Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting chromatin complexes in fusion protein-driven malignancies

Abstract

Recurrent chromosomal rearrangements leading to the generation of oncogenic fusion proteins are a common feature of many cancers. These aberrations are particularly prevalent in sarcomas and haematopoietic malignancies and frequently involve genes required for chromatin regulation and transcriptional control. In many cases, these fusion proteins are thought to be the primary driver of cancer development, altering chromatin dynamics to initiate oncogenic gene expression programmes. In recent years, mechanistic insights into the underlying molecular functions of a number of these oncogenic fusion proteins have been discovered. These insights have allowed the design of mechanistically anchored therapeutic approaches promising substantial treatment advances. In this Review, we discuss how our understanding of fusion protein function is informing therapeutic innovations and illuminating mechanisms of chromatin and transcriptional regulation in cancer and normal cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chromatin-based mechanisms of fusion proteins.
Fig. 2: Indirect targeting of fusion protein function.
Fig. 3: Direct targeting of fusion protein function.

Similar content being viewed by others

References

  1. Nowell, P. & Hungerford, D. A minute chromosome in human chronic 9 granulocytic leukemia. Science 132, 1488–1501 (1960).

    Google Scholar 

  2. Rowley, J. D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243, 290–293 (1973).

    CAS  Google Scholar 

  3. Rowley, J. D. Identificaton of a translocation with quinacrine fluorescence in a patient with acute leukemia. Ann. Genet. 16, 109–112 (1973).

    CAS  Google Scholar 

  4. Zech, L., Haglund, U., Nilsson, K. & Klein, G. Characteristic chromosomal abnormalities in biopsies and lymphoid-cell lines from patients with Burkitt and non-Burkitt lymphomas. Int. J. Cancer 17, 47–56 (1976).

    CAS  Google Scholar 

  5. Seidal, T., Mark, J., Hagmar, B. & Angervall, L. Alveolar rhabdomyosarcoma: a cytogenetic and correlated cytological and histological study. Acta Pathol. Microbiol. Immunol. Scand. 90A, 345–354 (1982).

    Google Scholar 

  6. Shtivelman, E., Lifshitz, B., Gale, R. P. & Canaani, E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 315, 550–554 (1985).

    CAS  Google Scholar 

  7. Stam, K. et al. Evidence of a new chimeric bcr/c-abl mRNA in patients with chronic myelocytic leukemia and the Philadelphia chromosome. N. Engl. J. Med. 313, 1429–1433 (1985).

    CAS  Google Scholar 

  8. de Thé, H., Chomienne, C., Lanotte, M., Degos, L. & Dejean, A. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor α gene to a novel transcribed locus. Nature 347, 558–561 (1990).

    Google Scholar 

  9. Delattre, O. et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 359, 162–165 (1992).

    CAS  Google Scholar 

  10. Gao, Q. et al. Driver fusions and their implications in the development and treatment of human cancers. Cell Rep. 23, 227–238 (2018).

    CAS  Google Scholar 

  11. Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    CAS  Google Scholar 

  12. Tomlins, S. A. et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 448, 595–599 (2007).

    CAS  Google Scholar 

  13. Soda, M. et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).

    CAS  Google Scholar 

  14. Koivunen, J. P. et al. EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin. Cancer Res. 14, 4275–4283 (2008).

    CAS  Google Scholar 

  15. Stransky, N., Cerami, E., Schalm, S., Kim, J. L. & Lengauer, C. The landscape of kinase fusions in cancer. Nat. Commun. 5, 4846 (2014).

    CAS  Google Scholar 

  16. Hu, X. et al. TumorFusions: an integrative resource for cancer-associated transcript fusions. Nucleic Acids Res. 46, 1144–1149 (2018).

    Google Scholar 

  17. Singh, D. et al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science 337, 1231–1235 (2012).

    CAS  Google Scholar 

  18. Tognon, C. et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2, 367–376 (2002).

    CAS  Google Scholar 

  19. Dinh, T. A. et al. Comprehensive analysis of the Cancer Genome Atlas reveals a unique gene and non-coding RNA signature of fibrolamellar carcinoma. Sci. Rep. 7, 44653 (2017).

    Google Scholar 

  20. Bass, A. J. et al. Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion. Nat. Genet. 43, 964–970 (2011).

    CAS  Google Scholar 

  21. Tomlins, S. A. et al. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 10, 177–188 (2008).

    CAS  Google Scholar 

  22. de Klein, A. et al. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 300, 765–767 (1982).

    Google Scholar 

  23. Zhao, R. C., Jiang, Y. & Verfaillie, C. M. A model of human p210bcr/ABL-mediated chronic myelogenous leukemia by transduction of primary normal human CD34 + cells with a BCR/ABL-containing retroviral vector. Blood 97, 2406–2412 (2001).

