Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atypical perineuronal nets in the CA2 region interfere with social memory in a mouse model of social dysfunction

A Correction to this article was published on 22 April 2022

This article has been updated

Abstract

Social memory dysfunction is an especially devastating symptom of many neuropsychiatric disorders, which makes understanding the cellular and molecular processes that contribute to such abnormalities important. Evidence suggests that the hippocampus, particularly the CA2 region, plays an important role in social memory. We sought to identify potential mechanisms of social memory dysfunction in the hippocampus by investigating features of neurons, glia, and the extracellular matrix (ECM) of BTBR mice, an inbred mouse strain with deficient social memory. The CA2 is known to receive inputs from dentate gyrus adult-born granule cells (abGCs), neurons known to participate in social memory, so we examined this cell population and found fewer abGCs, as well as fewer axons from abGCs in the CA2 of BTBR mice compared to controls. We also found that BTBR mice had fewer pyramidal cell dendritic spines, in addition to fewer microglia and astrocytes, in the CA2 compared to controls. Along with diminished neuronal and glial elements, we found atypical perineuronal nets (PNNs), specialized ECM structures that regulate plasticity, in the CA2 of BTBR mice. By diminishing PNNs in the CA2 of BTBR mice to control levels, we observed a partial restoration of social memory. Our findings suggest that the CA2 region of BTBR mice exhibits multiple cellular and extracellular abnormalities and identify atypical PNNs as one mechanism producing social memory dysfunction, although the contribution of reduced abGC afferents, pyramidal cell dendritic spine, and glial cell numbers remains unexplored.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BTBR mice have impairments in sociability and social memory.
Fig. 2: BTBR mice have fewer mossy fibers from abGCs to the CA2.
Fig. 3: BTBR mice have a smaller CA2 region as well as fewer pyramidal cell dendritic spines, microglia, and astrocytes.
Fig. 4: BTBR mice have high WFA+ volume and intensity in the CA2 but not the vCA1.
Fig. 5: Reducing CA2 PNNs in control mice impairs social memory, while reducing PNNs in BTBR mice to control values partially rescues social memory impairment.

Similar content being viewed by others

Change history

References

  1. Williams DL, Goldstein G, Minshew NJ. Impaired memory for faces and social scenes in autism: clinical implications of memory dysfunction. Arch Clin Neuropsychol. 2005;20:1–15.

    Article  PubMed  Google Scholar 

  2. Porcelli S, Van Der Wee N, van der Werff S, Aghajani M, Glennon JC, van Heukelum S et al. Social brain, social dysfunction and social withdrawal. Neurosci Biobehav Rev. 2019;97:10–33.

  3. Kurtz MM, Bronfeld M, Rose J. Cognitive and social cognitive predictors of change in objective versus subjective quality-of-life in rehabilitation for schizophrenia. Psychiatry Res. 2012;200:102–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. García-Casal JA, Goñi-Imizcoz M, Perea-Bartolomé MV, Soto-Pérez F, Smith SJ, Calvo-Simal S, et al. The efficacy of emotion recognition rehabilitation for people with Alzheimer’s disease. J Alzheimers Dis. 2017;57:937–51.

    Article  PubMed  Google Scholar 

  5. Kogan JH, Frankland PW, Silva AJ. Long-term memory underlying hippocampus-dependent social recognition in mice. Hippocampus. 2000;10:47–56.

    Article  CAS  PubMed  Google Scholar 

  6. Montagrin A, Saiote C, Schiller D. The social hippocampus. Hippocampus. 2018;28:672–9.

    Article  PubMed  Google Scholar 

  7. Sheline YI, Mittler BL, Mintun MA. The hippocampus and depression. Eur Psychiatry. 2002;17:300–5.

    Article  PubMed  Google Scholar 

  8. Mak E, Gabel S, Su L, Williams GB, Arnold R, Passamonti L, et al. Multi-modal MRI investigation of volumetric and microstructural changes in the hippocampus and its subfields in mild cognitive impairment, Alzheimer’s disease, and dementia with Lewy bodies. Int Psychogeriatr. 2017;29:545–55.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Haukvik UK, Tamnes CK, Söderman E, Agartz I. Neuroimaging hippocampal subfields in schizophrenia and bipolar disorder: a systematic review and meta-analysis. J Psychiatr Res. 2018;104:217–26.

