Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clinical impact of the loss of chromosome 7q on outcomes of patients with myelodysplastic syndromes treated with allogeneic hematopoietic stem cell transplantation

Abstract

We conducted a nationwide retrospective study to evaluate the prognostic influence of +1, der(1;7)(q10;p10) [hereafter der(1;7)] and −7/del(7q) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) for de novo myelodysplastic syndromes (MDS). In this database, 69 MDS patients with der(1;7), 75 with −7/del(7q), and 511 with normal karyotype (NK) underwent allo-HSCT at advanced disease status. The 3-year overall survival (OS) and cumulative incidence of relapse (CIR) were 50.4 and 19.4% for those with der(1;7), 36.2 and 38.4% for −7/del(7q), and 51.1 and 20.7% for NK, respectively. In the multivariate analysis, the presence of −7/del(7q) correlated with a significantly shorter OS (HR [95% CI], 1.38 [1.00–1.89]; P = 0.048) and higher CIR (HR, 2.11 [1.36–3.28]; P = 0.001) than those with NK. There were 23 patients with der(1;7), 29 with −7/del(7q), and 347 with NK who underwent allo-HSCT at early disease status. The 3-year OS and CIR were as follows: 47.3 and 9.5% for the der(1;7) group, 70.5 and 13.8% for −7/del(7q), and 70.9 and 5.6% for NK, respectively. No significant differences were observed in OS and CIR among three groups. The impact of the loss of chromosome 7q on OS and CIR may differ based on its type and disease status after allo-HSCT for MDS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tefferi A, Vardiman JW. Myelodysplastic syndromes. N Engl J Med. 2009;361:1872–85.

    Article  CAS  Google Scholar 

  2. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89:2079–88.

    CAS  PubMed  Google Scholar 

  3. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454–65.

    Article  CAS  Google Scholar 

  4. Chang C, Storer BE, Scott BL, Bryant EM, Shulman HM, Flowers ME, et al. Hematopoietic cell transplantation in patients with myelodysplastic syndrome or acute myeloid leukemia arising from myelodysplastic syndrome: similar outcomes in patients with de novo disease and disease following prior therapy or antecedent hematologic disorders. Blood. 2007;110:1379–87.

    Article  CAS  Google Scholar 

  5. Flynn CM, Hirsch B, Defor T, Barker JN, Miller JS, Wagner JE, et al. Reduced intensity compared with high dose conditioning for allotransplantation in acute myeloid leukemia and myelodysplastic syndrome: a comparative clinical analysis. Am J Hematol. 2007;82:867–72.

    Article  Google Scholar 

  6. Robin M, Porcher R, Zinke-Cerwenka W, van Biezen A, Volin L, Mufti G, et al. Allogeneic haematopoietic stem cell transplant in patients with lower risk myelodysplastic syndrome: a retrospective analysis on behalf of the Chronic Malignancy Working Party of the EBMT. Bone Marrow Transpl. 2017;52:209–15.

    Article  CAS  Google Scholar 

  7. Sutton L, Chastang C, Ribaud P, Jouet JP, Kuentz M, Attal M, et al. Factors influencing outcome in de novo myelodysplastic syndromes treated by allogeneic bone marrow transplantation: a long-term study of 71 patients Société Française de Greffe de Moelle. Blood. 1996;88:358–65.

    CAS  PubMed  Google Scholar 

  8. Nevill TJ, Fung HC, Shepherd JD, Horsman DE, Nantel SH, Klingemann HG, et al. Cytogenetic abnormalities in primary myelodysplastic syndrome are highly predictive of outcome after allogeneic bone marrow transplantation. Blood. 1998;92:1910–7.

    CAS  PubMed  Google Scholar 

  9. Deeg HJ, Scott BL, Fang M, Shulman HM, Gyurkocza B, Myerson D, et al. Five-group cytogenetic risk classification, monosomal karyotype, and outcome after hematopoietic cell transplantation for MDS or acute leukemia evolving from MDS. Blood. 2012;120:1398–408.

    Article  CAS  Google Scholar 

  10. Díez Campelo M, Sánchez-Barba M, de Soria VG, Martino R, Sanz G, Insunza A, et al. Results of allogeneic stem cell transplantation in the Spanish MDS registry: prognostic factors for low risk patients. Leuk Res. 2014;38:1199–206.

    Article  Google Scholar 

  11. Shaffer L, Tommerup NE. An international System for Human Cytogenetic Nomenclature (2005). Basel: Karger; 2005.

  12. Sanada M, Uike N, Ohyashiki K, Ozawa K, Lili W, Hangaishi A, et al. Unbalanced translocation der(1;7)(q10; p10) defines a unique clinicopathological subgroup of myeloid neoplasms. Leukemia. 2007;21:992–7.