    CAS  Google Scholar 

  24. Ramaraj, P. et al. Effect of mutational inactivation of tyrosine kinase activity on BCR/ABL-induced abnormalities in cell growth and adhesion in human hematopoietic progenitors. Cancer Res. 64, 5322–5331 (2004).

    CAS  Google Scholar 

  25. Shaw, A. T. et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N. Engl. J. Med. 370, 1189–1197 (2014).

    CAS  Google Scholar 

  26. Druker, B. J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr–Abl positive cells. Nat. Med. 2, 561–566 (1996).

    CAS  Google Scholar 

  27. Weisberg, E., Manley, P. W., Cowan-Jacob, S. W., Hochhaus, A. & Griffin, J. D. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat. Rev. Cancer 7, 345–356 (2007).

    CAS  Google Scholar 

  28. Crompton, B. D. et al. The genomic landscape of pediatric Ewing sarcoma. Cancer Discov. 4, 1326–1341 (2014).

    CAS  Google Scholar 

  29. Djabali, M. et al. A trithorax–like gene is interrupted by chromosome 11q23 translocations in acute leukaemias. Nat. Genet. 2, 113–118 (1992).

    CAS  Google Scholar 

  30. Gu, Y. et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell 71, 701–708 (1992).

    CAS  Google Scholar 

  31. Tkachuk, D. C., Kohler, S. & Cleary, M. L. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 71, 691–700 (1992).

    CAS  Google Scholar 

  32. Ziemin-van der Poel, S. et al. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc. Natl Acad. Sci. USA 88, 10735–10739 (1991).

    CAS  Google Scholar 

  33. Greaves, M. Infant leukaemia biology, aetiology and treatment. Leukemia 10, 372–377 (1996).

    CAS  Google Scholar 

  34. Krivtsov, A. V. & Armstrong, S. A. MLL translocations, histone modifications and leukaemia stem-cell development. Nat. Rev. Cancer 7, 823–833 (2007).

    CAS  Google Scholar 

  35. Andersson, A. K. et al. The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nat. Genet. 47, 330–337 (2015).

    CAS  Google Scholar 

  36. Krivtsov, A. V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442, 818–822 (2006).

    CAS  Google Scholar 

  37. Krivtsov, A. V. et al. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 14, 355–368 (2008).

    CAS  Google Scholar 

  38. Corral, J. et al. An Mll – AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell 85, 853–861 (1996).

    CAS  Google Scholar 

  39. Forster, A. et al. Engineering de novo reciprocal chromosomal translocations associated with Mll to replicate primary events of human cancer. Cancer Cell 3, 449–458 (2003).

    CAS  Google Scholar 

  40. Wang, J. et al. Conditional MLL-CBP targets GMP and models therapy-related myeloproliferative disease. EMBO J. 24, 368–381 (2005).

    Google Scholar 

  41. Lavau, C., Szilvassy, S. J., Slany, R. & Cleary, M. L. Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J. 16, 4226–4237 (1997).

    CAS  Google Scholar 

  42. So, C. W. et al. MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice. Cancer Cell 3, 161–171 (2003).

    CAS  Google Scholar 

  43. Zeisig, B. B., García-Cuéllar, M. P., Winkler, T. H. & Slany, R. K. The oncoprotein MLL-ENL disturbs hematopoietic lineage determination and transforms a biphenotypic lymphoid/myeloid cell. Oncogene 22, 1629–1637 (2003).

    CAS  Google Scholar 

  44. Chen, C. W. & Armstrong, S. A. Targeting DOT1L and HOX gene expression in MLL-rearranged leukemia and beyond. Exp. Hematol. 43, 673–684 (2015).

    CAS  Google Scholar 

  45. Bernt, K. M. et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 20, 66–78 (2011). This paper is the first to demonstrate that MLL1-fusion leukaemia cells rely upon the enzymatic activity of the H3K79 methyltransferase DOT1L.

    CAS  Google Scholar 

  46. Mishra, B. P. et al. The histone methyltransferase activity of MLL1 is dispensable for hematopoiesis and leukemogenesis. Cell Rep. 7, 1239–1247 (2014).

    CAS  Google Scholar 

  47. Chen, Y. et al. MLL2, not MLL1, plays a major role in sustaining MLL-rearranged acute myeloid leukemia. Cancer Cell 31, 755–770 (2017).

    CAS  Google Scholar 

  48. Lin, C. et al. AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol. Cell 37, 429–437 (2010).

    CAS  Google Scholar 

  49. Peterlin, B. M. & Price, D. H. Controlling the elongation phase of transcription with P-TEFb. Mol. Cell 23, 297–305 (2006).

    CAS  Google Scholar 

  50. Marshall, N. F. & Price, D. H. Purification of P-TEFb, a transcription factor required for the transition into productive elongation. J. Biol. Chem. 270, 12335–12338 (1995).

    CAS  Google Scholar 

  51. Marshall, N. F., Peng, J., Xie, Z. & Price, D. H. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J. Biol. Chem. 271, 27176–27183 (1996).

