Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

USP13 controls the stability of Aurora B impacting progression through the cell cycle

Abstract

Aurora B kinase plays essential roles in mitosis. Its protein levels increase before the onset of mitosis and sharply decrease during mitosis exit. The latter decrease is due to a balance between the actions of the E3 ubiquitin ligase anaphase-promoting complex or cyclosome (activated by the Cdh1 adapter), and the deubiquitinating enzyme USP35. Aurora B also executes important functions in interphase. Abnormal modulation of Aurora B in interphase leads to cell cycle defects often linked to aberrant chromosomal condensation and segregation. Very little is however known about how Aurora B levels are regulated in interphase. Here we found that USP13-associates with and stabilizes Aurora B in cells, especially before their entry into mitosis. In order for USP13 to exert its stabilizing effect on Aurora B, their association is promoted by the Aurora B-mediated phosphorylation of USP13 at Serine 114. We also present evidence that USP13 instigates Aurora B deubiquitination and/or protect it from degradation in a non-catalytic manner. In addition, we report that genetic or chemical modulation of the cellular levels/activity of USP13 affects unperturbed cell-cycle progression. Overall our study unveils the molecular and cellular connections of the USP13-Aurora B axis, which potentially participates in the rewiring of the cell cycle happening in cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Aurora B phosphorylates USP13 at Serine 114.
Fig. 2: USP13 and Aurora B interact in vitro and in cells.
Fig. 3: Overexpression of USP13 stabilizes Aurora B protein levels.
Fig. 4: Downregulation of USP13 decreases Aurora B protein levels.
Fig. 5: USP13 regulates the cellular half-life of Aurora B.
Fig. 6: USP13 controls Aurora B stability via enzymatically-independent mechanisms.
Fig. 7: Overexpression of USP13 causes a prophase-like arrest.
Fig. 8: Downregulation of USP13 induces G1 arrest.

Similar content being viewed by others

References

  1. Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer. 2017;17:93–115.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Morgan DO. The cell cycle: principles of control (Primers in Biology), 1st Edition. New Science Press. 2006.

  3. Darling S, Fielding AB, Sabat-Pośpiech D, Prior IA, Coulson JM. Regulation of the cell cycle and centrosome biology by deubiquitylases. Biochem Soc Trans. 2017;45:1125–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ganem NJ, Storchova Z, Pellman D. Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev. 2007;17:157–62.

    CAS  PubMed  Google Scholar 

  5. Harper JW, Burton JL, Solomon MJ. The anaphase-promoting complex: it’s not just for mitosis any more. Genes Dev. 2002;16:2179–206.

    CAS  PubMed  Google Scholar 

  6. Ruchaud S, Carmena M, Earnshaw WC. Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol. 2007;8:798–812.

    CAS  PubMed  Google Scholar 

  7. van der Waal MS, Hengeveld RC, van der Horst A, Lens SM. Cell division control by the chromosomal passenger complex. Exp Cell Res. 2012;318:1407–20.

    PubMed  Google Scholar 

  8. Carmena M, Earnshaw WC. The cellular geography of aurora kinases. Nat Rev Mol Cell Biol. 2003;4:842–54.

    CAS  PubMed  Google Scholar 

  9. Krenn V, Musacchio A. The Aurora B kinase in chromosome Bi-orientation and spindle checkpoint signaling. Front Oncol. 2015;5:225.

    PubMed  PubMed Central  Google Scholar 

  10. Hayashi-Takanaka Y, Yamagata K, Nozaki N, Kimura H. Visualizing histone modifications in living cells: spatiotemporal dynamics of H3 phosphorylation during interphase. J Cell Biol. 2009;187:781–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Carmena M, Wheelock M, Funabiki H, Earnshaw WC. The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol. 2012;13:789–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gully CP, Velazquez-Torres G, Shin JH, Fuentes-Mattei E, Wang E, Carlock C, et al. Aurora B kinase phosphorylates and instigates degradation of p53. Proc Natl Acad Sci USA. 2012;109:E1513–22.

    CAS  PubMed  Google Scholar 

  13. Gilberto S, Peter M. Dynamic ubiquitin signaling in cell cycle regulation. J Cell Biol. 2017;216:2259–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bassermann F, Eichner R, Pagano M. The ubiquitin proteasome system - implications for cell cycle control and the targeted treatment of cancer. Biochim Biophys Acta. 2014;1843:150–62.

