Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Oxidative stress in prostate cancer: changing research concepts towards a novel paradigm for prevention and therapeutics

A Corrigendum to this article was published on 12 November 2013

Abstract

A mounting body of evidence suggests that increased production of reactive oxygen species (ROS) is linked to aging processes and to the etiopathogenesis of aging-related diseases, such as cancer, diabetes, atherosclerosis and degenerative diseases like Parkinson’s and Alzheimer’s. Excess ROS are deleterious to normal cells, while in cancer cells, they can lead to accelerated tumorigenesis. In prostate cancer (PC), oxidative stress, an innate key event characterized by supraphysiological ROS concentrations, has been identified as one of the hallmarks of the aggressive disease phenotype. Specifically, oxidative stress is associated with PC development, progression and the response to therapy. Nevertheless, a thorough understanding of the relationships between oxidative stress, redox homeostasis and the activation of proliferation and survival pathways in healthy and malignant prostate remains elusive. Moreover, the failure of chemoprevention strategies targeting oxidative stress reduced the level of interest in the field after the recent negative results of the Selenium and Vitamin E Cancer Prevention Trial (SELECT) trial. Therefore, a revisit of the concept is warranted and several key issues need to be addressed: The consequences of changes in ROS levels with respect to altered redox homeostasis and redox-regulated processes in PC need to be established. Similarly, the key molecular events that cause changes in the generation of ROS in PC and the role for therapeutic strategies aimed at ameliorating oxidative stress need to be identified. Moreover, the issues whether genetic/epigenetic susceptibility for oxidative stress-induced prostatic carcinogenesis is an individual phenomenon and what measurements adequately quantify prostatic oxidative stress are also crucial. Addressing these matters will provide a more rational basis to improve the design of redox-related clinical trials in PC. This review summarizes accepted concepts and principles in redox research, and explores their implications and limitations in PC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Droge W . Free radicals in the physiological control of cell function. Physiol Rev 2002; 82: 47–95.

    Article  CAS  PubMed  Google Scholar 

  2. Winterbourn CC . Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 2008; 4: 278–286.

    Article  CAS  PubMed  Google Scholar 

  3. Kumar B, Koul S, Khandrika L, Meacham RB, Koul HK . Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res 2008; 68: 1777–1785.

    Article  CAS  PubMed  Google Scholar 

  4. Hirst DG, Robson T . Nitrosative stress in cancer therapy. Front Biosci 2007; 12: 3406–3418.

    Article  CAS  PubMed  Google Scholar 

  5. Murphy MP . How mitochondria produce reactive oxygen species. Biochem J 2009; 417: 1–13.

    Article  CAS  PubMed  Google Scholar 

  6. Schewe T . 15-Lipoxygenase-1: a prooxidant enzyme. Biol Chem 2002; 383: 365–374.

    Article  CAS  PubMed  Google Scholar 

  7. Bedard K, Krause KH . The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87: 245–313.

    Article  CAS  PubMed  Google Scholar 

  8. Lu JP, Monardo L, Bryskin I, Hou ZF, Trachtenberg J, Wilson BC et al. Androgens induce oxidative stress and radiation resistance in prostate cancer cells though NADPH oxidase. Prostate Cancer Prostatic Dis 2010; 13: 39–46.

    Article  CAS  PubMed  Google Scholar 

  9. Khandrika L, Kumar B, Koul S, Maroni P, Koul HK . Oxidative stress in prostate cancer. Cancer Lett 2009; 282: 125–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gupta-Elera G, Garrett AR, Robison RA, O'Neill KL . The role of oxidative stress in prostate cancer. Eur J Cancer Prev 2012; 21: 155–162.

    Article  CAS  PubMed  Google Scholar 

  11. Bostwick DG, Burke HB, Djakiew D, Euling S, Ho SM, Landolph J et al. Human prostate cancer risk factors. Cancer 2004; 101 (Suppl): 2371–2490.

    Article  CAS  PubMed  Google Scholar 

  12. Kroemer G . Mitochondria in cancer. Oncogene 2006; 25: 4630–4632.

    Article  CAS  PubMed  Google Scholar 

  13. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J . Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 2004; 266: 37–56.