    Article  CAS  Google Scholar 

  13. Slovak ML, O’Donnell M, Smith DD, Gaal K. Does MDS with der(1;7)(q10;p10) constitute a distinct risk group? A retrospective single institutional analysis of clinical/pathologic features compared to -7/del(7q) MDS. Cancer Genet Cytogenet. 2009;193:78–85.

    Article  CAS  Google Scholar 

  14. Hsiao HH, Sashida G, Ito Y, Kodama A, Fukutake K, Ohyashiki JH. et al. Additional cytogenetic changes and previous genotoxic exposure predict unfavorable prognosis in myelodysplastic syndromes and acute myeloid leukemia with der(1;7)(q10; p10). Cancer Genet Cytogenet. 2006;165:161–6.

    Article  CAS  Google Scholar 

  15. Hussain FT, Nguyen EP, Raza S, Knudson R, Pardanani A, Hanson CA, et al. Sole abnormalities of chromosome 7 in myeloid malignancies: spectrum, histopathologic correlates, and prognostic implications. Am J Hematol. 2012;87:684–6.

    Article  CAS  Google Scholar 

  16. Schanz J, Tüchler H, Solé F, Mallo M, Luño E, Cervera J, et al. New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge. J Clin Oncol. 2012;30:820–9.

    Article  Google Scholar 

  17. Atsuta Y. Introduction of transplant registry unified management program 2 (TRUMP2): scripts for TRUMP data analyses, part I (variables other than HLA-related data). Int J Hematol. 2016;103:3–10.

    Article  Google Scholar 

  18. Kanda J. Scripts for TRUMP data analyses. Part II (HLA-related data): statistical analyses specific for hematopoietic stem cell transplantation. Int J Hematol. 2016;103:11–19.

    Article  CAS  Google Scholar 

  19. Atsuta Y, Suzuki R, Yoshimi A, Gondo H, Tanaka J, Hiraoka A, et al. Unification of hematopoietic stem cell transplantation registries in Japan and establishment of the TRUMP System. Int J Hematol. 2007;86:269–74.

    Article  Google Scholar 

  20. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol. 1982;51:189–99.

    Article  CAS  Google Scholar 

  21. Giralt S, Ballen K, Rizzo D, Bacigalupo A, Horowitz M, Pasquini M, et al. Reduced-intensity conditioning regimen workshop: defining the dose spectrum. Report of a workshop convened by the center for international blood and marrow transplant research. Biol Blood Marrow Transpl. 2009;15:367–9.

    Article  Google Scholar 

  22. Bacigalupo A, Ballen K, Rizzo D, Giralt S, Lazarus H, Ho V, et al. Defining the intensity of conditioning regimens: working definitions. Biol Bone Marrow Transpl. 2009;15:1628–33.

    Article  Google Scholar 

  23. Atsuta Y, Suzuki R, Nagamura-Inoue T, Taniguchi S, Takahashi S, Kai S, et al. Disease-specific analyses of unrelated cord blood transplantation compared with unrelated bone marrow transplantation in adult patients with acute leukemia. Blood. 2009;113:1631–8.

    Article  Google Scholar 

  24. Inamoto Y, Kimura F, Kanda J, Sugita J, Ikegame K, Nakasone H, et al. Comparison of graft-versus-host disease-free, relapse-free survival according to a variety of graft sources: antithymocyte globulin and single cord blood provide favorable outcomes in some subgroups. Haematologica. 2016;101:1592–602.

    Article  CAS  Google Scholar 

  25. Saber W, Cutler CS, Nakamura R, Zhang MJ, Atallah E, Rizzo JD, et al. Impact of donor source on hematopoietic cell transplantation outcomes for patients with myelodysplastic syndromes (MDS). Blood. 2013;122:1974–82.

    Article  CAS  Google Scholar 

  26. Aoki K, Ishikawa T, Ishiyama K, Aoki J, Itonaga H, Fukuda T, et al. Allogeneic haematopoietic cell transplantation with reduced-intensity conditioning for elderly patients with advanced myelodysplastic syndromes: a nationwide study. Br J Haematol. 2015;168:463–6.

    Article  Google Scholar 

  27. Gooley TA, Leisenring W, Crowley J, Storer BE. Estimation of failure probabilities in the presence of competing risks: new representations of old estimators. Stat Med. 1999;18:695–706.