    CAS  PubMed  Google Scholar 

  15. Komander D, Rape M. The ubiquitin code. Annu Rev Biochem. 2012;81:203–29.

    CAS  PubMed  Google Scholar 

  16. Lindon C, Grant R, Min M. Ubiquitin-mediated degradation of aurora kinases. Front Oncol. 2015;5:307.

    PubMed  Google Scholar 

  17. Park J, Song EJ. Deubiquitinase USP35 as a novel mitotic regulator via maintenance of Aurora B stability. BMB Rep. 2018;51:261–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sumara I, Quadroni M, Frei C, Olma MH, Sumara G, Ricci R, et al. A Cul3-based E3 ligase removes Aurora B from mitotic chromosomes, regulating mitotic progression and completion of cytokinesis in human cells. Dev Cell. 2007;12:887–900.

    CAS  PubMed  Google Scholar 

  19. Maerki S, Olma MH, Staubli T, Steigemann P, Gerlich DW, Quadroni M, et al. The Cul3-KLHL21 E3 ubiquitin ligase targets aurora B to midzone microtubules in anaphase and is required for cytokinesis. J Cell Biol. 2009;187:791–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Fournane S, Krupina K, Kleiss C, Sumara I. Decoding ubiquitin for mitosis. Genes Cancer. 2012;3:697–711.

    PubMed  PubMed Central  Google Scholar 

  21. Chen M, Gutierrez GJ, Ronai ZA. Ubiquitin-recognition protein Ufd1 couples the endoplasmic reticulum (ER) stress response to cell cycle control. Proc Natl Acad Sci USA. 2011;108:9119–24.

    CAS  PubMed  Google Scholar 

  22. Zhang YH, Zhou CJ, Zhou ZR, Song AX, Hu HY. Domain analysis reveals that a deubiquitinating enzyme USP13 performs non-activating catalysis for Lys63-linked polyubiquitin. PLoS ONE. 2011;6:e29362.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Pinto-Fernández A, Davis S, Schofield AB, Scott HC, Zhang P, Salah E, et al. Comprehensive landscape of active deubiquitinating enzymes profiled by advanced chemoproteomics. Front Chem. 2019;7:592.

    PubMed  PubMed Central  Google Scholar 

  24. Li Y, Luo K, Yin Y, Wu C, Deng M, Li L, et al. USP13 regulates the RAP80-BRCA1 complex dependent DNA damage response. Nat Commun. 2017;8:15752.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang J, Zhang P, Wei Y, Piao HL, Wang W, Maddika S, et al. Deubiquitylation and stabilization of PTEN by USP13. Nat Cell Biol. 2013;15:1486–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu J, Xia H, Kim M, Xu L, Li Y, Zhang L, et al. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell. 2011;147:223–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Scortegagna M, Subtil T, Qi J, Kim H, Zhao W, Gu W, et al. USP13 enzyme regulates Siah2 ligase stability and activity via noncatalytic ubiquitin-binding domains. J Biol Chem. 2011;286:27333–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Han C, Yang L, Choi HH, Baddour J, Achreja A, Liu Y, et al. Amplification of USP13 drives ovarian cancer metabolism. Nat Commun. 2016;7:13525.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yeh HM, Yu CY, Yang HC, Ko SH, Liao CL, Lin YL. Ubiquitin-specific protease 13 regulates IFN signaling by stabilizing STAT1. J Immunol. 2013;191:3328–36.

    CAS  PubMed  Google Scholar 

  30. Zhang S, Zhang M, Jing Y, Yin X, Ma P, Zhang Z, et al. Deubiquitinase USP13 dictates MCL1 stability and sensitivity to BH3 mimetic inhibitors. Nat Commun. 2018;9:215.

    PubMed  PubMed Central  Google Scholar 

  31. Zhao X, Fiske B, Kawakami A, Li J, Fisher DE. Regulation of MITF stability by the USP13 deubiquitinase. Nat Commun. 2011;2:414.

