Fargnoli MC et al. Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma. Nat Genet 2014; 46: 482–486.

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Aoude LG, Pritchard AL, Robles-Espinoza CD, Wadt K, Harland M, Choi J et al. Nonsense mutations in the shelterin complex genes ACD and TERF2IP in familial melanoma. J Natl Cancer Inst 2015; 107: 1–7.

    Google Scholar 

  261. Harland M, Petljak M, Robles-Espinoza CD, Ding Z, Gruis NA, van Doorn R et al. Germline TERT promoter mutations are rare in familial melanoma. Fam Cancer 2016; 15: 139–144.

    CAS  PubMed  Google Scholar 

  262. Laplante M, Sabatini DM . mTOR signaling in growth control and disease. Cell 2012; 149: 274–293.

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Bermudez Brito M, Goulielmaki E, Papakonstanti EA . Focus on PTEN regulation. Front Oncol 2015; 5: 166.

    PubMed  PubMed Central  Google Scholar 

  264. Scortegagna M, Lau E, Zhang T, Feng Y, Sereduk C, Yin H et al. PDK1 and SGK3 contribute to the growth of BRAF-mutant melanomas and are potential therapeutic targets. Cancer Res 2015; 75: 1399–1412.

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Scortegagna M, Ruller C, Feng Y, Lazova R, Kluger H, Li JL et al. Genetic inactivation or pharmacological inhibition of Pdk1 delays development and inhibits metastasis of Braf(V600E)::Pten(−/−) melanoma. Oncogene 2014; 33: 4330–4339.

    CAS  PubMed  Google Scholar 

  266. Tsao H, Goel V, Wu H, Yang G, Haluska FG . Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Invest Dermatol 2004; 122: 337–341.

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Mirza AM, Gysin S, Malek N, Nakayama K, Roberts JM, McMahon M . Cooperative regulation of the cell division cycle by the protein kinases RAF and AKT. Mol Cell Biol 2004; 24: 10868–10881.

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Cheung M, Sharma A, Madhunapantula SV, Robertson GP . Akt3 and mutant V600E B-Raf cooperate to promote early melanoma development. Cancer Res 2008; 68: 3429–3439.

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Stahl JM, Sharma A, Cheung M, Zimmerman M, Cheng JQ, Bosenberg MW et al. Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res 2004; 64: 7002–7010.

    CAS  PubMed  Google Scholar 

  270. Chen B, Tardell C, Higgins B, Packman K, Boylan JF, Niu H . BRAFV600E negatively regulates the AKT pathway in melanoma cell lines. PLoS One 2012; 7: e42598.

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Vredeveld LC, Possik PA, Smit MA, Meissl K, Michaloglou C, Horlings HM et al. Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev 2012; 26: 1055–1069.

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Kennedy AL, Morton JP, Manoharan I, Nelson DM, Jamieson NB, Pawlikowski JS et al. Activation of the PIK3CA/AKT pathway suppresses senescence induced by an activated RAS oncogene to promote tumorigenesis. Mol Cell 2011; 42: 36–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Deichmann M, Thome M, Benner A, Egner U, Hartschuh W, Naher H . PTEN/MMAC1 expression in melanoma resection specimens. Br J Cancer 2002; 87: 1431–1436.

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Tsao H, Mihm MC Jr, Sheehan C . PTEN expression in normal skin, acquired melanocytic nevi, and cutaneous melanoma. J Am Acad Dermatol 2003; 49: 865–872.

    PubMed  Google Scholar 

  275. Zhou XP, Gimm O, Hampel H, Niemann T, Walker MJ, Eng C . Epigenetic PTEN silencing in malignant melanomas without PTEN mutation. Am J Pathol 2000; 157: 1123–1128.

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Whiteman DC, Zhou XP, Cummings MC, Pavey S, Hayward NK, Eng C . Nuclear PTEN expression and clinicopathologic features in a population-based series of primary cutaneous melanoma. Int J Cancer 2002; 99: 63–67.

    CAS  PubMed  Google Scholar 

  277. Roh MR, Gupta S, Park KH, Chung KY, Lauss M, Flaherty KT et al. Promoter methylation of PTEN is a significant prognostic factor in melanoma survival. J Invest Dermatol 2016; 136: 1002–1011.

    CAS  PubMed  Google Scholar 

  278. Dhawan P, Singh AB, Ellis DL, Richmond A . Constitutive activation of Akt/protein kinase B in melanoma leads to up-regulation of nuclear factor-kappaB and tumor progression. Cancer Res 2002; 62: 7335–7342.