    CAS  Google Scholar 

  52. Mohan, M. et al. Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom). Genes Dev. 24, 574–589 (2010). This paper reports the first global biochemical analysis of DOT1L-containing complexes in human cells.

    CAS  Google Scholar 

  53. Nguyen, A. T. & Zhang, Y. The diverse functions of Dot1 and H3K79 methylation. Genes Dev. 25, 1345–1358 (2011).

    CAS  Google Scholar 

  54. Chen, C.-W. et al. DOT1L inhibits SIRT1-mediated epigenetic silencing to maintain leukemic gene expression in MLL-rearranged leukemia. Nat. Med. 21, 335–343 (2015).

    CAS  Google Scholar 

  55. Guenther, M. G. et al. Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia. Genes Dev. 22, 3403–3408 (2008). This paper, together with Krivtsov et al. (2008), provides the first evidence that H3K79 methylation patterns are perturbed in MLL1-fusion leukaemia cells.

    CAS  Google Scholar 

  56. Deshpande, A. J. et al. AF10 regulates progressive H3K79 methylation and HOX gene expression in diverse AML subtypes. Cancer Cell 26, 896–908 (2014).

    CAS  Google Scholar 

  57. Bisio, V. et al. NUP98 fusion proteins are recurrent aberrancies in childhood acute myeloid leukemia: a report from the AIEOP AML-2001-02 study group. Blood 124, 1025 (2014).

    Google Scholar 

  58. Gough, S. M., Slape, C. I. & Aplan, P. D. NUP98 gene fusions and hematopoietic malignancies: common themes and new biologic insights. Blood 118, 6247–6257 (2011).

    CAS  Google Scholar 

  59. Hollink, I. H. I. M. et al. NUP98/NSD1 characterizes a novel poor prognostic group in acute myeloid leukemia with a distinct HOX gene expression pattern. Blood 118, 3645–3656 (2011).

    CAS  Google Scholar 

  60. Chou, W. C. et al. Acute myeloid leukemia bearing t(7;11)(p15;p15) is a distinct cytogenetic entity with poor outcome and a distinct mutation profile: comparative analysis of 493 adult patients. Leukemia 23, 1303–1310 (2009).

    CAS  Google Scholar 

  61. Xu, H. et al. NUP98 fusion proteins interact with the NSL and MLL1 complexes to drive leukemogenesis. Cancer Cell 30, 1–16 (2016).

    Google Scholar 

  62. Wang, G. G. et al. Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature 459, 847–851 (2009). This paper demonstrates that NUP98–JARID1A fusion proteins require the H3K4me3 binding ability of a JARID1A PHD-finger domain to drive leukaemogenesis.

    CAS  Google Scholar 

  63. Kroon, E., Thorsteinsdottir, U., Mayotte, N., Nakamura, T. & Sauvageau, G. NUP98-HOXA9 expression in hemopoietic stem cells induces chronic and acute myeloid leukemias in mice. EMBO J. 20, 350–361 (2001).

    CAS  Google Scholar 

  64. Lin, Y. W., Slape, C., Zhang, Z. & Aplan, P. D. NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia. Blood 106, 287–295 (2005).

    CAS  Google Scholar 

  65. Wang, G. G., Cai, L., Pasillas, M. P. & Kamps, M. P. NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat. Cell Biol. 9, 804–812 (2007). This paper demonstrates that NUP98–NSD1 fusions establish aberrant H3K36 methylation patterns to promote leukaemogenesis.

    CAS  Google Scholar 

  66. Hurt, E. & Beck, M. Towards understanding nuclear pore complex architecture and dynamics in the age of integrative structural analysis. Curr. Opin. Cell Biol. 34, 31–38 (2015).

    CAS  Google Scholar 

  67. Capelson, M. et al. Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 140, 372–383 (2010).

    CAS  Google Scholar 

  68. Kalverda, B., Pickersgill, H., Shloma, V. V. & Fornerod, M. Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 140, 360–371 (2010).

    CAS  Google Scholar 

  69. Liang, Y., Franks, T. M., Marchetto, M. C., Gage, F. H. & Hetzer, M. W. Dynamic association of NUP98 with the human genome. PLOS Genet. 9, e1003308 (2013).

    CAS  Google Scholar 

  70. Franks, T. M. et al. Nup98 recruits the Wdr82-Set1A/COMPASS complex to promoters to regulate H3K4 trimethylation in hematopoietic progenitor cells. Genes Dev. 31, 2222–2234 (2017).

    CAS  Google Scholar 

  71. Hillestad, L. Acute promyelocytic leukemia. Acta Med. Scand. 159, 189–194 (1957).

    CAS  Google Scholar 

  72. de Thé, H. et al. The PML-RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66, 675–684 (1991).