    PubMed  Google Scholar 

  32. Fang X, Zhou W, Wu Q, Huang Z, Shi Y, Yang K, et al. Deubiquitinase USP13 maintains glioblastoma stem cells by antagonizing FBXL14-mediated Myc ubiquitination. J Exp Med. 2017;214:245–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun H, Zhang Q, Jing YY, Zhang M, Wang HY, Cai Z, et al. USP13 negatively regulates antiviral responses by deubiquitinating STING. Nat Commun. 2017;8:15534.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Li L, Wei J, Li S, Jacko AM, Weathington NM, Mallampalli RK, et al. The deubiquitinase USP13 stabilizes the anti-inflammatory receptor IL-1R8/Sigirr to suppress lung inflammation. EBioMedicine. 2019;45:553–62.

    PubMed  PubMed Central  Google Scholar 

  35. Liu Y, Soetandyo N, Lee JG, Liu L, Xu Y, Clemons WM, et al. USP13 antagonizes gp78 to maintain functionality of a chaperone in ER-associated degradation. Elife. 2014;3:e01369.

    PubMed  PubMed Central  Google Scholar 

  36. Zhou Q, Lin M, Feng X, Ma F, Zhu Y, Liu X, et al. Targeting CLK3 inhibits the progression of cholangiocarcinoma by reprogramming nucleotide metabolism. J Exp Med. 2020;217:e20191779.

    PubMed  PubMed Central  Google Scholar 

  37. Sahtoe DD, Sixma TK. Layers of DUB regulation. Trends Biochem Sci. 2015;40:456–67.

    CAS  PubMed  Google Scholar 

  38. Obenauer JC, Cantley LC, Yaffe MB. Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res. 2003;31:3635–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Blom N, Gammeltoft S, Brunak S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol. 1999;294:1351–62.

    CAS  PubMed  Google Scholar 

  40. Mayya V, Lundgren DH, Hwang SI, Rezaul K, Wu L, Eng JK, et al. Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal. 2009;2:ra46.

    PubMed  Google Scholar 

  41. Floyd S, Whiffin N, Gavilan MP, Kutscheidt S, De Luca M, Marcozzi C, et al. Spatiotemporal organization of Aurora-B by APC/CCdh1 after mitosis coordinates cell spreading through FHOD1. J Cell Sci. 2013;126:2845–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. McCloy RA, Rogers S, Caldon CE, Lorca T, Castro A, Burgess A. Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle. 2014;13:1400–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ota T, Suto S, Katayama H, Han ZB, Suzuki F, Maeda M, et al. Increased mitotic phosphorylation of histone H3 attributable to AIM-1/Aurora-B overexpression contributes to chromosome number instability. Cancer Res. 2002;62:5168–77.

    CAS  PubMed  Google Scholar 

  44. Muñoz-Barrera M, Monje-Casas F. Increased Aurora B activity causes continuous disruption of kinetochore-microtubule attachments and spindle instability. Proc Natl Acad Sci USA. 2014;111:E3996–4005.

    PubMed  Google Scholar 

  45. Tatsuka M, Katayama H, Ota T, Tanaka T, Odashima S, Suzuki F, et al. Multinuclearity and increased ploidy caused by overexpression of the aurora- and Ipl1-like midbody-associated protein mitotic kinase in human cancer cells. Cancer Res. 1998;58:4811–6.

    CAS  PubMed  Google Scholar 

  46. González-Loyola A, Fernández-Miranda G, Trakala M, Partida D, Samejima K, Ogawa H, et al. Aurora B overexpression causes aneuploidy and p21Cip1 repression during tumor development. Mol Cell Biol. 2015;35:3566–78.

    PubMed  PubMed Central  Google Scholar 

  47. Teng CL, Hsieh YC, Phan L, Shin J, Gully C, Velazquez-Torres G, et al. FBXW7 is involved in Aurora B degradation. Cell Cycle. 2012;11:4059–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen BB, Glasser JR, Coon TA, Mallampalli RK. Skp-cullin-F box E3 ligase component FBXL2 ubiquitinates Aurora B to inhibit tumorigenesis. Cell Death Dis. 2013;4:e759.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nguyen HG, Chinnappan D, Urano T, Ravid K. Mechanism of Aurora-B degradation and its dependency on intact KEN and A-boxes: identification of an aneuploidy-promoting property. Mol Cell Biol. 2005;25:4977–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. van Leuken RJ, Luna-Vargas MP, Sixma TK, Wolthuis RM, Medema RH. Usp39 is essential for mitotic spindle checkpoint integrity and controls mRNA-levels of aurora B. Cell Cycle. 2008;7:2710–9.