    CAS  PubMed  Google Scholar 

  279. Dai DL, Martinka M, Li G . Prognostic significance of activated Akt expression in melanoma: a clinicopathologic study of 292 cases. J Clin Oncol 2005; 23: 1473–1482.

    CAS  PubMed  Google Scholar 

  280. Kantrow SM, Boyd AS, Ellis DL, Nanney LB, Richmond A, Shyr Y et al. Expression of activated Akt in benign nevi, Spitz nevi and melanomas. J Cutan Pathol 2007; 34: 593–596.

    PubMed  PubMed Central  Google Scholar 

  281. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H et al. Distinct sets of genetic alterations in melanoma. N Engl J Med 2005; 353: 2135–2147.

    CAS  PubMed  Google Scholar 

  282. Liko D, Hall MN . mTOR in health and in sickness. J Mol Med 2015; 93: 1061–1073.

    CAS  PubMed  Google Scholar 

  283. Laugier F, Finet-Benyair A, Andre J, Rachakonda PS, Kumar R, Bensussan A et al. RICTOR involvement in the PI3K/AKT pathway regulation in melanocytes and melanoma. Oncotarget 2015; 6: 28120–28131.

    PubMed  PubMed Central  Google Scholar 

  284. Karbowniczek M, Spittle CS, Morrison T, Wu H, Henske EP . mTOR is activated in the majority of malignant melanomas. J Invest Dermatol 2008; 128: 980–987.

    CAS  PubMed  Google Scholar 

  285. Khosravi S, Tam KJ, Ardekani GS, Martinka M, McElwee KJ, Ong CJ . eIF4E is an adverse prognostic marker of melanoma patient survival by increasing melanoma cell invasion. J Invest Dermatol 2015; 135: 1358–1367.

    CAS  PubMed  Google Scholar 

  286. Masui K, Cavenee WK, Mischel PS . mTORC2 in the center of cancer metabolic reprogramming. Trends Endocrinol Metab 2014; 25: 364–373.

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Kolesnichenko M, Hong L, Liao R, Vogt PK, Sun P . Attenuation of TORC1 signaling delays replicative and oncogenic RAS-induced senescence. Cell Cycle 2012; 11: 2391–2401.

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Narita M, Young AR, Arakawa S, Samarajiwa SA, Nakashima T, Yoshida S et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 2011; 332: 966–970.

    CAS  PubMed  PubMed Central  Google Scholar 

  289. Laberge RM, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol 2015; 17: 1049–1061.

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Herranz N, Gallage S, Mellone M, Wuestefeld T, Klotz S, Hanley CJ et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol 2015; 17: 1205–1217.

    CAS  PubMed  PubMed Central  Google Scholar 

  291. Damsky WE, Curley DP, Santhanakrishnan M, Rosenbaum LE, Platt JT, Gould Rothberg BE et al. beta-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. Cancer Cell 2011; 20: 741–754.

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Juan J, Muraguchi T, Iezza G, Sears RC, McMahon M . Diminished WNT -> beta-catenin -> c-MYC signaling is a barrier for malignant progression of BRAFV600E-induced lung tumors. Genes Dev 2014; 28: 561–575.

    CAS  PubMed  PubMed Central  Google Scholar 

  293. Rimm DL, Caca K, Hu G, Harrison FB, Fearon ER . Frequent nuclear/cytoplasmic localization of beta-catenin without exon 3 mutations in malignant melanoma. Am J Pathol 1999; 154: 325–329.

    CAS  PubMed  PubMed Central  Google Scholar 

  294. Duffy K, Grossman D . The dysplastic nevus: from historical perspective to management in the modern era: part I. Historical, histologic, and clinical aspects. J Am Acad Dermatol 2012; 67: e1–16.

    Google Scholar 

  295. Duffy K, Grossman D . The dysplastic nevus: from historical perspective to management in the modern era: part II. Molecular aspects and clinical management. J Am Acad Dermatol 2012; 67: 19 e1–12.

    Google Scholar 

  296. Annessi G, Cattaruzza MS, Abeni D, Baliva G, Laurenza M, Macchini V et al. Correlation between clinical atypia and histologic dysplasia in acquired melanocytic nevi. J Am Acad Dermatol 2001; 45: 77–85.