    Google Scholar 

  73. Rowley, J. D., Golomb, H. M. & Dougherty, C. 15/17 translocation, a consistent chromosomal change in acute promyelocytic leukaemia. Lancet 309, 549–550 (1977).

    Google Scholar 

  74. He, L. Z. et al. Acute leukemia with promyelocytic features in PML/RARalpha transgenic mice. Proc. Natl Acad. Sci. USA 94, 5302–5307 (1997).

    CAS  Google Scholar 

  75. Westervelt, P. et al. High-penetrance mouse model of acute promyelocytic leukemia with very low levels of PML-RARα expression. Blood 102, 1857–1865 (2003).

    CAS  Google Scholar 

  76. Kelly, L. M. et al. PML/RARalpha and FLT3-ITD induce an APL-like disease in a mouse model. Proc. Natl Acad. Sci. USA 99, 8283–8288 (2002).

    CAS  Google Scholar 

  77. Welch, J. S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).

    CAS  Google Scholar 

  78. Dellaire, G. & Bazett-Jones, D. P. PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. BioEssays 26, 963–977 (2004).

    CAS  Google Scholar 

  79. Ferbeyre, G. et al. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev. 14, 2015–2027 (2000).

    CAS  Google Scholar 

  80. Pearson, M. et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406, 207–210 (2000).

    CAS  Google Scholar 

  81. Guo, A. et al. The function of PML in p53-dependent apoptosis. Nat. Cell Biol. 2, 730–736 (2000).

    CAS  Google Scholar 

  82. Strickland, S. & Mahdavi, V. The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell 15, 393–403 (1978).

    CAS  Google Scholar 

  83. Chanda, B., Ditadi, A., Iscove, N. N. & Keller, G. Retinoic acid signaling is essential for embryonic hematopoietic stem cell development. Cell 155, 215–227 (2013).

    CAS  Google Scholar 

  84. Tocci, A. et al. Dual action of retinoic acid on human embryonic/fetal hematopoiesis: blockade of primitive progenitor proliferation and shift from multipotent/erythroid/monocytic to granulocytic differentiation program. Blood 88, 2878–2888 (1996).

    CAS  Google Scholar 

  85. Rochette-Egly, C. & Germain, P. Dynamic and combinatorial control of gene expression by nuclear retinoic acid receptors (RARs). Nucl. Recept. Signal. 7, e005 (2009).

    Google Scholar 

  86. Kwok, C., Zeisig, B. B., Dong, S. & So, C. W. E. Forced homo-oligomerization of RARα leads to transformation of primary hematopoietic cells. Cancer Cell 9, 95–108 (2006).

    CAS  Google Scholar 

  87. Sternsdorf, T. et al. Forced retinoic acid receptor α homodimers prime mice for APL-like leukemia. Cancer Cell 9, 81–94 (2006).

    CAS  Google Scholar 

  88. Perez, A. et al. PML-RAR homodimers: distinct DNA binding properties and heteromeric interactions with RXR. EMBO J. 12, 3171–3182 (1993).

    CAS  Google Scholar 

  89. Lin, R. J. et al. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 391, 811–814 (1998).

    CAS  Google Scholar 

  90. Grignani, F. et al. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 391, 815–818 (1998). This paper, together with Lin et al. (1998), links the oncogenic role of PML–RARα with histone deacetylase activities.

    CAS  Google Scholar 

  91. Villa, R. et al. Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell 11, 513–525 (2007).

    CAS  Google Scholar 

  92. Di Croce, L. et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295, 1079–1082 (2002).

    Google Scholar 

  93. Hong, S. H., David, G., Wong, C. W., Dejean, A. & Privalsky, M. L. SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor alpha (RARalpha) and PLZF-RARalpha oncoproteins associated with acute promyelocytic leukemia. Proc. Natl Acad. Sci. USA 94, 9028–9033 (1997).

    CAS  Google Scholar 

  94. Martens, J. H. A. et al. PML-RARA/RXR alters the epigenetic landscape in acute promyelocytic leukemia. Cancer Cell 17, 173–185 (2010). This paper demonstrates that PML–RARα fusions can globally alter patterns of histone H3 acetylation to effect gene expression.

    CAS  Google Scholar 

  95. Tirode, F. et al. Genomic landscape of ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer Discov. 4, 1342–1353 (2014).

    CAS  Google Scholar 

  96. Kovar, H. Dr. Jekyll and Mr. Hyde: the two faces of the FUS/EWS/TAF15 protein family. Sarcoma 2011, 837474 (2011).

    Google Scholar 

  97. Sharrocks, A. D. The ETS-domain transcription factor family. Nat. Rev. Mol. Cell Biol. 2, 827–837 (2001).

    CAS  Google Scholar 

  98. Riggi, N. et al. EWS-FLI-1 expression triggers a ewing’s sarcoma initiation program in primary human mesenchymal stem cells. Cancer Res. 68, 2176–2185 (2008).