    Article  CAS  PubMed  Google Scholar 

  14. Finkel T, Serrano M, Blasco MA . The common biology of cancer and ageing. Nature 2007; 448: 767–774.

    Article  CAS  PubMed  Google Scholar 

  15. Karayi MK, Markham AF . Molecular biology of prostate cancer. Prostate Cancer Prostatic Dis 2004; 7: 6–20.

    Article  CAS  PubMed  Google Scholar 

  16. Cazares LH, Drake RR, Esquela-Kirscher A, Lance RS, Semmes OJ, Troyer DA . Molecular pathology of prostate cancer. Cancer Biomark 2010; 9: 441–459.

    Article  CAS  PubMed  Google Scholar 

  17. Lin X, Asgari K, Putzi MJ, Gage WR, Yu X, Cornblatt BS et al. Reversal of GSTP1 CpG island hypermethylation and reactivation of pi-class glutathione S-transferase (GSTP1) expression in human prostate cancer cells by treatment with procainamide. Cancer Res 2001; 61: 8611–8616.

    CAS  PubMed  Google Scholar 

  18. Yu S, Khor TO, Cheung KL, Li W, Wu TY, Huang Y et al. Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice. PLoS One 2010; 5: e8579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Frohlich DA, McCabe MT, Arnold RS, Day ML . The role of Nrf2 in increased reactive oxygen species and DNA damage in prostate tumorigenesis. Oncogene 2008; 27: 4353–4362.

    Article  CAS  PubMed  Google Scholar 

  20. Kobayashi M, Yamamoto M . Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal 2005; 7: 385–394.

    Article  CAS  PubMed  Google Scholar 

  21. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 1997; 236: 313–322.

    Article  CAS  PubMed  Google Scholar 

  22. Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S . Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 2002; 62: 5196–5203.

    CAS  PubMed  Google Scholar 

  23. Costello LC, Franklin RB . The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Mol Cancer 2006; 5: 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Franklin RB, Milon B, Feng P, Costello LC . Zinc and zinc transporters in normal prostate and the pathogenesis of prostate cancer. Front Biosci 2005; 10: 2230–2239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Starkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE, Patel MS et al. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci 2004; 24: 7779–7788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS . Calcium, ATP, and ROS: a mitochondrial love–hate triangle. Am J Physiol Cell Physiol 2004; 287: C817–C833.

    Article  CAS  PubMed  Google Scholar 

  27. Harman D . Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956; 11: 298–300.

    Article  CAS  PubMed  Google Scholar 

  28. Costello LC, Liu Y, Zou J, Franklin RB . Evidence for a zinc uptake transporter in human prostate cancer cells which is regulated by prolactin and testosterone. J Biol Chem 1999; 274: 17499–17504.

    Article  CAS  PubMed  Google Scholar 

  29. Whelan KF, Lu JP, Fridman E, Wolf A, Honig A, Paulin G et al. What can surrogate tissues tell us about the oxidative stress status of the prostate? A hypothesis-generating in vivo study. PLoS One 2010; 5: e15880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ripple MO, Henry WF, Rago RP, Wilding G . Prooxidant-antioxidant shift induced by androgen treatment of human prostate carcinoma cells. J Natl Cancer Inst 1997; 89: 40–48.

    Article  CAS  PubMed  Google Scholar 

  31. Sun XY, Donald SP, Phang JM . Testosterone and prostate specific antigen stimulate generation of reactive oxygen species in prostate cancer cells. Carcinogenesis 2001; 22: 1775–1780.

    Article  CAS  PubMed  Google Scholar 

  32. Pinthus JH, Bryskin I, Trachtenberg J, Lu JP, Singh G, Fridman E et al. Androgen induces adaptation to oxidative stress in prostate cancer: implications for treatment with radiation therapy. Neoplasia 2007; 9: 68–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin H, Lu JP, Laflamme P, Qiao S, Shayegan B, Bryskin I et al. Inter-related in vitro effects of androgens, fatty acids and oxidative stress in prostate cancer: a mechanistic model supporting prevention strategies. Int J Oncol 2010; 37: 761–766.

