Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Additive effects of the combined expression of soluble forms of GAS1 and PTEN inhibiting glioblastoma growth

Abstract

The overexpression of GAS1 (Growth Arrest Specific 1) in glioma cells induces cell cycle arrest and apoptosis. We previously demonstrated that the apoptotic process set off by GAS1 is caused by its capacity to inhibit the Glial cell-derived neurotrophic factor (GDNF)-mediated intracellular survival signaling pathway. Whereas on the other hand, PTEN is a tumor suppressor, inactive in many tumors, and both GAS1 and PTEN inhibit the PI3K/AKT pathway. Therefore, it is relevant to investigate the potential additive effect of the overexpression of GAS1 and PTEN on tumor growth. In particular, we employed secreted forms of both GAS1 (tGAS1) and PTEN (PTEN-LONG, or PTEN-L) and tested their combined effect on glioma cells. We observed that the co-expression of both the proteins inhibited the growth of U-87 MG human glioblastoma cells more effectively than when independently expressed, and decreased the activity of both AKT and ERK1/2. Interestingly, the combination of the soluble forms was always the most effective treatment. To improve the transfer of tGAS1 and PTEN-L, we employed a lentiviral vector with a p2A peptide-enabled dual expression system that allowed the generation of the two proteins using a single promoter (CMV), in equimolar amounts. The viral vector reduced the growth of U-87 MG cells in vitro and had a striking effect in inhibiting their proliferation after inoculating it into the immunosuppressed mice. The present results support a potential adjuvant role for the combined use of tGAS1 and PTEN-L in the treatment of glioblastoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359:492–507.

    Article  CAS  Google Scholar 

  2. Natsume A, Yoshida J. Gene therapy for high-grade glioma: current approaches and future directions. Cell Adhes Migr. 2008;2:186–91.

    Article  Google Scholar 

  3. Stupp R, Roila F. Malignant glioma: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol. 2009;20:126–8.

    Article  Google Scholar 

  4. Van Den Bent MJ, Weller M, Wen PY, Kros JM, Aldape K, Chang S. A clinical perspective on the 2016 WHO brain tumor classification and routine molecular diagnostics. Neuro Oncol. 2017;19:614–24.

    Article  Google Scholar 

  5. Louis DN, Holland EC, Cairncross JG. Glioma classification: a molecular reappraisal. Am J Pathol. 2001;159:779–86.

    Article  CAS  Google Scholar 

  6. Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro Oncol. 2017;19:v1–88.

    Article  Google Scholar 

  7. Lamborn KR, Chang SM, Prados MD. Prognostic factors for survival of patients with glioblastoma: recursive partitioning analysis. Neuro Oncol. 2004;6:227–35.

    Article  Google Scholar 

  8. Benítez JA, Domínguez-Monzón G, Segovia J. Conventional and gene therapy strategies for the treatment of brain tumors. Curr Med Chem. 2008;15:729–42.

    Article  Google Scholar 

  9. Segovia J, López-Ornelas A. Brain cancer, tumor targeting and cervical cancer. In: Hauppauge N, editor. Recent advances in glioma gene therapy. New York: Nova Science; 2011. pp. 201–16.

  10. Park M, Seung-Koo L, Chang H, Kang G, Kim EU, Kim SH, et al. Elderly patients with newly diagnosed glioblastoma: can preoperative imaging descriptors improve the predictive power of a survival model? J Neurooncol. 2017;134:423–31.

    Article  Google Scholar 

  11. Minniti G, Filippi AR, Osti MF, Ricardi U. Radiation therapy for older patients with brain tumors. Radiat Oncol. 2017;12:101.

    Article  Google Scholar 

  12. Fine HA. New strategies in glioblastoma: exploiting the new biology. Clin Cancer Res. 2015;21:1984–8.

    Article  CAS  Google Scholar 

  13. Sulman E, Aldape K, Colman H. Brain tumor stem cells. Curr Probl Cancer. 2008;32:124–42.

    Article  Google Scholar 

  14. Vescovi AL, Galli R, Reynolds BA. Brain tumour stem cells. Nat Rev Cancer. 2006;6:425–36.

    Article  CAS  Google Scholar 

  15. Stebel M, Vatta P, Ruaro ME, Del Sal G, Parton RG, Schneider C. The growth suppressing gas1 product is a GPI-linked protein. FEBS Lett. 2000;481:152–8.

    Article  CAS  Google Scholar 

  16. Zamorano A, Lamas M, Vergara P, Naranjo JR, Segovia J. Transcriptionally mediated gene targeting of gas1 to glioma cells elicits growth arrest and apoptosis. J Neurosci Res. 2003;71:256–63.

    Article  CAS  Google Scholar 

  17. Zamorano A, Mellström B, Vergara P, Naranjo JR, Segovia J. Glial-specific retrovirally mediated gas1 gene expression induces glioma cell apoptosis and inhibits tumor growth in vivo. Neurobiol Dis. 2004;15:483–91.

    Article  CAS  Google Scholar 

  18. Domínguez-Monzón G, Benítez JA, Vergara P, Lorenzana R, Segovia J. Gas1 inhibits cell proliferation and induces apoptosis of human primary gliomas in the absence of Shh. Int J Dev Neurosci. 2009;27:305–13.

    Article  Google Scholar 

  19. López-Ramírez MA, Domínguez-Monzón G, Vergara P, Segovia J. Gas1 reduces Ret tyrosine 1062 phosphorylation and alters GDNF-mediated intracellular signaling. Int J Dev Neurosci. 2008;26:497–503.

    Article  Google Scholar 

  20. Schueler-Furman O, Glick E, Segovia J, Linial M. Is GAS1 a co-receptor for the GDNF family of ligands? Trends Pharmacol Sci. 2006;27:72–7.