    CAS  PubMed  Google Scholar 

  297. Rhodes AR, Harrist TJ, Day CL, Mihm MC Jr, Fitzpatrick TB, Sober AJ . Dysplastic melanocytic nevi in histologic association with 234 primary cutaneous melanomas. J Am Acad Dermatol 1983; 9: 563–574.

    CAS  PubMed  Google Scholar 

  298. Sagebiel RW . Melanocytic nevi in histologic association with primary cutaneous melanoma of superficial spreading and nodular types: effect of tumor thickness. J Invest Dermatol 1993; 100: 322S–325S.

    CAS  PubMed  Google Scholar 

  299. Hastrup N, Osterlind A, Drzewiecki KT, Hou-Jensen K . The presence of dysplastic nevus remnants in malignant melanomas. A population-based study of 551 malignant melanomas. Am J Dermatopathol 1991; 13: 378–385.

    CAS  PubMed  Google Scholar 

  300. Black WC . Residual dysplastic and other nevi in superficial spreading melanoma. Clinical correlations and association with sun damage. Cancer 1988; 62: 163–173.

    CAS  PubMed  Google Scholar 

  301. Goodson AG, Florell SR, Boucher KM, Grossman D . A decade of melanomas: identification of factors associated with delayed detection in an academic group practice. Dermatol Surg 2011; 37: 1620–1630.

    CAS  PubMed  Google Scholar 

  302. Papp T, Schipper H, Kumar K, Schiffmann D, Zimmermann R . Mutational analysis of the BRAF gene in human congenital and dysplastic melanocytic naevi. Melanoma Res 2005; 15: 401–407.

    CAS  PubMed  Google Scholar 

  303. Saroufim M, Habib R, Karram S, Youssef Massad C, Taraif S, Loya A et al. BRAF analysis on a spectrum of melanocytic neoplasms: an epidemiological study across differing UV regions. Am J Dermatopathol 2014; 36: 68–73.

    PubMed  Google Scholar 

  304. Arumi-Uria M, McNutt NS, Finnerty B . Grading of atypia in nevi: correlation with melanoma risk. Mod Pathol 2003; 16: 764–771.

    PubMed  Google Scholar 

  305. Ahmed I, Piepkorn MW, Rabkin MS, Meyer LJ, Feldkamp M, Goldgar DE et al. Histopathologic characteristics of dysplastic nevi. Limited association of conventional histologic criteria with melanoma risk group. J Am Acad Dermatol 1990; 22: 727–733.

    CAS  PubMed  Google Scholar 

  306. Michaloglou C, Vredeveld LC, Mooi WJ, Peeper DS . BRAF(E600) in benign and malignant human tumours. Oncogene 2008; 27: 877–895.

    CAS  PubMed  Google Scholar 

  307. Lucas CR, Sanders LL, Murray JC, Myers SA, Hall RP, Grichnik JM . Early melanoma detection: nonuniform dermoscopic features and growth. J Am Acad Dermatol 2003; 48: 663–671.

    PubMed  Google Scholar 

  308. Goodson AG, Florell SR, Hyde M, Bowen GM, Grossman D . Comparative analysis of total body and dermatoscopic photographic monitoring of nevi in similar patient populations at risk for cutaneous melanoma. Dermatol Surg 2010; 36: 1087–1098.

    CAS  PubMed  PubMed Central  Google Scholar 

  309. Tschandl P, Berghoff AS, Preusser M, Pammer J, Pehamberger H, Kittler H . Impact of oncogenic BRAF mutations and p16 expression on the growth rate of early melanomas and naevi in vivo. Br J Dermatol 2016; 174: 364–370.

    CAS  PubMed  Google Scholar 

  310. Zampino MR, Corazza M, Costantino D, Mollica G, Virgili A . Are melanocytic nevi influenced by pregnancy? A dermoscopic evaluation. Dermatol Surg 2006; 32: 1497–1504.

    CAS  PubMed  Google Scholar 

  311. Rubegni P, Sbano P, Burroni M, Cevenini G, Bocchi C, Severi FM et al. Melanocytic skin lesions and pregnancy: digital dermoscopy analysis. Skin Res Technol 2007; 13: 143–147.

    PubMed  Google Scholar 

  312. Pennoyer JW, Grin CM, Driscoll MS, Dry SM, Walsh SJ, Gelineau JP et al. Changes in size of melanocytic nevi during pregnancy. J Am Acad Dermatol 1997; 36: 378–382.

    CAS  PubMed  Google Scholar 

  313. Lee HJ, Ha SJ, Lee SJ, Kim JW . Melanocytic nevus with pregnancy-related changes in size accompanied by apoptosis of nevus cells: a case report. J Am Acad Dermatol 2000; 42: 936–938.

    CAS  PubMed  Google Scholar 

  314. Chan MP, Chan MM, Tahan SR . Melanocytic nevi in pregnancy: histologic features and Ki-67 proliferation index. J Cutan Pathol 2010; 37: 843–851.

    PubMed  Google Scholar 

  315. Rudolph P, Tronnier M, Menzel R, Moller M, Parwaresch R . Enhanced expression of Ki-67, topoisomerase IIalpha, PCNA, p53 and p21WAF1/Cip1 reflecting proliferation and repair activity in UV-irradiated melanocytic nevi. Hum Pathol 1998; 29: 1480–1487.

    CAS  PubMed  Google Scholar 

  316. Tronnier M, Rudolph P, Koser T, Raasch B, Brinckmann J . One single erythemagenic UV irradiation is more effective in increasing the proliferative activity of melanocytes in melanocytic naevi compared with fractionally applied high doses. Br J Dermatol 1997; 137: 534–539.

    CAS  PubMed  Google Scholar 

  317. King R, Hayzen BA, Page RN, Googe PB, Zeagler D, Mihm MC Jr . Recurrent nevus phenomenon: a clinicopathologic study of 357 cases and histologic comparison with melanoma with regression. Mod Pathol 2009; 22: 611–617.

    CAS  PubMed  Google Scholar 

  318. Fox JC, Reed JA, Shea CR . The recurrent nevus phenomenon: a history of challenge, controversy, and discovery. Arch Pathol Lab Med 2011; 135: 842–846.

    PubMed  Google Scholar 

  319. Herlyn M, Thurin J, Balaban G, Bennicelli JL, Herlyn D, Elder DE et al. Characteristics of cultured human melanocytes isolated from different stages of tumor progression. Cancer Res 1985; 45: 5670–5676.

    CAS  PubMed  Google Scholar 

  320. Herlyn M, Clark WH, Rodeck U, Mancianti ML, Jambrosic J, Koprowski H . Biology of tumor progression in human melanocytes. Lab Invest 1987; 56: 461–474.

    CAS  PubMed  Google Scholar 

  321. Mancianti ML, Herlyn M, Weil D, Jambrosic J, Rodeck U, Becker D et al. Growth and phenotypic characteristics of human nevus cells in culture. J Invest Dermatol 1988; 90: 134–141.

    CAS  PubMed  Google Scholar 

  322. O'Rourke EA, Balzer B, Barry CI, Frishberg DP . Nevic mitoses: a review of 1041 cases. Am J Dermatopathol 2013; 35: 30–33.

    PubMed  Google Scholar 

  323. Glatz K, Hartmann C, Antic M, Kutzner H . Frequent mitotic activity in banal melanocytic nevi uncovered by immunohistochemical analysis. Am J Dermatopathol 2010; 32: 643–649.

    PubMed  Google Scholar 

  324. Nasr MR, El-Zammar O . Comparison of pHH3, Ki-67, and survivin immunoreactivity in benign and malignant melanocytic lesions. Am J Dermatopathol 2008; 30: 117–122.

    PubMed  Google Scholar 

  325. Florell SR, Bowen AR, Hanks AN, Murphy KJ, Grossman D . Proliferation, apoptosis, and survivin expression in a spectrum of melanocytic nevi. J Cutan Pathol 2005; 32: 45–49.

    PubMed  PubMed Central  Google Scholar 

  326. Sprecher E, Bergman R, Meilick A, Kerner H, Manov L, Reiter I et al. Apoptosis, Fas and Fas-ligand essssxpression in melanocytic tumors. J Cutan Pathol 1999; 26: 72–77.

    CAS  PubMed  Google Scholar 

  327. Tomasetti C, Vogelstein B . Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 2015; 347: 78–81.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the following funding sources: R01 CA196660, P50 CA121974, P01CA128814, the Melanoma Research Alliance, the Melanoma Research Foundation and the Hervey Family Foundation (to MB).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W E Damsky or M Bosenberg.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damsky, W., Bosenberg, M. Melanocytic nevi and melanoma: unraveling a complex relationship. Oncogene 36, 5771–5792 (2017). https://doi.org/10.1038/onc.2017.189

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.189

This article is cited by

Search

Quick links