    Article  PubMed  Google Scholar 

  10. Hitti FL, Siegelbaum SA. The hippocampal CA2 region is essential for social memory. Nature. 2014;508:88–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stevenson EL, Caldwell HK. Lesions to the CA2 region of the hippocampus impair social memory in mice. Eur J Neurosci. 2014;40:3294–301.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Smith AS, Williams Avram SK, Cymerblit-Sabba A, Song J, Young WS. Targeted activation of the hippocampal CA2 area strongly enhances social memory. Mol Psychiatry. 2016;21:1137–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meira T, Leroy F, Buss EW, Oliva A, Park J, Siegelbaum SA. A hippocampal circuit linking dorsal CA2 to ventral CA1 critical for social memory dynamics. Nat Commun. 2018;9:4163.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Monteiro BMM, Moreira FA, Massensini AR, Moraes MFD, Pereira GS. Enriched environment increases neurogenesis and improves social memory persistence in socially isolated adult mice. Hippocampus. 2014;24:239–48.

    Article  PubMed  Google Scholar 

  15. Garrett L, Zhang J, Zimprich A, Niedermeier KM, Fuchs H, Gailus-Durner V, et al. Conditional reduction of adult born doublecortin-positive neurons reversibly impairs selective behaviors. Front Behav Neurosci. 2015;9:302.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pereira-Caixeta AR, Guarnieri LO, Pena RR, Dias TL, Pereira GS. Neurogenesis inhibition prevents enriched environment to prolong and strengthen social recognition memory, but not to increase BdNF expression. Mol Neurobiol. 2017;54:3309–16.

    Article  CAS  PubMed  Google Scholar 

  17. Pereira-Caixeta AR, Guarnieri LO, Medeiros DC, Mendes EMAM, Ladeira LCD, Pereira MT, et al. Inhibiting constitutive neurogenesis compromises long-term social recognition memory. Neurobiol Learn Mem. 2018;155:92–103.

    Article  PubMed  Google Scholar 

  18. Cope EC, Waters RC, Diethorn EJ, Pagliai KA, Dias CG, Tsuda M, et al. Adult-born neurons in the hippocampus are essential for social memory maintenance. eNeuro. 2020;7:ENEURO.0182-20.2020.

  19. Llorens-Martín M, Jurado-Arjona J, Avila J, Hernández F. Novel connection between newborn granule neurons and the hippocampal CA2 field. Exp Neurol. 2015;263:285–92.

    Article  PubMed  Google Scholar 

  20. Lensjø KK, Lepperød ME, Dick G, Hafting T, Fyhn M. Removal of perineuronal nets unlocks juvenile plasticity through network mechanisms of decreased inhibition and increased gamma activity. J Neurosci. 2017;37:1269–83.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pantazopoulos H, Berretta S. In sickness and in health: perineuronal nets and synaptic plasticity in psychiatric disorders. Neural Plast. 2016;2016:9847696.

    Article  PubMed  Google Scholar 

  22. Sorg BA, Berretta S, Blacktop JM, Fawcett JW, Kitagawa H, Kwok JCF, et al. Casting a wide net: role of perineuronal nets in neural plasticity. J Neurosci. 2016;36:11459–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamada J, Ohgomori T, Jinno S. Perineuronal nets affect parvalbumin expression in GABAergic neurons of the mouse hippocampus. Eur J Neurosci. 2015;41:368–78.

    Article  CAS  PubMed  Google Scholar 

  24. Carstens KE, Phillips ML, Pozzo-Miller L, Weinberg RJ, Dudek SM. Perineuronal nets suppress plasticity of excitatory synapses on CA2 pyramidal neurons. J Neurosci. 2016;36:6312–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Domínguez S, Rey CC, Therreau L, Fanton A, Massotte D, Verret L, et al. Maturation of pnn and ERBb4 signaling in area CA2 during adolescence underlies the emergence of pv interneuron plasticity and social memory. Cell Rep. 2019;29:1099–112.e4.

    Article  PubMed  Google Scholar 

  26. Baig S, Wilcock GK, Love S. Loss of perineuronal net N-acetylgalactosamine in Alzheimer’s disease. Acta Neuropathol. 2005;110:393–401.

    Article  CAS  PubMed  Google Scholar 

  27. Yang M, Abrams DN, Zhang JY, Weber MD, Katz AM, Clarke AM, et al. Low sociability in BTBR T tf/J mice is independent of partner strain. Physiol Behav. 2012;107:649–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moy SS, Nadler JJ, Young NB, Perez A, Holloway LP, Barbaro RP, et al. Mouse behavioral tasks relevant to autism: phenotypes of 10 inbred strains. Behav Brain Res. 2007;176:4–20.

    Article  PubMed  Google Scholar 

  29. Dityatev A, Rusakov DA. Molecular signals of plasticity at the tetrapartite synapse. Curr Opin Neurobiol. 2011;21:353–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. York EM, Bernier LP, MacVicar BA. Microglial modulation of neuronal activity in the healthy brain. Dev Neurobiol. 2018;78:593–603.

    Article  PubMed  Google Scholar 

  31. Cope EC, Gould E. Adult neurogenesis, glia, and the extracellular matrix. Cell Stem Cell. 2019;24:690–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Torres L, Danver J, Ji K, Miyauchi JT, Chen D, Anderson ME, et al. Dynamic microglial modulation of spatial learning and social behavior. Brain Behav Immun. 2016;55:6–16.

    Article  PubMed  Google Scholar 

  33. Cope EC, LaMarca EA, Monari PK, Olson LB, Martinez S, Zych AD, et al. Microglia play an active role in obesity-associated cognitive decline. J Neurosci. 2018;38:8889–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McFarlane HG, Kusek GK, Yang M, Phoenix JL, Bolivar VJ, Crawley JN. Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav. 2008;7:152–63.

    Article  CAS  PubMed  Google Scholar 

  35. Eichenbaum H. On the integration of space, time, and memory. Neuron. 2017;95:1007–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Seese RR, Maske AR, Lynch G, Gall CM. Long-term memory deficits are associated with elevated synaptic ERK1/2 activation and reversed by mGluR5 antagonism in an animal model of autism. Neuropsychopharmacology. 2014;39:1664–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kohara K, Pignatelli M, Rivest AJ, Jung H-Y, Kitamura T, Suh J, et al. Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits. Nat Neurosci. 2014;17:269–79.

    Article  CAS  PubMed  Google Scholar 

  38. Stephenson DT, O’Neill SM, Narayan S, Tiwari A, Arnold E, Samaroo HD, et al. Histopathologic characterization of the BTBR mouse model of autistic-like behavior reveals selective changes in neurodevelopmental proteins and adult hippocampal neurogenesis. Mol Autism. 2011;2:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tervo DGR, Hwang B-Y, Viswanathan S, Gaj T, Lavzin M, Ritola KD, et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron. 2016;92:372–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lein ES, Callaway EM, Albright TD, Gage FH. Redefining the boundaries of the hippocampal CA2 subfield in the mouse using gene expression and 3-dimensional reconstruction. J Comp Neurol. 2005;485:1–10.

    Article  CAS  PubMed  Google Scholar 

  41. San Antonio A, Liban K, Ikrar T, Tsyganovskiy E, Xu X. Distinct physiological and developmental properties of hippocampal CA2 subfield revealed by using anti-Purkinje cell protein 4 (PCP4) immunostaining. J Comp Neurol. 2014;522:1333–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333:1456–8.