    Article  CAS  PubMed  Google Scholar 

  34. Pinthus JH, Lu JP, Bidaisee LA, Lin H, Bryskine I, Gupta RS et al. Androgen-dependent regulation of medium and long chain fatty acids uptake in prostate cancer. Prostate 2007; 67: 1330–1338.

    Article  CAS  PubMed  Google Scholar 

  35. Kikuchi H, Hikage M, Miyashita H, Fukumoto M . NADPH oxidase subunit, gp91(phox) homologue, preferentially expressed in human colon epithelial cells. Gene 2000; 254: 237–243.

    Article  CAS  PubMed  Google Scholar 

  36. Brar SS, Corbin Z, Kennedy TP, Hemendinger R, Thornton L, Bommarius B et al. NOX5 NAD(P)H oxidase regulates growth and apoptosis in DU 145 prostate cancer cells. Am J Physiol Cell Physiol 2003; 285: C353–C369.

    Article  CAS  PubMed  Google Scholar 

  37. Tam NN, Gao Y, Leung YK, Ho SM . Androgenic regulation of oxidative stress in the rat prostate: involvement of NAD(P)H oxidases and antioxidant defense machinery during prostatic involution and regrowth. Am J Pathol 2003; 163: 2513–2522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, Halsey J et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet 2009; 373: 1083–1096.

    Article  PubMed  Google Scholar 

  39. Lu JP, Hou ZF, Duivenvoorden WC, Whelan K, Honig A, Pinthus JH . Adiponectin inhibits oxidative stress in human prostate carcinoma cells. Prostate Cancer Prostatic Dis 2012; 15: 28–35.

    Article  CAS  PubMed  Google Scholar 

  40. Masko EM, Allott EH, Freedland SJ . The relationship between nutrition and prostate cancer: is more always better? Eur Urol 2013; 63: 810–820.

    Article  CAS  PubMed  Google Scholar 

  41. Koutros S, Beane Freeman LE, Lubin JH, Heltshe SL, Andreotti G, Barry KH et al. Risk of total and aggressive prostate cancer and pesticide use in the agricultural health study. Am J Epidemiol 2013; 177: 59–74.

    Article  PubMed  Google Scholar 

  42. Santti R, Newbold RR, Makela S, Pylkkanen L, McLachlan JA . Developmental estrogenization and prostatic neoplasia. Prostate 1994; 24: 67–78.

    Article  CAS  PubMed  Google Scholar 

  43. Prins GS . Endocrine disruptors and prostate cancer risk. Endocr Relat Cancer 2008; 15: 649–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Felty Q, Xiong WC, Sun D, Sarkar S, Singh KP, Parkash J et al. Estrogen-induced mitochondrial reactive oxygen species as signal-transducing messengers. Biochemistry 2005; 44: 6900–6909.

    Article  CAS  PubMed  Google Scholar 

  45. Venditti P, Di Meo S . Thyroid hormone-induced oxidative stress. Cell Mol Life Sci 2006; 63: 414–434.

    Article  CAS  PubMed  Google Scholar 

  46. Stephens FO . Phytoestrogens and prostate cancer: possible preventive role. Med J Aust 1997; 167: 138–140.

    Article  CAS  PubMed  Google Scholar 

  47. Mishra SI, Dickerson V, Najm W . Phytoestrogens and breast cancer prevention: what is the evidence? Am J Obstet Gynecol 2003; 188 (Suppl): S66–S70.

    Article  CAS  PubMed  Google Scholar 

  48. Strom SS, Yamamura Y, Duphorne CM, Spitz MR, Babaian RJ, Pillow PC et al. Phytoestrogen intake and prostate cancer: a case-control study using a new database. Nutr Cancer 1999; 33: 20–25.

    Article  CAS  PubMed  Google Scholar 

  49. Coussens LM, Werb Z . Inflammation and cancer. Nature 2002; 420: 860–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dennis LK, Lynch CF, Torner JC . Epidemiologic association between prostatitis and prostate cancer. Urology 2002; 60: 78–83.

