Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A NF-ĸB-Activin A signaling axis enhances prostate cancer metastasis

Abstract

Metastasis is a main cause of death in prostate cancer (PCa). To dissect the molecular cues from cancer cell–microenvironment interaction that drive metastatic cascade, bone metastatic PCa cells were intravenously implanted into zebrafish embryos and mice tibia forming metastatic lesions. Transcriptomic analysis showed an elevated expression of stemness genes, pro-inflammatory cytokines and TGF-β family member Activin A in the cancer cells at metastatic onset in both animal models. Consistently, analysis of clinical datasets revealed that the expression of Activin A is specifically elevated in metastases and correlates with poor prognosis in stratified high-risk PCa patients. It is further unveiled that the microenvironment induced Activin A expression by NF-κB activation. The elevated level of Activin A enhanced the invasive ALDHhi CSC-like phenotypes and PCa proliferation by activation of Smad and ERK1/2 signaling driving metastasis. Suppression of Activin A or Activin receptor significantly reduced the CSC-like subpopulation, invasion, metastatic growth, and bone lesion formation in zebrafish and mice xenografts, suggesting a functional role of NF-κB-dependent Activin A in PCa metastasis. Overall, our study demonstrates that human PCa cells can display a comparable response with the microenvironment in zebrafish and mice xenografts. Combining both animal models, we uncovered the microenvironment-dependent activin signaling as an essential driver in PCa metastasis with therapeutic potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jemal A, Center MM, DeSantis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev. 2010;19:1055–9965.

  2. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65:10946–51.

    Article  CAS  PubMed  Google Scholar 

  3. van den Hoogen C, van der Horst G, Cheung H, Buijs JT, Lippitt JM, Guzmán-Ramírez N, et al. High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res. 2010;70:5163–73.

    Article  CAS  PubMed  Google Scholar 

  4. Massagué J. TGFβ in cancer. Cell. 2008;134:215–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shi Y, Massagué J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell. 2003;113:685–700.

    Article  CAS  PubMed  Google Scholar 

  6. Quail DF, Zhang G, Findlay SD, Hess DA, Postovit LM. Nodal promotes invasive phenotypes via a mitogen-activated protein kinase-dependent pathway. Oncogene. 2014;33:461.

    Article  CAS  PubMed  Google Scholar 

  7. Clements M, Pernaute B, Vella F, Rodriguez TA. Crosstalk between Nodal/activin and MAPK p38 signaling is essential for anterior-posterior axis specification. Curr Biol. 2011;21:1289–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. James D, Levine AJ, Besser D, Hemmati-Brivanlou A. TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development. 2005;132:1273–82.

    Article  CAS  PubMed  Google Scholar 

  9. Xiao L, Yuan X, Sharkis SJ. Activin A maintains self‐renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem cells. 2006;24:1476–86.

    Article  CAS  PubMed  Google Scholar 

  10. Schier AF, Shen MM. Nodal signalling in vertebrate development. Nature. 2000;403:385.

    Article  CAS  PubMed  Google Scholar 

  11. Nomura M, Li E. Smad2 role in mesoderm formation, left–right patterning and craniofacial development. Nature. 1998;393:786.

    Article  CAS  PubMed  Google Scholar 

  12. Loomans HA, Andl CD. Intertwining of activin A and TGFβ signaling: dual roles in cancer progression and cancer cell invasion. Cancers. 2014;7:70–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Strizzi L, Bianco C, Normanno N, Salomon D. Cripto-1: a multifunctional modulator during embryogenesis and oncogenesis. Oncogene. 2005;24:5731.

    Article  CAS  PubMed  Google Scholar 

  14. Gray PC, Vale W. Cripto/GRP78 modulation of the TGF-β pathway in development and oncogenesis. FEBS Lett. 2012;586:1836–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lonardo E, Hermann PC, Mueller MT, Huber S, Balic A, Miranda-Lorenzo I, et al. Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell. 2011;9:433–46.

    Article  CAS  PubMed  Google Scholar 

  16. Zoni E, Chen L, Karkampouna S, Granchi Z, Verhoef EI, La Manna F, et al. CRIPTO and its signaling partner GRP78 drive the metastatic phenotype in human osteotropic prostate cancer. Oncogene. 2017;36:4739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Karkampouna S, van der Helm D, Gray PC, Chen L, Klima I, Grosjean J, et al. CRIPTO promotes an aggressive tumour phenotype and resistance to treatment in hepatocellular carcinoma. J Pathol 2018;245:297–310.