    Article  CAS  Google Scholar 

  28. Fine JP, Gray RJ. A proportional hazards model for subdistribution of a competing risk. J Am Stat Assoc. 1999;94:496–509.

    Article  Google Scholar 

  29. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013;48:452–8.

    Article  CAS  Google Scholar 

  30. Miyazaki Y, Tuechler H, Sanz G, Schanz J, Garcia-Manero G, Solé F, et al. Differing clinical features between Japanese and Caucasian patients with myelodysplastic syndromes: analysis from the international working group for prognosis of MDS. Leuk Res. 2018;73:51–7.

    Article  Google Scholar 

  31. Zhang T, Xu Y, Pan J, Li H, Wang Q, Wen L, et al. High frequency of RUNX1 mutation in myelodysplastic syndrome patients with whole-arm translocation of der(1;7)(q10; p10). Leukemia. 2017;31:2257–60.

    Article  CAS  Google Scholar 

  32. Damaj G, Duhamel A, Robin M, Beguin Y, Michallet M, Mohty M, et al. Impact of azacitidine before allogeneic stem-cell transplantation for myelodysplastic syndromes: a study by the Société Française de Greffe de Moelle et de Thérapie-Cellulaire and the Groupe-Francophone des Myélodysplasies. J Clin Oncol. 2012;30:4533–40.

    Article  CAS  Google Scholar 

  33. Gerds AT, Gooley TA, Estey EH, Appelbaum FR, Deeg HJ, Scott BL. Pretransplantation therapy with azacitidine vs induction chemotherapy and posttransplantation outcome in patients with MDS. Biol Blood Marrow Transplant. 2012;18:1211–8.

    Article  CAS  Google Scholar 

  34. Field T, Perkins J, Huang Y, Kharfan-Dabaja MA, Alsina M, Ayala E, et al. 5-Azacitidine for myelodysplasia before allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2010;45:255–60.

    Article  CAS  Google Scholar 

  35. Makishima H, Yoshizato T, Yoshida K, Sekeres MA, Radivoyevitch T, Suzuki H, et al. Dynamics of clonal evolution in myelodysplastic syndromes. Nat Genet. 2017;49:204–12.

    Article  CAS  Google Scholar 

  36. Grimwade D, Freeman SD. Defining minimal residual disease in acute myeloid leukemia: which platforms are ready for “prime time. Blood. 2014;124:3345–55.

    Article  CAS  Google Scholar 

  37. Cruz NM, Mencia-Trinchant N, Hassane DC, Guzman ML. Minimal residual disease in acute myelogenous leukemia. Int J Lab Hem. 2017;39(Suppl. 1):53–60.

    Article  Google Scholar 

  38. Mo XD, Qin YZ, Zhang XH, Xu LP, Wang Y, Yan CH, et al. Minimal residual disease monitoring and preemptive immunotherapy in myelodysplastic syndrome after allogeneic hematopoietic stem cell transplantation. Ann Hematol. 2016;95:1233–40.

    Article  CAS  Google Scholar 

  39. Schroeder T, Rautenberg C, Haas R, Germing U, Kobbe G. Hypomethylating agents for treatment and prevention of relapse after allogeneic blood stem cell transplantation. Int J Hematol. 2018;107:138–50.

    Article  CAS  Google Scholar 

  40. El-Cheikh J, Massoud R, Fares E, Kreidieh N, Mahfouz R, Charafeddine M, et al. Low-dose 5-azacytidine as preventive therapy for relapse of AML and MDS following allogeneic HCT. Bone Marrow Transplant. 2017;52:918–21.

    Article  CAS  Google Scholar 

  41. Craddock C, Jilani N, Siddique S, Yap C, Khan J, Nagra S, et al. Tolerability and clinical activity of post-transplantation azacitidine in patients allografted for acute myeloid leukemia treated on the RICAZA trial. Biol Blood Marrow Transplant. 2016;22:385–90.

    Article  CAS  Google Scholar 

  42. de Lima M, Giralt S, Thall PF, de Padua Silva L, Jones RB, Komanduri K, et al. Maintenance therapy with low-dose azacitidine after allogeneic hematopoietic stem cell transplantation for recurrent acute myelogenous leukemia or myelodysplastic syndrome: a dose and schedule finding study. Cancer . 2010;116:5420–31.

    Article  Google Scholar 

  43. Han S, Kim YJ, Lee J, Jeon S, Hong T, Park GJ, et al. Model-based adaptive phase I trial design of post-transplant decitabine maintenance in myelodysplastic syndrome. J Hematol Oncol. 2015;8:118.

    Article  Google Scholar 

  44. Oshikawa G, Kakihana K, Saito M, Aoki J, Najima Y, Kobayashi T, et al. Post-transplant maintenance therapy with azacitidine and gemtuzumab ozogamicin for high-risk acute myeloid leukaemia. Br J Haematol. 2015;169:756–9.

    Article  CAS  Google Scholar 

  45. Pusic I, Choi J, Fiala MA, Gao F, Holt M, Cashen AF, et al. Maintenance therapy with decitabine after allogeneic stem cell transplantation for acute myelogenous leukemia and myelodysplastic syndrome. Biol Blood Marrow Transpl. 2015;21:1761–9.

    Article  CAS  Google Scholar 

  46. McClune BL, Weisdorf DJ, Pedersen TL, Tunes da Silva G, Tallman MS, Sierra J, et al. Effect of age on outcome of reduced-intensity hematopoietic cell transplantation for older patients with acute myeloid leukemia in first complete remission or with myelodysplastic syndrome. J Clin Oncol. 2010;28:1878–87.

    Article  Google Scholar 

  47. Scott BL, Pasquini MC, Logan BR, Wu J, Devine SM, Porter DL, et al. myeloablative versus reduced-intensity hematopoietic cell transplantation for acute myeloid leukemia and myelodysplastic syndromes. J Clin Oncol. 2017;35:1154–61.

    Article  Google Scholar 

  48. Choi EJ, Lee JH, Lee JH, Kim DY, Park HS, Seol M, et al. Non-myeloablative conditioning for lower-risk myelodysplastic syndrome with bone marrow blasts less than 5%—a feasibility study. Ann Hematol. 2016;95:1151–61.

    Article  Google Scholar 

  49. Lee SE, Kim YJ, Yahng SA, Cho BS, Eom KS, Lee S, et al. Survival benefits from reduced-intensity conditioning in allogeneic stem cell transplantation for young lower-risk MDS patients without significant comorbidities. Eur J Haematol. 2011;87:510–20.

    Article  CAS  Google Scholar 

  50. de Lima M, Anagnostopoulos A, Munsell M, Shahjahan M, Ueno N, Ippoliti C, et al. Nonablative versus reduced-intensity conditioning regimens in the treatment of acute myeloid leukemia and high-risk myelodysplastic syndrome: dose is relevant for long-term disease control after allogeneic hematopoietic stem cell transplantation. Blood. 2004;104:865–72.

    Article  Google Scholar 

  51. Christiansen DH, Andersen MK, Pedersen-Bjergaard J. Mutations of AML1 are common in therapy-related myelodysplasia following therapy with alkylating agents and are significantly associated with deletion or loss of chromosome arm 7q and with subsequent leukemic transformation. Blood. 2004;104:1474–81.

    Article  CAS  Google Scholar 

  52. Inaba T, Honda H, Matsui H. The enigma of monosomy 7. Blood. 2018;131:2891–8.

    Article  CAS  Google Scholar 

  53. Yoshizato T, Nannya Y, Atsuta Y, Shiozawa Y, Iijima-Yamashita Y, Yoshida K, et al. Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation. Blood. 2017;129:2347–58.

    Article  CAS  Google Scholar 

  54. Bejar R, Stevenson KE, Caughey B, Lindsley RC, Mar BG, Stojanov P, et al. Somatic mutations predict poor outcome in patients with myelodysplastic syndrome after hematopoietic stem-cell transplantation. J Clin Oncol. 2014;32:2691–8.

    Article  Google Scholar 

  55. Della Porta MG, Gallì A, Bacigalupo A, Zibellini S, Bernardi M, Rizzo E, et al. Clinical effects of driver somatic mutations on the outcomes of patients with myelodysplastic syndromes treated with allogeneic hematopoietic stem-cell transplantation. J Clin Oncol. 2016;34:3627–37.

    Article  Google Scholar 

  56. Duncavage EJ, Jacoby MA, Chang GS, Miller CA, Edwin N, Shao J, et al. Mutation clearance after transplantation for myelodysplastic syndrome. N Engl J Med. 2018;379:1028–41.

    Article  CAS  Google Scholar 

  57. Bacher U, Shumilov E, Flach J, Porret N, Joncourt R, Wiedemann G, et al. Challenges in the introduction of next-generation sequencing (NGS) for diagnostics of myeloid malignancies into clinical routine use. Blood. Cancer J. 2018;8:113.

    Google Scholar 

  58. Lee JH, Lee JH, Lim SN, Kim DY, Kim SH, Lee YS, et al. Allogeneic hematopoietic cell transplantation for myelodysplastic syndrome: prognostic significance of pre-transplant IPSS score and comorbidity. Bone Marrow Transpl. 2010;45:450–7.