    CAS  Google Scholar 

  99. Riggi, N. et al. Development of Ewing’s sarcoma from primary bone marrow–derived mesenchymal progenitor cells. Cancer Res. 65, 11459–11468 (2005).

    CAS  Google Scholar 

  100. Torchia, E. C., Jaishankar, S. & Baker, S. J. Ewing tumor fusion proteins block the differentiation of pluripotent marrow stromal cells. Cancer Res. 63, 3464–3468 (2003).

    CAS  Google Scholar 

  101. Gangwal, K. et al. Microsatellites as EWS/FLI response elements in Ewing’s sarcoma. Proc. Natl Acad. Sci. USA 105, 10149–10154 (2008).

    CAS  Google Scholar 

  102. Riggi, N. et al. EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell 26, 668–681 (2014). This paper establishes that the EWS–FLI1 fusion protein can both activate and repress gene enhancer elements to promote oncogenic gene expression programmes.

    CAS  Google Scholar 

  103. Tomazou, E. M. et al. Epigenome mapping reveals distinct modes of gene regulation and widespread enhancer reprogramming by the oncogenic fusion protein EWS-FLI1. Cell Rep. 10, 1082–1095 (2015).

    CAS  Google Scholar 

  104. Boulay, G. et al. Cancer-specific retargeting of BAF complexes by a prion-like domain. Cell 171, 163–178 (2017). This paper demonstrates that EWS–FLI1 can recruit the chromatin remodelling activity of the SWI/SNF complex to establish active enhancer regions in Ewing sarcoma cells.

    CAS  Google Scholar 

  105. Clark, J. et al. Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat. Genet. 7, 502–508 (1994).

    CAS  Google Scholar 

  106. De Leeuw, B., Balemans, M., Weghuis, D. O. & Van Kessel, A. G. Identification of two alternative fusion genes, SYT-SSX1 and SYT-SSX2, in t(X; 18)(p11.2;q11.2)-positive synoviaol sarcomas. Hum. Mol. Genet. 4, 1097–1099 (1995).

    Google Scholar 

  107. Skytting, B. et al. A novel fusion gene, SYT-SSX4, in synovial sarcoma. J. Natl Cancer Inst. 91, 4–5 (1999).

    Google Scholar 

  108. Haldar, M., Hancock, J. D., Coffin, C. M., Lessnick, S. L. & Capecchi, M. R. A. Conditional mouse model of synovial sarcoma: insights into a myogenic origin. Cancer Cell 11, 375–388 (2007).

    CAS  Google Scholar 

  109. Kadoch, C. & Crabtree, G. R. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell 153, 71–85 (2013).

    CAS  Google Scholar 

  110. Middeljans, E. et al. SS18 together with animal-specific factors defines human BAF-type SWI/SNF complexes. PLOS ONE 7, e33834 (2012).

    CAS  Google Scholar 

  111. Pulice, J. L. & Kadoch, C. Composition and function of mammalian SWI/SNF chromatin remodeling complexes in human disease. Cold Spring Harb. Symp. Quant. Biol. 81, 53–60 (2016).

    Google Scholar 

  112. Lim, F. L., Soulez, M., Koczan, D., Thiesen, H.-J. & Knight, J. C. A. KRAB-related domain and a novel transcription repression domain in proteins encoded by SSX genes that are disrupted in human sarcomas. Oncogene 17, 2013–2018 (1998).

    CAS  Google Scholar 

  113. Soulez, M., Saurin, A. J., Freemont, P. S. & Knight, J. C. SSX and the synovial-sarcoma-specific chimaeric protein SYT-SSX co-localize with the human Polycomb group complex. Oncogene 18, 2739–2746 (1999).

    CAS  Google Scholar 

  114. McBride, M. J. et al. The SS18-SSX fusion oncoprotein hijacks BAF complex targeting and function to drive synovial sarcoma. Cancer Cell 33, 1128–1141 (2018). This paper demonstrates how SS18–SSX fusions utilize the chromatin remodelling activity of the SWI/SNF complex to promote oncogenic gene expression signatures.

    CAS  Google Scholar 

  115. Kadoch, C. et al. Dynamics of BAF–Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat. Genet. 49, 213–222 (2016).

    Google Scholar 

  116. Banito, A. et al. The SS18-SSX oncoprotein hijacks KDM2B-PRC1.1 to drive synovial sarcoma. Cancer Cell 33, 527–541 (2018).

    CAS  Google Scholar 

  117. French, C. A. NUT midline carcinoma. Nat. Rev. Cancer 14, 149–150 (2014).

    CAS  Google Scholar 

  118. French, C. A. et al. NSD3-NUT fusion oncoprotein in NUT midline carcinoma: implications for a novel oncogenic mechanism. Cancer Discov. 4, 929–941 (2014).

    Google Scholar 

  119. Alekseyenko, A. A. et al. Ectopic protein interactions within BRD4–chromatin complexes drive oncogenic megadomain formation in NUT midline carcinoma. Proc. Natl Acad. Sci. USA 114, 4184–4192 (2017).