    Article  PubMed  Google Scholar 

  51. Harris MT, Feldberg RS, Lau KM, Lazarus NH, Cochrane DE . Expression of proinflammatory genes during estrogen-induced inflammation of the rat prostate. Prostate 2000; 44: 19–25.

    Article  CAS  PubMed  Google Scholar 

  52. Klein EA, Casey G, Silverman R . Genetic susceptibility and oxidative stress in prostate cancer: integrated model with implications for prevention. Urology 2006; 68: 1145–1151.

    Article  PubMed  Google Scholar 

  53. Bostwick DG, Alexander EE, Singh R, Shan A, Qian J, Santella RM et al. Antioxidant enzyme expression and reactive oxygen species damage in prostatic intraepithelial neoplasia and cancer. Cancer 2000; 89: 123–134.

    Article  CAS  PubMed  Google Scholar 

  54. Oberley TD, Zhong W, Szweda LI, Oberley LW . Localization of antioxidant enzymes and oxidative damage products in normal and malignant prostate epithelium. Prostate 2000; 44: 144–155.

    Article  CAS  PubMed  Google Scholar 

  55. Donkena KV, Young CY, Tindall DJ . Oxidative stress and DNA methylation in prostate cancer. Obstet Gynecol Int 2010; 2010: 302051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tyurina YY, Tyurin VA, Epperly MW, Greenberger JS, Kagan VE . Oxidative lipidomics of gamma-irradiation-induced intestinal injury. Free Radic Biol Med 2008; 44: 299–314.

    Article  CAS  PubMed  Google Scholar 

  57. Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P . Redox regulation of cell survival. Antioxid Redox Signal 2008; 10: 1343–1374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Poole LB, Karplus PA, Claiborne A . Protein sulfenic acids in redox signaling. Annu Rev Pharmacol Toxicol 2004; 44: 325–347.

    Article  CAS  PubMed  Google Scholar 

  59. Ali FE, Barnham KJ, Barrow CJ, Separovic F . Metal catalyzed oxidation of tyrosine residues by different oxidation systems of copper/hydrogen peroxide. J Inorg Biochem 2004; 98: 173–184.

    Article  CAS  PubMed  Google Scholar 

  60. Suzuki YJ, Carini M, Butterfield DA . Protein carbonylation. Antioxid Redox Signal 2010; 12: 323–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Turpaev KT . Reactive oxygen species and regulation of gene expression. Biochemistry (Moscow) 2002; 67: 281–292.

    Article  CAS  Google Scholar 

  62. England K, Cotter TG . Direct oxidative modifications of signalling proteins in mammalian cells and their effects on apoptosis. Redox Rep 2005; 10: 237–245.

    Article  CAS  PubMed  Google Scholar 

  63. Cross JV, Templeton DJ . Regulation of signal transduction through protein cysteine oxidation. Antioxid Redox Signal 2006; 8: 1819–1827.

    Article  CAS  PubMed  Google Scholar 

  64. Cho SH, Lee CH, Ahn Y, Kim H, Kim H, Ahn CY et al. Redox regulation of PTEN and protein tyrosine phosphatases in H(2)O(2) mediated cell signaling. FEBS Lett 2004; 560: 7–13.

    Article  CAS  PubMed  Google Scholar 

  65. Squier TC . Redox modulation of cellular metabolism through targeted degradation of signaling proteins by the proteasome. Antioxid Redox Signal 2006; 8: 217–228.

    Article  CAS  PubMed  Google Scholar 

  66. de Bruin EC, Medema JP . Apoptosis and non-apoptotic deaths in cancer development and treatment response. Cancer Treat Rev 2008; 34: 737–749.

    Article  PubMed  Google Scholar 

  67. Simon HU, Haj-Yehia A, Levi-Schaffer F . Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 2000; 5: 415–418.

    Article  CAS  PubMed  Google Scholar 

  68. Shiota M, Yokomizo A, Naito S . Pro-survival and anti-apoptotic properties of androgen receptor signaling by oxidative stress promote treatment resistance in prostate cancer. Endocr Relat Cancer 2012; 19: R243–R253.