    Article  Google Scholar 

  59. Nevill TJ, Shepherd JD, Sutherland HJ, Abou Mourad YR, Lavoie JC, Barnett MJ, et al. IPSS poor-risk karyotype as a predictor of outcome for patients with myelodysplastic syndrome following myeloablative stem cell transplantation. Biol Blood Marrow Transpl. 2009;15:205–13.

    Article  Google Scholar 

  60. Della Porta MG, Alessandrino EP, Bacigalupo A, van Lint MT, Malcovati L, Pascutto C, et al. Predictive factors for the outcome of allogeneic transplantation in patients with MDS stratified according to the revised IPSS-R. Blood. 2014;123:2333–42.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Practical Research Project for Allergic Diseases and Immunology (Research Technology of Medical Transplantation) from the Japan Agency for Medical Research and Development, AMED. The authors would like to thank all the physicians and data managers at the various institutes who contributed valuable data on transplantation to the Japan Society for Hematopoietic Cell Transplantation (JSHCT) and all the members of the data management committees of JSHCT; a complete membership list of the “Adult Myelodysplastic Syndrome Working Group of the JSHCT” appears in the “Appendix”.

Author information

Authors and Affiliations

Authors

Contributions

HI and YM designed the research, organized the project, analyzed the data, and wrote the manuscript. HI, KA, JA, TI, KI, and YM collected data from TRUMP. HI, KA, JA, TI, KI, NU, TF, YO, SO, NU, TE, KI, YO, MT, TI, YA, and YM interpreted data and reviewed and approved the final manuscript.

Corresponding author

Correspondence to Hidehiro Itonaga.

Ethics declarations

Conflict of interest

The authors state that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

The following institutions and hematologists contributed to this study: Nagasaki University: Dr. H. Itonaga and Dr. Y. Miyazaki; Kyoto University: Dr. A. Takeda and Dr. K. Aoki; Kanagawa Cancer Center: Dr. J. Aoki, Dr. M. Tanaka, and Dr. T Takahana; Kanazawa University Hospital: Dr. K. Ishiyama; Kobe City Medical General Hospital: Dr. Y. Shimomura and Dr. T. Ishikawa; Keio University School of Medicine: Drs. J. Kato and S. Okamoto; Japanese Red Cross Nagoya First Hospital: Dr. Y. Ozawa; Tokyo Metropolitan Cancer and Infectious Disease Centre Komagome Hospital: Drs. K. Kakizoe and N. Doki; JA Aichi Konan Kosei Hospital: Dr. A. Kohno; Toranomon Hospital: Dr. S. Takagi; Aichi Medical University: Dr. A. Takami; Hyogo College of Medicine: Dr. H. Tamaki; Akita University Hospital: Dr. M. Hirokawa; Mishuku Hospital: Dr. K. Masuoka; Niigata University: Dr. M. Masuko; Kinki University: Dr. K. Ashizawa and Dr. T. Ashida; NTT Medical Center Tokyo: Dr. R. Kida and Dr. K. Usuki; Hamanomachi Hospital: Dr. T. Eto; Sapporo Hokuyu Hospital: Dr. K. Minauchi and Dr. S. Ohta; Tohoku University Hospital: Dr. Y. Onishi; Kanazawa University Graduate School of Medical Sciences: Dr. S. Nakao; Shizuoka Cancer Center: Dr. T. Enami and Dr. T. Ikeda; Kansai Medical University Hirakata Hospital: Dr. K. Ishii; Tokyo Metropolitan Geriatric Hospital: Dr. S. Kobayashi; Tokai University School of Medicine: Dr. S. Machida; Osaka City University: Dr. H. Koh; National Cancer Center Hospital: Dr. T. Suzuki; The University of Tokyo: Dr. T. Konuma; Nagoya University Graduate School of Medicine: Dr. K. Miyao and Dr. T. Morishita; Tokyo Women’s Medical University: Dr. K. Yoshinaga; Ishikawa Prefectural Central Hospital: Dr. Y. Mizumaki and Dr. C. Sugimori; Kokura Memorial Hospital: Dr. A. Yonezawa; Okawama University Hospital: Dr S. Fujii.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itonaga, H., Ishiyama, K., Aoki, K. et al. Clinical impact of the loss of chromosome 7q on outcomes of patients with myelodysplastic syndromes treated with allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 54, 1471–1481 (2019). https://doi.org/10.1038/s41409-019-0469-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-019-0469-5

This article is cited by

Search

Quick links