    Google Scholar 

  120. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010). This paper illustrates the potent effects of direct targeting of BRD4–NUT fusions using the BET bromodomain inhibitor JQ1.

    CAS  Google Scholar 

  121. French, C. A. et al. BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res. 63, 304–307 (2003).

    CAS  Google Scholar 

  122. Reynoird, N. et al. Oncogenesis by sequestration of CBP/p300 in transcriptionally inactive hyperacetylated chromatin domains. EMBO J. 29, 2943–2952 (2010).

    CAS  Google Scholar 

  123. Shi, J. & Vakoc, C. R. The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol. Cell 54, 72–736 (2014).

    Google Scholar 

  124. Roe, J.-S., Mercan, F., Rivera, K., Pappin, D. J. & Vakoc, C. R. BET bromodomain inhibition suppresses the function of hematopoietic transcription factors in acute myeloid leukemia. Mol. Cell 58, 1028–1039 (2015).

    CAS  Google Scholar 

  125. Yang, Z. et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19, 535–545 (2005).

    CAS  Google Scholar 

  126. Jang, M. K. et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell 19, 523–534 (2005).

    CAS  Google Scholar 

  127. Jiang, Y. W. et al. Mammalian mediator of transcriptional regulation and its possible role as an end-point of signal transduction pathways. Proc. Natl Acad. Sci. USA 95, 8538–8543 (1998).

    CAS  Google Scholar 

  128. Lovén, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013).

    Google Scholar 

  129. Winter, G. E. et al. BET bromodomain proteins function as master transcription elongation factors independent of CDK9 recruitment. Mol. Cell 67, 5–18 (2017).

    CAS  Google Scholar 

  130. Wang, R. & You, J. Mechanistic analysis of the role of bromodomain-containing protein 4 (BRD4) in BRD4-NUT oncoprotein-induced transcriptional activation. J. Biol. Chem. 290, 2744–2758 (2015).

    CAS  Google Scholar 

  131. Alekseyenko, A. A. et al. The oncogenic BRD4-NUT chromatin regulator drives aberrant transcription within large topological domains. Genes Dev. 29, 1507–1523 (2015). This paper demonstrates that BRD4–NUT binding nucleates at discrete sites of histone acetylation before spreading to establish broad megadomains of fusion protein binding and histone acetylation.

    CAS  Google Scholar 

  132. Zee, B. M., Dibona, A. B., Alekseyenko, A. A., French, C. A. & Kuroda, M. I. The oncoprotein BRD4-NUT generates aberrant histone modification patterns. PLOS ONE 11, e0163820 (2016).

    Google Scholar 

  133. Nguyen, A. T., Taranova, O., He, J. & Zhang, Y. DOT1L, the H3K79 methyltransferase, is required for MLL-AF9-mediated leukemogenesis. Blood 117, 6912–6922 (2011).

    CAS  Google Scholar 

  134. Jo, S. Y., Granowicz, E. M., Maillard, I., Thomas, D. & Hess, J. L. Requirement for Dot1l in murine postnatal hematopoiesis and leukemogenesis by MLL translocation. Blood 117, 4759–4768 (2011).

    CAS  Google Scholar 

  135. Daigle, S. R. et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20, 53–65 (2011).

    CAS  Google Scholar 

  136. Daigle, S. R. et al. Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood 122, 1017–1025 (2013). This paper, together with Daigle et al. (2011), demonstrates the potent effects of DOT1L inhibition in MLL1-fusion-positive leukaemia cells.

    CAS  Google Scholar 

  137. Stein, E. M. et al. The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood 131, 2661–2669 (2018).

    CAS  Google Scholar 

  138. Yokoyama, A. & Cleary, M. L. Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 14, 36–46 (2008).

    CAS  Google Scholar 

  139. Chen, Y.-X. et al. The tumor suppressor menin regulates hematopoiesis and myeloid transformation by influencing Hox gene expression. Proc. Natl Acad. Sci. USA 103, 1018–1023 (2006).

    CAS  Google Scholar 

  140. Yokoyama, A. et al. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 123, 207–218 (2005).

    CAS  Google Scholar 

  141. Grembecka, J. et al. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat. Chem. Biol. 8, 277–284 (2012).

    CAS  Google Scholar 

  142. Borkin, D. et al. Pharmacologic inhibition of the menin-MLL interaction blocks progression of MLL leukemia in vivo. Cancer Cell 27, 589–602 (2015). This paper, together with Grembecka et al. (2012), demonstrates the potency of inhibiting the interaction between menin and MLL1 in MLL1-fusion leukaemia.

    CAS  Google Scholar 

  143. Grembecka, J., Belcher, A. M., Hartley, T. & Cierpicki, T. Molecular basis of the mixed lineage leukemia-menin interaction: implications for targeting mixed lineage leukemias. J. Biol. Chem. 285, 40690–40698 (2010).