    Article  CAS  PubMed  Google Scholar 

  69. Kongara S, Karantza V . The interplay between autophagy and ROS in tumorigenesis. Front Oncol 2012; 2: 171.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mohamed MM, Sloane BF . Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 2006; 6: 764–775.

    Article  CAS  PubMed  Google Scholar 

  71. Fernandez PL, Farre X, Nadal A, Fernandez E, Peiro N, Sloane BF et al. Expression of cathepsins B and S in the progression of prostate carcinoma. Int J Cancer 2001; 95: 51–55.

    Article  CAS  PubMed  Google Scholar 

  72. Plaks V, Posen Y, Mazor O, Brandis A, Scherz A, Salomon Y . Homologous adaptation to oxidative stress induced by the photosensitized Pd-bacteriochlorophyll derivative (WST11) in cultured endothelial cells. J Biol Chem 2004; 279: 45713–45720.

    Article  CAS  PubMed  Google Scholar 

  73. Pagliarulo V, Bracarda S, Eisenberger MA, Mottet N, Schroder FH, Sternberg CN et al. Contemporary role of androgen deprivation therapy for prostate cancer. Eur Urol 2012; 61: 11–25.

    Article  CAS  PubMed  Google Scholar 

  74. Tabassum A, Bristow RG, Venkateswaran V . Ingestion of selenium and other antioxidants during prostate cancer radiotherapy: a good thing? Cancer Treat Rev 2010; 36: 230–234.

    Article  CAS  PubMed  Google Scholar 

  75. Steinberg J, Oyasu R, Lang S, Sintich S, Rademaker A, Lee C et al. Intracellular levels of SGP-2 (Clusterin) correlate with tumor grade in prostate cancer. Clin Cancer Res 1997; 3: 1707–1711.

    CAS  PubMed  Google Scholar 

  76. July LV, Akbari M, Zellweger T, Jones EC, Goldenberg SL, Gleave ME . Clusterin expression is significantly enhanced in prostate cancer cells following androgen withdrawal therapy. Prostate 2002; 50: 179–188.

    Article  CAS  PubMed  Google Scholar 

  77. Djeu JY, Wei S . Clusterin and chemoresistance. Adv Cancer Res 2009; 105: 77–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zellweger T, Kiyama S, Chi K, Miyake H, Adomat H, Skov K et al. Overexpression of the cytoprotective protein clusterin decreases radiosensitivity in the human LNCaP prostate tumour model. BJU Int 2003; 92: 463–469.

    Article  CAS  PubMed  Google Scholar 

  79. Miyake H, Hara I, Gleave ME, Eto H . Protection of androgen-dependent human prostate cancer cells from oxidative stress-induced DNA damage by overexpression of clusterin and its modulation by androgen. Prostate 2004; 61: 318–323.

    Article  CAS  PubMed  Google Scholar 

  80. Shiota M, Zoubeidi A, Kumano M, Beraldi E, Naito S, Nelson CC et al. Clusterin is a critical downstream mediator of stress-induced YB-1 transactivation in prostate cancer. Mol Cancer Res 2011; 9: 1755–1766.

    Article  CAS  PubMed  Google Scholar 

  81. Klein EA, Thompson IM Jr., Tangen CM, Crowley JJ, Lucia MS, Goodman PJ et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 2011; 306: 1549–1556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Moyad MA . Selenium and vitamin E supplements for prostate cancer: evidence or embellishment? Urology 2002; 59 (Suppl 1): 9–19.

    Article  PubMed  Google Scholar 

  83. Yang CS, Suh N, Kong AN . Does vitamin E prevent or promote cancer? Cancer Prev Res (Philadelphia) 2012; 5: 701–705.

    Article  CAS  Google Scholar 

  84. Martinez EE, Anderson PD, Logan M, Abdulkadir SA . Antioxidant treatment promotes prostate epithelial proliferation in Nkx3.1 mutant mice. PLoS One 2012; 7: e46792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN . Bilirubin is an antioxidant of possible physiological importance. Science 1987; 235: 1043–1046.