    PubMed  Google Scholar 

  51. Song C, Ma R, Yang X, Pang S. The deubiquitinating enzyme USP14 regulates leukemic chemotherapy drugs-induced cell apoptosis by suppressing ubiquitination of aurora kinase B. Cell Physiol Biochem. 2017;42:965–73.

    CAS  PubMed  Google Scholar 

  52. Xie X, Matsumoto S, Endo A, Fukushima T, Kawahara H, Saeki Y, et al. Deubiquitylases USP5 and USP13 are recruited to and regulate heat-induced stress granules through their deubiquitylating activities. J Cell Sci. 2018;131:jcs210856.

    PubMed  Google Scholar 

  53. Sowa ME, Bennett EJ, Gygi SP, Harper JW. Defining the human deubiquitinating enzyme interaction landscape. Cell. 2009;138:389–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sun L, Gao J, Huo L, Sun X, Shi X, Liu M, et al. Tumour suppressor CYLD is a negative regulator of the mitotic kinase Aurora-B. J Pathol. 2010;221:425–32.

    CAS  PubMed  Google Scholar 

  55. Stegmeier F, Sowa ME, Nalepa G, Gygi SP, Harper JW, Elledge SJ. The tumor suppressor CYLD regulates entry into mitosis. Proc Natl Acad Sci USA. 2007;104:8869–74.

    CAS  PubMed  Google Scholar 

  56. Man X, Piao C, Lin X, Kong C, Cui X, Jiang Y. USP13 functions as a tumor suppressor by blocking the NF-kB-mediated PTEN downregulation in human bladder cancer. J Exp Clin Cancer Res. 2019;38:259.

    PubMed  PubMed Central  Google Scholar 

  57. Wu Y, Zhang Y, Liu C, Wang D, Wang S, Liu F, et al. Amplification of USP13 drives non-small cell lung cancer progression mediated by AKT/MAPK signaling. Biomed Pharmacother. 2019;114:108831.

    CAS  PubMed  Google Scholar 

  58. Vischioni B, Oudejans JJ, Vos W, Rodriguez JA, Giaccone G. Frequent overexpression of aurora B kinase, a novel drug target, in non-small cell lung carcinoma patients. Mol Cancer Ther. 2006;5:2905–13.

    CAS  PubMed  Google Scholar 

  59. Zeng WF, Navaratne K, Prayson RA, Weil RJ. Aurora B expression correlates with aggressive behaviour in glioblastoma multiforme. J Clin Pathol. 2007;60:218–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Staibano S, Franco R, Mezza E, Chieffi P, Sinisi A, Pasquali D, et al. Loss of oestrogen receptor beta, high PCNA and p53 expression and aneuploidy as markers of worse prognosis in ovarian granulosa cell tumours. Histopathology. 2003;43:254–62.

    CAS  PubMed  Google Scholar 

  61. Chen YJ, Chen CM, Twu NF, Yen MS, Lai CR, Wu HH, et al. Overexpression of Aurora B is associated with poor prognosis in epithelial ovarian cancer patients. Virchows Arch. 2009;455:431–40.

    CAS  PubMed  Google Scholar 

  62. Bonet C, Giuliano S, Ohanna M, Bille K, Allegra M, Lacour JP, et al. Aurora B is regulated by the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway and is a valuable potential target in melanoma cells. J Biol Chem. 2012;287:29887–98.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in GJG’s laboratory was funded by grants from FWO (G0C7514N), BELSPO Interuniversity Attraction Poles (IAP-P7 – 07), VUB (starting ZAP credit & Interdisciplinary Research Program for Excellence on Cancer Research), and Innoviris (BB2B program). The collaboration between the laboratories of GJG and CL included a short-term scientific mission (ME) supported by the COST-EU program (Proteostasis). We are indebted to Yvon Elkrim for technical assistance with the flow cytometry analyses, and to Professors Luc Leyns and Peter Tompa (VUB- and VIB- Brussels, Belgium, respectively) for allowing access to some of their laboratories’ equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo J. Gutierrez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esposito, M., Akman, H.B., Giron, P. et al. USP13 controls the stability of Aurora B impacting progression through the cell cycle. Oncogene 39, 6009–6023 (2020). https://doi.org/10.1038/s41388-020-01396-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01396-8

This article is cited by

Search

Quick links