    Article  CAS  PubMed  Google Scholar 

  43. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74:691–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chung W-S, Clarke LE, Wang GX, Stafford BK, Sher A, Chakraborty C, et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature. 2013;504:394–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Harada K, Kamiya T, Tsuboi T. Gliotransmitter release from astrocytes: functional, developmental, and pathological implications in the brain. Front Neurosci. 2015;9:499.

    PubMed  Google Scholar 

  46. Beurdeley M, Spatazza J, Lee HHC, Sugiyama S, Bernard C, Di Nardo AA, et al. (2012) Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex. J Neurosci. 2012;32:9429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Spatazza J, Lee HHC, Di Nardo AA, Tibaldi L, Joliot A, Hensch TK, et al. Choroid-plexus-derived Otx2 homeoprotein constrains adult cortical plasticity. Cell Rep. 2013;3:1815–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dudek SM, Alexander GM, Farris S. Rediscovering area CA2: unique properties and functions. Nat Rev Neurosci. 2016;17:89–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Carstens KE, Dudek SM. Regulation of synaptic plasticity in hippocampal area CA2. Curr Opin Neurobiol. 2019;54:194–9.

    Article  CAS  PubMed  Google Scholar 

  50. McCann KE, Lustberg DJ, Shaughnessy EK, Carstens KE, Farris S, Alexander GM, et al. Novel role for mineralocorticoid receptors in control of a neuronal phenotype. Mol Psychiatry. 2019;19. https://doi.org/10.1038/s41380-019-0598-7.

  51. Hayani H, Song I, Dityatev A. Increased excitability and reduced excitatory synaptic input into fast-spiking CA2 interneurons after enzymatic attenuation of extracellular matrix. Front Cell Neurosci. 2018;12:149.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hylin MJ, Orsi SA, Moore AN, Dash PK. Disruption of the perineuronal net in the hippocampus or medial prefrontal cortex impairs fear conditioning. Learn Mem. 2013;20:267–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee HHC, Bernard C, Ye Z, Acampora D, Simeone A, Prochiantz A, et al. Genetic OTX2 mis-localization delays critical period plasticity across brain regions. Mol Psychiatry. 2017;22:680–8.

    Article  CAS  PubMed  Google Scholar 

  54. Foscarin S, Raha-Chowdhury R, Fawcett JW, Kwok JCF. Brain ageing changes proteoglycan sulfation, rendering perineuronal nets more inhibitory. Aging. 2017;9:1607–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang S, Sylvain G, Molinaro A, Naito-Matsui Y, Hilton S, Foscarin S, et al. Restoring the pattern of proteoglycan sulphation in perineuronal nets corrects age-related memory loss. bioRxiv. 2020. https://doi.org/10.1101/2020.01.03.894188.

  56. Miyata S, Kitagawa H. Chondroitin 6-sulfation regulates perineuronal net formation by controlling the stability of aggrecan. Neural Plast. 2016;2016:1305801.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yang S, Cacquevel M, Saksida LM, Bussey TJ, Schneider BL, Aebischer P, et al. Perineuronal net digestion with chondroitinase restores memory in mice with tau pathology. Exp Neurol. 2015;265:48–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chafai M, Corbani M, Guillon G, Desarménien MG. Vasopressin inhibits LTP in the CA2 mouse hippocampal area. PLoS ONE. 2012;7:e49708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Carstens KE, Lustberg DJ, Shaughnessy EK, McCann KE, Alexander GM, Dudek SM. MECP2 deletion prematurely restricts a novel window of hippocampal synaptic plasticity. Soc Neurosci. 2019. (abstract 187.07)

  60. Sun ZY, Bozzelli PL, Caccavano A, Allen M, Balmuth J, Vicini S, et al. Disruption of perineuronal nets increases the frequency of sharp wave ripple events. Hippocampus. 2018;28:42–52.