    Article  CAS  PubMed  Google Scholar 

  86. Ames BN, Cathcart R, Schwiers E, Hochstein P . Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci USA 1981; 78: 6858–6862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Winterbourn CC, Hampton MB . Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 2008; 45: 549–561.

    Article  CAS  PubMed  Google Scholar 

  88. McBean GJ, Flynn J . Molecular mechanisms of cystine transport. Biochem Soc Trans 2001; 29 (Part 6): 717–722.

    Article  CAS  PubMed  Google Scholar 

  89. Barber NJ, Barber J . Lycopene and prostate cancer. Prostate Cancer Prostatic Dis 2002; 5: 6–12.

    Article  CAS  PubMed  Google Scholar 

  90. Giovannucci E, Ascherio A, Rimm EB, Stampfer MJ, Colditz GA, Willett WC . Intake of carotenoids and retinol in relation to risk of prostate cancer. J Natl Cancer Inst 1995; 87: 1767–1776.

    Article  CAS  PubMed  Google Scholar 

  91. Constantinou C, Hyatt JA, Vraka PS, Papas A, Papas KA, Neophytou C et al. Induction of caspase-independent programmed cell death by vitamin E natural homologs and synthetic derivatives. Nutr Cancer 2009; 61: 864–874.

    Article  CAS  PubMed  Google Scholar 

  92. Moghadaszadeh B, Beggs AH . Selenoproteins and their impact on human health through diverse physiological pathways. Physiology (Bethesda, MD) 2006; 21: 307–315.

    CAS  Google Scholar 

  93. Galati G, O'Brien PJ . Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med 2004; 37: 287–303.

    Article  CAS  PubMed  Google Scholar 

  94. Veech RL . The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids 2004; 70: 309–319.

    Article  CAS  PubMed  Google Scholar 

  95. Mavropoulos JC, Isaacs WB, Pizzo SV, Freedland SJ . Is there a role for a low-carbohydrate ketogenic diet in the management of prostate cancer? Urology 2006; 68: 15–18.

    Article  PubMed  Google Scholar 

  96. Hoque A, Ambrosone CB, Till C, Goodman PJ, Tangen C, Kristal A et al. Serum oxidized protein and prostate cancer risk within the Prostate Cancer Prevention Trial. Cancer Prev Res (Philadelphia) 2010; 3: 478–483.

    Article  CAS  Google Scholar 

  97. Marshall JR, Tangen CM, Sakr WA, Wood DP Jr., Berry DL, Klein EA et al. Phase III trial of selenium to prevent prostate cancer in men with high-grade prostatic intraepithelial neoplasia: SWOG S9917. Cancer Prev Res (Philadelphia) 2011; 4: 1761–1769.

    Article  CAS  Google Scholar 

  98. Gaziano JM, Glynn RJ, Christen WG, Kurth T, Belanger C, MacFadyen J et al. Vitamins E and C in the prevention of prostate and total cancer in men: the Physicians’ Health Study II randomized controlled trial. JAMA 2009; 301: 52–62.

    Article  CAS  PubMed  Google Scholar 

  99. Heinonen OP, Albanes D, Virtamo J, Taylor PR, Huttunen JK, Hartman AM et al. Prostate cancer and supplementation with alpha-tocopherol and beta-carotene: incidence and mortality in a controlled trial. J Natl Cancer Inst 1998; 90: 440–446.

    Article  CAS  PubMed  Google Scholar 

  100. Meyer F, Galan P, Douville P, Bairati I, Kegle P, Bertrais S et al. Antioxidant vitamin and mineral supplementation and prostate cancer prevention in the SU.VI.MAX trial. Int J Cancer 2005; 116: 182–186.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J H Pinthus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paschos, A., Pandya, R., Duivenvoorden, W. et al. Oxidative stress in prostate cancer: changing research concepts towards a novel paradigm for prevention and therapeutics. Prostate Cancer Prostatic Dis 16, 217–225 (2013). https://doi.org/10.1038/pcan.2013.13

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2013.13

Keywords

This article is cited by

Search

Quick links