    Article  CAS  PubMed  Google Scholar 

  18. Brown CW, Li L, Houston-Hawkins DE, Matzuk MM. Activins are critical modulators of growth and survival. Mol Endocrinol. 2003;17:2404–17.

    Article  CAS  PubMed  Google Scholar 

  19. Wang Q, Wen YG, Li DP, Xia J, Zhou CZ, Yan DW, et al. Upregulated INHBA expression is associated with poor survival in gastric cancer. Med Oncol. 2012;29:77–83.

    Article  CAS  PubMed  Google Scholar 

  20. Bashir M, Damineni S, Mukherjee G, Kondaiah P. Activin-A signaling promotes epithelial–mesenchymal transition, invasion, and metastatic growth of breast cancer. NPJ Breast Cancer. 2015;1:15007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wamsley JJ, Kumar M, Allison DF, Clift SH, Holzknecht CM, Szymura SJ, et al. (2014). Activin upregulation by NF-κB is required to maintain mesenchymal features of cancer stem-like cells in non-small cell lung cancer. Cancer Res. 2015;75:426–35.

  22. Dalkin AC, Gilrain JT, Bradshaw D, Myers CE. Activin inhibition of prostate cancer cell growth: selective actions on androgen-responsive LNCaP cells. Endocrinology. 1996;137:5230–5.

    Article  CAS  PubMed  Google Scholar 

  23. Gold E, Risbridger G. Activins and activin antagonists in the prostate and prostate cancer. Mol Cell Endocrinol. 2012;359:107–12.

    Article  CAS  PubMed  Google Scholar 

  24. McKenzie S, Kyprianou N. Apoptosis evasion: the role of survival pathways in prostate cancer progression and therapeutic resistance. J Cell Biochem. 2006;97:18–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leto G, Incorvaia L, Badalamenti G, Tumminello FM, Gebbia N, Flandina C, et al. Activin A circulating levels in patients with bone metastasis from breast or prostate cancer. Clin Exp Metastasis. 2006;23:117–22.

    Article  CAS  PubMed  Google Scholar 

  26. Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol. 2002;248:307–18.

    Article  CAS  PubMed  Google Scholar 

  27. Tamplin OJ, Durand EM, Carr LA, Childs SJ, Hagedorn EJ, Li PK, et al. Hematopoietic stem cell arrival triggers dynamic remodeling of the perivascular niche. Cell. 2015;160:241–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jin H, Xu J, Wen Z. Migratory path of definitive hematopoietic stem/progenitor cells during zebrafish development. Blood. 2007;109:5208–14.

    Article  CAS  PubMed  Google Scholar 

  29. He S, Lamers GE, Beenakker JWM, Cui C, Ghotra VP, Danen EH, et al. Neutrophil‐mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. J Pathol. 2012;227:431–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Drabsch Y, He S, Zhang L, Snaar-Jagalska BE, ten Dijke P. Transforming growth factor-β signalling controls human breast cancer metastasis in a zebrafish xenograft model. Breast Cancer Res. 2013;15:R106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Investig. 2011;121:1298–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shiozawa Y, Berry JE, Eber MR, Jung Y, Yumoto K, Cackowski FC, et al. The marrow niche controls the cancer stem cell phenotype of disseminated prostate cancer. Oncotarget. 2016;7:41217.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sacco A, Roccaro AM, Ma D, Shi J, Mishima Y, Moschetta M, et al. Cancer cell dissemination and homing to the bone marrow in a zebrafish model. Cancer Res. 2016;76:463–71.

    Article  CAS  PubMed  Google Scholar 

  34. Hsu WK, Virk MS, Feeley BT, Stout DB, Chatziioannou AF, Lieberman JR. Characterization of osteolytic, osteoblastic, and mixed lesions in a prostate cancer mouse model using 18F-FDG and 18F-fluoride PET/CT. J Nucl Med. 2008;49:414.

    Article  PubMed  Google Scholar 

  35. Byfield SD, Major C, Laping NJ, Roberts AB. SB-505124 is a selective inhibitor of transforming growth factor-β type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol. 2004;65:744–52.