    CAS  Google Scholar 

  144. Dafflon, C. et al. Complementary activities of DOT1L and Menin inhibitors in MLL-rearranged leukemia. Leukemia 31, 1269–1277 (2017).

    CAS  Google Scholar 

  145. Kühn, M. W. M. et al. Targeting chromatin regulators inhibits leukemogenic gene expression in NPM1 mutant leukemia. Cancer Discov. 6, 1166–1181 (2016).

    Google Scholar 

  146. Okuda, H. et al. Cooperative gene activation by AF4 and DOT1L drives MLL-rearranged leukemia. J. Clin. Invest. 127, 1918–1932 (2017).

    Google Scholar 

  147. Wan, L. et al. ENL links histone acetylation to oncogenic gene expression in acute myeloid leukaemia. Nature 543, 265–269 (2017).

    CAS  Google Scholar 

  148. Erb, M. A. et al. Transcription control by the ENL YEATS domain in acute leukaemia. Nature 543, 270–274 (2017).

    CAS  Google Scholar 

  149. Li, Y. et al. AF9 YEATS domain links histone acetylation to DOT1L-mediated H3K79 methylation. Cell 159, 558–571 (2014).

    CAS  Google Scholar 

  150. Liang, K. et al. Targeting processive transcription elongation via SEC disruption for MYC-induced cancer therapy. Cell 175, 766–779 (2018).

    CAS  Google Scholar 

  151. Cai, Y. et al. Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex. J. Biol. Chem. 285, 4268–4272 (2010).

    CAS  Google Scholar 

  152. Toretsky, J. A. et al. Oncoprotein EWS-FLI1 activity is enhanced by RNA helicase A. Cancer Res. 66, 5574–5581 (2006).

    CAS  Google Scholar 

  153. Erkizan, H. V. et al. A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing’s sarcoma. Nat. Med. 15, 750–756 (2009).

    CAS  Google Scholar 

  154. Zöllner, S. K. et al. Inhibition of the oncogenic fusion protein EWS-FLI1 causes G2-M cell cycle arrest and enhanced vincristine sensitivity in Ewing’s sarcoma. Sci. Signal. 10, eaam8429 (2017).

    Google Scholar 

  155. Sankar, S. et al. Reversible LSD1 inhibition interferes with global EWS/ETS transcriptional activity and impedes Ewing sarcoma tumor growth. Clin. Cancer Res. 20, 4584–4597 (2014).

    CAS  Google Scholar 

  156. Brien, G. L. et al. Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. eLife 7, e41305 (2018).

    Google Scholar 

  157. Michel, B. C. et al. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat. Cell Biol. 20, 1410–1420 (2018).

    CAS  Google Scholar 

  158. Doench, J. G. Am I ready for CRISPR? A user’s guide to genetic screens. Nat. Rev. Genet. 19, 67–80 (2017).

    Google Scholar 

  159. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).

    CAS  Google Scholar 

  160. Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866 (2016).

    CAS  Google Scholar 

  161. Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882 (2016).

    CAS  Google Scholar 

  162. Iniguez, A. B. et al. EWS/FLI confers tumor cell synthetic lethality to CDK12 inhibition in Ewing sarcoma. Cancer Cell 33, 202–216 (2018).

    CAS  Google Scholar 

  163. Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012).

    CAS  Google Scholar 

  164. de Thé, H., Pandolfi, P. P. & Chen, Z. Acute promyelocytic leukemia: a paradigm for oncoprotein-targeted cure. Cancer Cell 32, 552–560 (2017).

    Google Scholar 

  165. Huang, M. et al. All-trans retinoic acid with or without low dose cytosine arabinoside in acute promyelocytic leukemia. Report of 6 cases. Chin. Med. J. 100, 949–953 (1987).

    CAS  Google Scholar 

  166. Raelson, J. V. et al. The PML/RAR alpha oncoprotein is a direct molecular target of retinoic acid in acute promyelocytic leukemia cells. Blood 88, 2826–2832 (1996).

    CAS  Google Scholar 

  167. de Thé, H. Differentiation therapy revisited. Nat. Rev. Cancer 18, 117–127 (2018).

    Google Scholar 

  168. Mathews, V. et al. Arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: a single center experience. Am. J. Hematol. 70, 292–299 (2002).

    CAS  Google Scholar 

  169. Ghavamzadeh, A. et al. Phase II study of single-agent arsenic trioxide for the front-line therapy of acute promyelocytic leukemia. J. Clin. Oncol. 29, 2753–2757 (2011).

    CAS  Google Scholar 

  170. Wang, Z. Y. & Chen, Z. Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 111, 2505–2515 (2008).

    CAS  Google Scholar 

  171. Lo-Coco, F. et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N. Engl. J. Med. 369, 111–121 (2013).

    CAS  Google Scholar 

  172. Stathis, A. et al. Clinical response of carcinomas harboring the BRD4–NUT oncoprotein to the targeted bromodomain inhibitor OTX015/MK-8628. Cancer Discov. 6, 492–500 (2016).