    Article  CAS  PubMed  Google Scholar 

  61. Joo HR, Frank LM. The hippocampal sharp wave-ripple in memory retrieval for immediate use and consolidation. Nat Rev Neurosci. 2018;19:744–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Okuyama T, Kitamura T, Roy DS, Itohara S, Tonegawa S. Ventral CA1 neurons store social memory. Science. 2016;353:1536–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Daimon CM, Jasien JM, Wood WH 3rd, Zhang Y, Becker KG, Silverman JL, et al. Hippocampal transcriptomic and proteomic alterations in the BTBR mouse model of autism spectrum disorder. Front Physiol. 2015;6:324.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Provenzano G, Corradi Z, Monsorno K, Fedrizzi T, Ricceri L, Scattoni ML, et al. Comparative gene expression analysis of two mouse models of autism: transcriptome profiling of the BTBR and En2 (-/-) hippocampus. Front Neurosci. 2016;10:396.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Meyza KZ, Blanchard DC. The BTBR mouse model of idiopathic autism—current view on mechanisms. Neurosci Biobehav Rev. 2017;76:99–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. del Zoppo GJ, Frankowski H, Gu Y-H, Osada T, Kanazawa M, Milner R, et al. Microglial cell activation is a source of metalloproteinase generation during hemorrhagic transformation. J Cereb Blood Flow Metab. 2012;32:919–32.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhang Z, Zhang Z, Lu H, Yang Q, Wu H, Wang J. Microglial polarization and inflammatory mediators after intracerebral hemorrhage. Mol Neurobiol. 2017;54:1874–86.

    Article  CAS  PubMed  Google Scholar 

  68. Pantazopoulos H, Gisabella B, Rexrode L, Benefield D, Yildiz E, Seltzer P, et al. Circadian rhythms of perineuronal net composition. eNeuro. 2020;7:ENEURO.0034-19.2020.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Nguyen PT, Dorman LC, Pan S, Vainchtein ID, Han RT, Nakao-Inoue H, et al. Microglial remodeling of the extracellular matrix promotes synapse plasticity. Cell. 2020;182:388–403.e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jones-Davis DM, Yang M, Rider E, Osbun NC, da Gente GJ, Li J, et al. Quantitative trait loci for interhemispheric commissure development and social behaviors in the BTBR T+ tf/J mouse model of autism. PLoS ONE. 2013;8:e61829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang M, He J, Zhou Y, Lv N, Zhao M, Wei H, et al. Integrated analysis of miRNA and mRNA expression profiles in the brains of BTBR mice. Int J Dev Neurosci. 2020;80:221–33.

    Article  CAS  PubMed  Google Scholar 

  72. Blanchard DC, Defensor EB, Meyza KZ, Pobbe RL, Pearson BL, Bolivar VJ, et al. BTBR T+tf/J mice: autism-relevant behaviors and reduced fractone-associated heparan sulfate. Neurosci Biobehav Rev. 2012;36:285–96.

    Article  CAS  PubMed  Google Scholar 

  73. Lang BT, Cregg JM, DePaul MA, Tran AP, Xu K, Dyck SM, et al. Modulation of the proteoglycan receptor PTPσ promotes recovery after spinal cord injury. Nature. 2015;518:404–8.

    Article  CAS  PubMed  Google Scholar 

  74. Pendleton JC, Shamblott MJ, Gary DS, Belegu V, Hurtado A, Malone ML, et al. Chondroitin sulfate proteoglycans inhibit oligodendrocyte myelination through PTPσ. Exp Neurol. 2013;247:113–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health, NIMH 1R01 MH118631-01 to EG and NIH Training Fellowship T32MH065214 to ECC. The authors thank Biorender for assistance with the figure schematics, Sahana Murthy and Brandy A. Briones for helpful comments on the project, and Carla G. Dias, Kristen A. Pagliai, and Amelia Windorski for assistance with histological analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Gould.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In the original PDF of this article, pages 6-12 were inadvertently omitted.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cope, E.C., Zych, A.D., Katchur, N.J. et al. Atypical perineuronal nets in the CA2 region interfere with social memory in a mouse model of social dysfunction. Mol Psychiatry 27, 3520–3531 (2022). https://doi.org/10.1038/s41380-021-01174-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01174-2

This article is cited by

Search

Quick links