    Article  CAS  Google Scholar 

  36. Hemmati-Brivanlou A, Kelly OG, Melton DA. Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell. 1994;77:283–95.

    Article  CAS  PubMed  Google Scholar 

  37. Postlethwait JH, Yan YL, Gates MA, Horne S, Amores A, Brownlie A, et al. Vertebrate genome evolution and the zebrafish gene map. Nat Genet. 1998;18:345.

    Article  CAS  PubMed  Google Scholar 

  38. Zon LI, Peterson RT. In vivo drug discovery in the zebrafish. Nat Rev Drug Discov. 2005;4:35.

    Article  CAS  PubMed  Google Scholar 

  39. Dooley K, Zon LI. Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev. 2000;10:252–6.

    Article  CAS  PubMed  Google Scholar 

  40. White R, Rose K, Zon LI. Zebrafish cancer: the state of the art and the path forward. Nat Rev Cancer. 2013;13:624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tulotta C, Stefanescu C, Beletkaia E, Bussmann J, Tarbashevich K, Schmidt T, et al. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model. Dis Models Mech. 2016;9:141–53.

    Article  CAS  Google Scholar 

  42. Chen L, Groenewoud A, Tulotta C, Zoni E, Kruithof-de Julio M, van der Horst G, et al. A zebrafish xenograft model for studying human cancer stem cells in distant metastasis and therapy response. Methods Cell Biol. 2017;138:471–96.

  43. Fior R, Póvoa V, Mendes RV, Carvalho T, Gomes A, Figueiredo N, et al. Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. Proc Natl Acad Sci. 2017;114:E8234–E8243.

  44. Liu TL, Upadhyayula S, Milkie DE, Singh V, Wang K, Swinburne IA, et al. Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms. Science. 2018;360:eaaq1392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Singh S, Brocker C, Koppaka V, Chen Y, Jackson BC, Matsumoto A, et al. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilicstress. Free Radic Biol Med. 2013;56:89–101.

    Article  CAS  PubMed  Google Scholar 

  46. Hofland J, van Weerden WM, Steenbergen J, Dits NF, Jenster G, de Jong FH. Activin A stimulates AKR1C3 expression and growth in human prostate cancer. Endocrinology. 2012;153:5726–34.

    Article  CAS  PubMed  Google Scholar 

  47. Thalmann GN, Anezinis PE, Chang SM, Zhau HE, Kim EE, Hopwood VL, et al. Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res. 1994;54:2577–81.

    CAS  PubMed  Google Scholar 

  48. Lu H, Clauser KR, Tam WL, Fröse J, Ye X, Eaton EN, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aguirre-Gamboa R, Gomez-Rueda H, Martínez-Ledesma E, Martínez-Torteya A, Chacolla-Huaringa R, Rodriguez-Barrientos A, et al. SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis. PLoS ONE. 2013;8:e74250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ. mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood. 2011;117:e49–56.

  51. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cui C, Benard EL, Kanwal Z, Stockhammer OW, van der Vaart M, Zakrzewska A, et al. Infectious disease modeling and innate immune function in zebrafish embryos. Methods Cell Biol. 2011;105:273–308.

  53. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25:1105–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.

    Article  CAS  PubMed  Google Scholar 

  55. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dai J, Hensel J, Wang N, Kruithof-de Julio M, Shiozawa Y. Mouse models for studying prostate cancer bone metastasis. BoneKEy Rep. 2016;5:777.

Download references

Acknowledgements

We thank Dr Gabriel van der Pluijm (Deportment of Urology, LUMC) for providing experimental material, Prof. Peter ten Dijke (Department of Molecular Cell Biology) for providing experimental material and critical scientific discussion and Guido de Roo from the Flow cytometry facility (Department of Hematology, LUMC) for technical support, Prof. Rob Hoeben and Martijn Rabelink (Department of Cell Biology, LUMC) for providing lentiviral shRNA vectors (Sigma-Aldrich). The present work was supported by a personalized medicine grant from Alpe D’HuZes (AdH)/KWF PROPER entitled “Near-patient prostate cancer models for the assessment of disease prognosis and therapy” (UL2014-7058) and SNF 31003A_169352.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marianna Kruithof-de Julio or B. Ewa Snaar-Jagalska.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., De Menna, M., Groenewoud, A. et al. A NF-ĸB-Activin A signaling axis enhances prostate cancer metastasis. Oncogene 39, 1634–1651 (2020). https://doi.org/10.1038/s41388-019-1103-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-1103-0

This article is cited by

Search

Quick links