    Article  CAS  Google Scholar 

  21. Sidorova YA, Saarma M. Glial cell line-derived neurotrophic factor family ligands and their therapeutic potential 1. Mol Biol. 2016;50:521–31.

    Article  CAS  Google Scholar 

  22. Dominguez-Monzon G, Gonzalez-Ramirez R, Segovia J. Molecular mechanisms of action of Gas1 and its possible therapeutic applications. Curr Signal Transduct Ther. 2011;6:106–12.

    Article  CAS  Google Scholar 

  23. Zarco N, González-Ramírez R, González RO, Segovia J. GAS1 induces cell death through an intrinsic apoptotic pathway. Apoptosis. 2012;17:627–35.

    Article  CAS  Google Scholar 

  24. López-Ornelas A, Mejia-Castillo T, Vergara P, Segovia J. Lentiviral transfer of an inducible transgene expressing a soluble form of Gas1 causes glioma cell arrest, apoptosis and inhibits tumor growth. Cancer Gene Ther. 2011;18:87–99.

    Article  Google Scholar 

  25. Jiménez A, López-Ornelas A, Estudillo E, González-Mariscal L, González RO, Segovia J. A soluble form of GAS1 inhibits tumor growth and angiogenesis in a triple negative breast cancer model. Exp Cell Res. 2014;327:307–17.

    Article  Google Scholar 

  26. López-Ornelas A, Vergara P, Segovia J. Neural stem cells producing an inducible and soluble form of Gas1 target and inhibit intracranial glioma growth. Cytotherapy. 2014;16:1011–23.

    Article  Google Scholar 

  27. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate. Cancer Sci. 1997;275:1943–7.

    CAS  Google Scholar 

  28. Worby CA, Dixon JE. Pten. Annu Rev Biochem. 2014;83:641–69.

    Article  CAS  Google Scholar 

  29. Planchon SM, Waite KA, Eng C. The nuclear affairs of PTEN. J Cell Sci. 2008;121:249–53.

    Article  CAS  Google Scholar 

  30. Tachibana N, Cantrup R, Dixit R, Touahri Y, Kaushik G, Zinyk D, et al. Pten regulates retinal amacrine cell number by modulating Akt, Tgfβ, and Erk signaling. J Neurosci. 2016;36:9454–71.

    Article  CAS  Google Scholar 

  31. Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL. The PTEN͞ MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase Akt pathway. Proc Natl Acad Sci USA. 1998;95:15587–91.

    Article  CAS  Google Scholar 

  32. Stambolic V, Suzuki A, De PompaL, Brothers GM, Mirtsos C, Sasaki T, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 1998;95:29–39.

    Article  CAS  Google Scholar 

  33. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase–AKT pathway in human cancer. Nat Rev Cancer. 2002;2:489–501.

    Article  CAS  Google Scholar 

  34. Hopkins BD, Fine B, Steinbach N, Dendy M, Rapp Z, Shaw J, et al. A secreted PTEN phosphatase that enters cells to alter signaling and survival. Science. 2013;341:399–402.

    Article  CAS  Google Scholar 

  35. Malaney P, Uversky VN, Davé V. The PTEN long N-tail is intrinsically disordered: increased viability for PTEN therapy. Mol Biosyst. 2013;9:2877.

    Article  CAS  Google Scholar 

  36. Putz U, Mah S, Goh CP, Low LH, Howitt J, Tan SS. PTEN secretion in exosomes. Methods. 2015;77-78:157–63.

    Article  CAS  Google Scholar 

  37. Lu D-Y, Leung Y-M, Cheung C-W, Chen Y-R, Wong K-L. Glial cell line-derived neurotrophic factor induces cell migration and matrix metalloproteinase-13 expression in glioma cells. Biochem Pharmacol. 2010;80:1201–9.

    Article  CAS  Google Scholar 

  38. Ryan MD, King AMQ, Thomas GP. Cleavage of foot-and-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence. J Gen Virol. 1991;72:2727–32.

    Article  CAS  Google Scholar 

  39. Halpin C, Cooke SE, Barakate ElAmrani, Ryan MD. Self-processing 2A-polyproteins-a system for co-ordinate expression of multiple proteins in transgenic plants. Plant J. 1999;17:453–9.

    Article  CAS  Google Scholar 

  40. De Felipe P, Luke GA, Hughes LE, Gani D, Halpin C, Ryan MD. E unum pluribus: multiple proteins from a self-processing polyprotein. Trends Biotechnol. 2006;24:68–75.

    Article  Google Scholar 

  41. Garcia-Tovar CG, Perez A, Luna J, Mena R, Osorio B, Aleman V, et al. Biochemical and histochemical analysis of 71 kDa dystrophin isoform (Dp71f) in rat brain. Acta Histochem. 2001;103:209–24.

    Article  CAS  Google Scholar 

  42. Wang H, Zhang P, Lin C, Yu Q, Wu J, Wang L, et al. Relevance and therapeutic possibility of PTEN-long in renal cell carcinoma. PLoS ONE. 2015;10:e114250.

    Article  Google Scholar 

Download references

Acknowledgements

We want to thank Araceli Navarrete for technical support and Rubén Sánchez for laboratory assistance. This work was partially supported by Conacyt (México) Grant 239516 (JS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Segovia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Hernández, L., Hernández-Soto, J., Vergara, P. et al. Additive effects of the combined expression of soluble forms of GAS1 and PTEN inhibiting glioblastoma growth. Gene Ther 25, 439–449 (2018). https://doi.org/10.1038/s41434-018-0020-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-018-0020-0

This article is cited by

Search

Quick links