    CAS  Google Scholar 

  173. Lai, A. C. & Crews, C. M. Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov. 16, 101–114 (2016).

    Google Scholar 

  174. Wu, Y. L. et al. Structural basis for an unexpected mode of SERM-Mediated ER antagonism. Mol. Cell 18, 413–424 (2005).

    CAS  Google Scholar 

  175. Guirguis, A. A. & Ebert, B. L. Lenalidomide: deciphering mechanisms of action in myeloma, myelodysplastic syndrome and beyond. Curr. Opin. Cell Biol. 37, 61–67 (2015).

    CAS  Google Scholar 

  176. Ito, T. et al. Identification of a primary target of thalidomide teratogenicity. Science 327, 1345–1350 (2010).

    CAS  Google Scholar 

  177. Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of ikaros proteins. Science 343, 305–309 (2014).

    CAS  Google Scholar 

  178. Krönke, J. et al. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature 523, 183–188 (2015).

    Google Scholar 

  179. Krönke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014).

    Google Scholar 

  180. Winter, G. E. et al. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348, 1376–1381 (2015). This paper reports on a generalizable strategy for the generation of target-specific degrader compounds.

    CAS  Google Scholar 

  181. Remillard, D. et al. Degradation of the BAF complex factor BRD9 by heterobifunctional ligands. Angew. Chem. Int. Ed. 56, 5738–5743 (2017).

    CAS  Google Scholar 

  182. Lai, A. C. et al. Modular PROTAC design for the degradation of oncogenic BCR-ABL. Angew. Chem. Int. Ed. 55, 807–810 (2016).

    CAS  Google Scholar 

  183. Parker, C. G. et al. Ligand and target discovery by fragment-based screening in human cells. Cell 168, 527–541 (2017).

    CAS  Google Scholar 

  184. Shern, J. F. et al. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov. 4, 216–231 (2014).

    CAS  Google Scholar 

  185. Seki, M. et al. Integrated genetic and epigenetic analysis defines novel molecular subgroups in rhabdomyosarcoma. Nat. Commun. 6, 7557 (2015).

    Google Scholar 

  186. Gryder, B. E. et al. PAX3-FOXO1 establishes myogenic super enhancers and confers BET bromodomain vulnerability. Cancer Discov. 7, 885–899 (2017).

    Google Scholar 

  187. Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Armstrong and Stegmaier laboratories for thoughtful discussions and feedback during the preparation of this manuscript. Work in the Armstrong laboratory is supported by grants from the US National Cancer Institute (CA176745, CA066996, CA204915 and CA231637) and Alex’s Lemonade Stand Foundation. Work in the Stegmaier laboratory is supported by US National Cancer Institute grants R35 CA210030 and R01 CA204915, US National Institute of Neurological Disorders and Stroke (NINDS) grant R01 NS088355 and US National Institutes of Health (NIH) grant U54 CA231637. Work in the Brien laboratory is supported by the Irish Cancer Society (CRF18BRI) and Science Foundation Ireland (18/SIRG/5573). Finally, the authors apologize to colleagues whose work we have been unable to discuss owing to space constraints.

Author information

Authors and Affiliations

Authors

Contributions

G.L.B. wrote the manuscript with input from K.S. and S.A.A. All authors contributed to the discussion of content and reviewed and edited the manuscript.

Corresponding authors

Correspondence to Gerard L. Brien or Scott A. Armstrong.

Ethics declarations

Competing interests

S.A.A. is a consultant and/or shareholder for Epizyme, Imago Biosciences, Cyteir Therapeutics, C4 Therapeutics, Syros Pharmaceuticals, OxStem Oncology, Accent Therapeutics and Mana Therapeutics. K.S. has consulted for Novartis and Rigel Pharmaceuticals. The Armstrong laboratory has received research support from Janssen, Novartis and AstraZeneca. The Stegmaier laboratory receives grant support from Novartis. G.L.B. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

RELATED LINKS

COSMIC database: https://cancer.sanger.ac.uk/cosmic

Glossary

Nonspecific lethal

(NSL). A chromatin regulatory complex containing histone acetyltransferase activity, which is essential for eukaryotic development and gene expression.

SWI/SNF complexes

Major ATP-dependent chromatin remodellers that exploit the energy derived from ATP hydrolysis to regulate chromatin structure and genome accessibility.

Mediator

A modular, multi-protein complex required in eukaryotes for RNA polymerase II-mediated gene transcription.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brien, G.L., Stegmaier, K. & Armstrong, S.A. Targeting chromatin complexes in fusion protein-driven malignancies. Nat Rev Cancer 19, 255–269 (2019). https://doi.org/10.1038/s41568-019-0132-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-019-0132-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer