Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RNA modifications in cardiovascular health and disease

Abstract

RNA is not always a faithful copy of DNA. Advances in tools enabling the interrogation of the exact RNA sequence have permitted revision of how genetic information is transferred. We now know that RNA is a dynamic molecule, amenable to chemical modifications of its four canonical nucleotides by dedicated RNA-binding enzymes. The ever-expanding catalogue of identified RNA modifications in mammals has led to a burst of studies in the past 5 years that have explored the biological relevance of the RNA modifications, also known as epitranscriptome. These studies concluded that chemical modification of RNA nucleotides alters several properties of RNA molecules including sequence, secondary structure, RNA–protein interaction, localization and processing. Importantly, a plethora of cellular functions during development, homeostasis and disease are controlled by RNA modification enzymes. Understanding the regulatory interface between a single-nucleotide modification and cellular function will pave the way towards the development of novel diagnostic, prognostic and therapeutic tools for the management of diseases, including cardiovascular disease. In this Review, we use two well-studied and abundant RNA modifications — adenosine-to-inosine RNA editing and N6-methyladenosine RNA methylation — as examples on which to base the discussion about the current knowledge on installation or removal of RNA modifications, their effect on biological processes related to cardiovascular health and disease, and the potential for development and application of epitranscriptome-based prognostic, diagnostic and therapeutic tools for cardiovascular disease.

Key points

  • Adenosine-to-inosine (A-to-I) RNA editing and N6-methyladenosine (m6A) RNA methylation are the most common and ubiquitous endogenous modifications of RNA molecules.

  • A-to-I RNA editing and m6A RNA methylation can control several aspects of cardiovascular biology in health and disease to a variable extent, which needs to be defined in future studies.

  • Future research should address how these two adenosine RNA modifications control cardiovascular RNA metabolism and cell biology.

  • Refinement of single-nucleotide resolution mapping tools offering unfiltered stoichiometric information on each RNA modification with the use of limited amounts of native RNA is essential to unlock the potential of targeted RNA modification-based therapeutics for the treatment of cardiovascular disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A-to-I RNA editing.
Fig. 2: m6A RNA methylation.
Fig. 3: Direct effects of A-to-I RNA editing and m6A RNA methylation in cardiovascular disease.

Similar content being viewed by others

References

  1. Libby, P. The changing landscape of atherosclerosis. Nature 592, 524–533 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Musunuru, K. Moving toward genome-editing therapies for cardiovascular diseases. J. Clin. Invest. 132, e148555 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li, P., Ge, J. & Li, H. Lysine acetyltransferases and lysine deacetylases as targets for cardiovascular disease. Nat. Rev. Cardiol. 17, 96–115 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Anene-Nzelu, C. G., Lee, M. C. J., Tan, W. L. W., Dashi, A. & Foo, R. S. Y. Genomic enhancers in cardiac development and disease. Nat. Rev. Cardiol. 19, 7–25 (2022).

    Article  PubMed  Google Scholar 

  5. Santovito, D. & Weber, C. Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease. Nat. Rev. Cardiol. 19, 620–638 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. He, C. Grand challenge commentary: RNA epigenetics? Nat. Chem. Biol. 6, 863–865 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Saletore, Y. et al. The birth of the epitranscriptome: deciphering the function of RNA modifications. Genome Biol. 13, 175 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, X. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).

    Article  PubMed  Google Scholar 

  9. Benne, R. et al. Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46, 819–826 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Slobodin, B. et al. Transcription impacts the efficiency of mRNA translation via co-transcriptional N6-adenosine methylation. Cell 169, 326–337.e12 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hsiao, Y. E. et al. RNA editing in nascent RNA affects pre-mRNA splicing. Genome Res. 28, 812–823 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wei, J. et al. Differential m(6)A, m(6)Am, and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol. Cell 71, 973–985.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mauer, J. et al. Reversible methylation of m(6)Am in the 5′ cap controls mRNA stability. Nature 541, 371–375 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Huang, H. et al. Histone H3 trimethylation at lysine 36 guides m(6)A RNA modification co-transcriptionally. Nature 567, 414–419 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu, W. et al. Dynamic control of chromatin-associated m(6)A methylation regulates nascent RNA synthesis. Mol. Cell 82, 1156–1168.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ota, H. et al. ADAR1 forms a complex with Dicer to promote microRNA processing and RNA-induced gene silencing. Cell 153, 575–589 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Desrosiers, R., Friderici, K. & Rottman, F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl Acad. Sci. USA 71, 3971–3975 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Levanon, E. Y. et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat. Biotechnol. 22, 1001–1005 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Higuchi, M. et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406, 78–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, Q. et al. Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J. Biol. Chem. 279, 4952–4961 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Hartner, J. C. et al. Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J. Biol. Chem. 279, 4894–4902 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Liddicoat, B. J. et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349, 1115–1120 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Geula, S. et al. Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science 347, 1002–1006 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Pecori, R., Di Giorgio, S., Lorenzo, J. P. & Papavasiliou, F. N. Functions and consequences of AID/APOBEC-mediated DNA and RNA deamination. Nat. Rev. Genet. 23, 505–518 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moshitch-Moshkovitz, S., Dominissini, D. & Rechavi, G. The epitranscriptome toolbox. Cell 185, 764–776 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Wiener, D. & Schwartz, S. The epitranscriptome beyond m(6)A. Nat. Rev. Genet. 22, 119–131 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, C. et al. m(6)A modulates haematopoietic stem and progenitor cell specification. Nature 549, 273–276 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Medvinsky, A. & Dzierzak, E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86, 897–906 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Lv, J. et al. Endothelial-specific m(6)A modulates mouse hematopoietic stem and progenitor cell development via Notch signaling. Cell Res. 28, 249–252 (2018).

    Article  PubMed  Google Scholar 

  32. Zhang, P. et al. G protein-coupled receptor 183 facilitates endothelial-to-hematopoietic transition via Notch1 inhibition. Cell Res. 25, 1093–1107 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lizama, C. O. et al. Repression of arterial genes in hemogenic endothelium is sufficient for haematopoietic fate acquisition. Nat. Commun. 6, 7739 (2015).

    Article  PubMed  Google Scholar 

  34. Gama-Norton, L. et al. Notch signal strength controls cell fate in the haemogenic endothelium. Nat. Commun. 6, 8510 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Parial, R. et al. Role of epigenetic m(6)A RNA methylation in vascular development: mettl3 regulates vascular development through PHLPP2/mTOR-AKT signaling. FASEB J. 35, e21465 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Liu, J. et al. m(6)A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat. Cell Biol. 20, 1074–1083 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yao, M. D. et al. Role of METTL3-dependent N(6)-methyladenosine mRNA modification in the promotion of angiogenesis. Mol. Ther. 28, 2191–2202 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hartner, J. C., Walkley, C. R., Lu, J. & Orkin, S. H. ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat. Immunol. 10, 109–115 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Guo, X. et al. ADAR1 RNA editing regulates endothelial cell functions via the MDA-5 RNA sensing signaling pathway. Life Sci. Alliance 5, e202101191 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Dorn, L. E. et al. The N(6)-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation 139, 533–545 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Moore, J. B. T. et al. The A-to-I RNA editing enzyme Adar1 is essential for normal embryonic cardiac growth and development. Circ. Res. 127, 550–552 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McFadden, D. G. et al. The Hand1 and Hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner. Development 132, 189–201 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Stanley, E. G. et al. Efficient Cre-mediated deletion in cardiac progenitor cells conferred by a 3′UTR-ires-Cre allele of the homeobox gene Nkx2-5. Int. J. Dev. Biol. 46, 431–439 (2002).

    CAS  PubMed  Google Scholar 

  44. Garcia-Gonzalez, C. et al. ADAR1 prevents autoinflammatory processes in the heart mediated by IRF7. Circ. Res https://doi.org/10.1161/CIRCRESAHA.122.320839 (2022).

    Article  PubMed  Google Scholar 

  45. Latinkic, B. V. et al. Transcriptional regulation of the cardiac-specific MLC2 gene during Xenopus embryonic development. Development 131, 669–679 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, J. et al. Global RNA editing identification and characterization during human pluripotent-to-cardiomyocyte differentiation. Mol. Ther. Nucleic Acids 26, 879–891 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stellos, K. et al. Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation. Nat. Med. 22, 1140–1150 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. van der Kwast, R. et al. Adenosine-to-inosine editing of microRNA-487b alters target gene selection after ischemia and promotes neovascularization. Circ. Res. 122, 444–456 (2018).

    Article  PubMed  Google Scholar 

  49. van der Kwast, R. et al. Adenosine-to-inosine editing of vasoactive microRNAs alters their targetome and function in ischemia. Mol. Ther. Nucleic Acids 21, 932–953 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Alarcon, C. R., Lee, H., Goodarzi, H., Halberg, N. & Tavazoie, S. F. N6-methyladenosine marks primary microRNAs for processing. Nature 519, 482–485 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alarcon, C. R. et al. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell 162, 1299–1308 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chamorro-Jorganes, A. et al. METTL3 regulates angiogenesis by modulating let-7e-5p and miRNA-18a-5p expression in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 41, e325–e337 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Bai, Q. et al. Endothelial METTL3 (methyltransferase-like 3) inhibits fibrinolysis by promoting PAI-1 (plasminogen activator inhibitor-1) expression through enhancing jun proto-oncogene N6-methyladenosine modification. Arterioscler. Thromb. Vasc. Biol. 41, 2877–2889 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Eisner, D. A., Caldwell, J. L., Kistamas, K. & Trafford, A. W. Calcium and excitation-contraction coupling in the heart. Circ. Res. 121, 181–195 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Carnevali, L. et al. Signs of cardiac autonomic imbalance and proarrhythmic remodeling in FTO deficient mice. PLoS ONE 9, e95499 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mathiyalagan, P. et al. FTO-dependent N(6)-methyladenosine regulates cardiac function during remodeling and repair. Circulation 139, 518–532 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kmietczyk, V. et al. m(6)A-mRNA methylation regulates cardiac gene expression and cellular growth. Life Sci. Alliance 2, e201800233 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mauer, J. et al. FTO controls reversible m(6)Am RNA methylation during snRNA biogenesis. Nat. Chem. Biol. 15, 340–347 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. El Azzouzi, H. et al. Cardiomyocyte specific deletion of ADAR1 causes severe cardiac dysfunction and increased lethality. Front. Cardiovasc. Med. 7, 30 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. de Reuver, R. et al. ADAR1 prevents autoinflammation by suppressing spontaneous ZBP1 activation. Nature 607, 784–789 (2022).

    Article  PubMed  Google Scholar 

  61. Jiao, H. et al. ADAR1 averts fatal type I interferon induction by ZBP1. Nature 607, 776–783 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, T. et al. ADAR1 masks the cancer immunotherapeutic promise of ZBP1-driven necroptosis. Nature 606, 594–602 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Hubbard, N. W. et al. ADAR1 mutation causes ZBP1-dependent immunopathology. Nature 607, 769–775 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Suo, L. et al. METTL3-mediated N(6)-methyladenosine modification governs pericyte dysfunction during diabetes-induced retinal vascular complication. Theranostics 12, 277–289 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bersell, K. et al. Moderate and high amounts of tamoxifen in αMHC-MerCreMer mice induce a DNA damage response, leading to heart failure and death. Dis. Model. Mech. 6, 1459–1469 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Schmidt-Supprian, M. & Rajewsky, K. Vagaries of conditional gene targeting. Nat. Immunol. 8, 665–668 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Liu, C. L. et al. Cysteine protease cathepsins in cardiovascular disease: from basic research to clinical trials. Nat. Rev. Cardiol. 15, 351–370 (2018).

    Article  PubMed  Google Scholar 

  68. Sukhova, G. K., Shi, G. P., Simon, D. I., Chapman, H. A. & Libby, P. Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J. Clin. Invest. 102, 576–583 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sukhova, G. K. et al. Deficiency of cathepsin S reduces atherosclerosis in LDL receptor-deficient mice. J. Clin. Invest. 111, 897–906 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Athanasiadis, A., Rich, A. & Maas, S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol. 2, e391 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Blow, M., Futreal, P. A., Wooster, R. & Stratton, M. R. A survey of RNA editing in human brain. Genome Res. 14, 2379–2387 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim, D. D. et al. Widespread RNA editing of embedded Alu elements in the human transcriptome. Genome Res. 14, 1719–1725 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vlachogiannis, N. I. et al. Adenosine-to-inosine Alu RNA editing controls the stability of the pro-inflammatory long noncoding RNA NEAT1 in atherosclerotic cardiovascular disease. J. Mol. Cell Cardiol. 160, 111–120 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vlachogiannis, N. I. et al. Adenosine-to-inosine RNA editing contributes to type I interferon responses in systemic sclerosis. J. Autoimmun. 125, 102755 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Adriaens, C. et al. p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat. Med. 22, 861–868 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, P., Cao, L., Zhou, R., Yang, X. & Wu, M. The lncRNA Neat1 promotes activation of inflammasomes in macrophages. Nat. Commun. 10, 1495 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. de Nooijer, R. et al. Leukocyte cathepsin S is a potent regulator of both cell and matrix turnover in advanced atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 29, 188–194 (2009).

    Article  PubMed  Google Scholar 

  78. Chien, C. S. et al. METTL3-dependent N(6)-methyladenosine RNA modification mediates the atherogenic inflammatory cascades in vascular endothelium. Proc. Natl Acad. Sci. USA 118, e2025070118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li, B. et al. RNA N(6)-methyladenosine modulates endothelial atherogenic responses to disturbed flow in mice. Elife 11, 69906 (2022).

    Article  Google Scholar 

  80. Shi, G. P. et al. Deficiency of the cysteine protease cathepsin S impairs microvessel growth. Circ. Res. 92, 493–500 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Fei, J., Cui, X. B., Wang, J. N., Dong, K. & Chen, S. Y. ADAR1-mediated RNA editing, a novel mechanism controlling phenotypic modulation of vascular smooth muscle cells. Circ. Res. 119, 463–469 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sano, H. et al. Functional blockade of platelet-derived growth factor receptor-β but not of receptor-α prevents vascular smooth muscle cell accumulation in fibrous cap lesions in apolipoprotein E-deficient mice. Circulation 103, 2955–2960 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. He, C. et al. PDGFRβ signalling regulates local inflammation and synergizes with hypercholesterolaemia to promote atherosclerosis. Nat. Commun. 6, 7770 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Hui, J. et al. Intronic CA-repeat and CA-rich elements: a new class of regulators of mammalian alternative splicing. EMBO J. 24, 1988–1998 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wu, X. et al. ADAR2 increases in exercised heart and protects against myocardial infarction and doxorubicin-induced cardiotoxicity. Mol. Ther. 30, 400–414 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Han, Z. et al. ALKBH5 regulates cardiomyocyte proliferation and heart regeneration by demethylating the mRNA of YTHDF1. Theranostics 11, 3000–3016 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Beltrami, A. P. et al. Evidence that human cardiac myocytes divide after myocardial infarction. N. Engl. J. Med. 344, 1750–1757 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98–102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Eschenhagen, T. et al. Cardiomyocyte regeneration: a consensus statement. Circulation 136, 680–686 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Qian, B., Wang, P., Zhang, D. & Wu, L. m6A modification promotes miR-133a repression during cardiac development and hypertrophy via IGF2BP2. Cell Death Discov. 7, 157 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li, T. et al. Silencing of METTL3 attenuates cardiac fibrosis induced by myocardial infarction via inhibiting the activation of cardiac fibroblasts. FASEB J. 35, e21162 (2021).

    CAS  PubMed  Google Scholar 

  93. Robinet, P. et al. Consideration of sex differences in design and reporting of experimental arterial pathology studies – statement from ATVB council. Arterioscler. Thromb. Vasc. Biol. 38, 292–303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pang, P. et al. Mettl14 attenuates cardiac ischemia/reperfusion injury by regulating Wnt1/β-catenin signaling pathway. Front. Cell Dev. Biol. 9, 762853 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Jain, M. et al. RNA editing of filamin A pre-mRNA regulates vascular contraction and diastolic blood pressure. EMBO J. 37, e94813 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Feng, Y. et al. Filamin A (FLNA) is required for cell–cell contact in vascular development and cardiac morphogenesis. Proc. Natl Acad. Sci. USA 103, 19836–19841 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bandaru, S. et al. Targeting filamin A reduces macrophage activity and atherosclerosis. Circulation 140, 67–79 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Levanon, E. Y. et al. Evolutionarily conserved human targets of adenosine to inosine RNA editing. Nucleic Acids Res. 33, 1162–1168 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Stossel, T. P. et al. Filamins as integrators of cell mechanics and signalling. Nat. Rev. Mol. Cell Biol. 2, 138–145 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Bhattacharya, M. et al. IQGAP1-dependent scaffold suppresses RhoA and inhibits airway smooth muscle contraction. J. Clin. Invest. 124, 4895–4898 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wettschureck, N. & Offermanns, S. Mammalian G proteins and their cell type specific functions. Physiol. Rev. 85, 1159–1204 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Shimokawa, H., Sunamura, S. & Satoh, K. RhoA/Rho-kinase in the cardiovascular system. Circ. Res. 118, 352–366 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Attig, J. et al. Heteromeric RNP assembly at LINEs controls lineage-specific RNA processing. Cell 174, 1067–1081.e17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rachez, C. et al. HP1γ binding pre-mRNA intronic repeats modulates RNA splicing decisions. EMBO Rep. 22, e52320 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Blanchette, M. & Chabot, B. Modulation of exon skipping by high-affinity hnRNP A1-binding sites and by intron elements that repress splice site utilization. EMBO J. 18, 1939–1952 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Stark, J. M., Bazett-Jones, D. P., Herfort, M. & Roth, M. B. SR proteins are sufficient for exon bridging across an intron. Proc. Natl Acad. Sci. USA 95, 2163–2168 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rueter, S. M., Dawson, T. R. & Emeson, R. B. Regulation of alternative splicing by RNA editing. Nature 399, 75–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Zhang, B. et al. Alteration of m6A RNA methylation in heart failure with preserved ejection fraction. Front. Cardiovasc. Med. 8, 647806 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Berulava, T. et al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur. J. Heart Fail. 22, 54–66 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Kuersten, S. & Goodwin, E. B. The power of the 3′UTR: translational control and development. Nat. Rev. Genet. 4, 626–637 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Crotti, L. et al. Calmodulin mutations and life-threatening cardiac arrhythmias: insights from the International Calmodulinopathy Registry. Eur. Heart J. 40, 2964–2975 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Franklin, S. et al. The chromatin-binding protein Smyd1 restricts adult mammalian heart growth. Am. J. Physiol. Heart Circ. Physiol. 311, H1234–H1247 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Xiao, W. et al. Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol. Cell 61, 507–519 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Roundtree, I. A. et al. YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs. Elife 6, e31311 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Kasowitz, S. D. et al. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet. 14, e1007412 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Gao, S. et al. Depletion of m(6)A reader protein YTHDC1 induces dilated cardiomyopathy by abnormal splicing of titin. J. Cell Mol. Med. 25, 10879–10891 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hinger, S. A. et al. Remodeling of the m(6)A landscape in the heart reveals few conserved post-transcriptional events underlying cardiomyocyte hypertrophy. J. Mol. Cell Cardiol. 151, 46–55 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Cai, D. et al. A novel mechanism underlying inflammatory smooth muscle phenotype in abdominal aortic aneurysm. Circ. Res. 129, e202–e214 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhong, L. et al. METTL3 induces AAA development and progression by modulating N6-methyladenosine-dependent primary miR34a processing. Mol. Ther. Nucleic Acids 21, 394–411 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ma, D. et al. Vascular smooth muscle FTO promotes aortic dissecting aneurysms via m6A modification of Klf5. Front. Cardiovasc. Med. 7, 592550 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gatsiou, A. et al. Additive contribution of microRNA-34a/b/c to human arterial ageing and atherosclerosis. Atherosclerosis 327, 49–58 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Chen, H. Z. et al. Age-associated sirtuin 1 reduction in vascular smooth muscle links vascular senescence and inflammation to abdominal aortic aneurysm. Circ. Res. 119, 1076–1088 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Musunuru, K. et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593, 429–434 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cox, D. B. T. et al. RNA editing with CRISPR-Cas13. Science 358, 1019–1027 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Abudayyeh, O. O. et al. A cytosine deaminase for programmable single-base RNA editing. Science 365, 382–386 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Merkle, T. et al. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat. Biotechnol. 37, 133–138 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Qu, L. et al. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nat. Biotechnol. 37, 1059–1069 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Reautschnig, P. et al. CLUSTER guide RNAs enable precise and efficient RNA editing with endogenous ADAR enzymes in vivo. Nat. Biotechnol. 40, 759–768 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Cully, M. Chemical inhibitors make their RNA epigenetic mark. Nat. Rev. Drug Discov. 18, 892–894 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Wan, Y. K., Hendra, C., Pratanwanich, P. N. & Goke, J. Beyond sequencing: machine learning algorithms extract biology hidden in nanopore signal data. Trends Genet. 38, 246–257 (2022).

    Article  CAS  PubMed  Google Scholar 

  132. Salvetat, N. et al. A game changer for bipolar disorder diagnosis using RNA editing-based biomarkers. Transl. Psychiatry 12, 182 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bazak, L. et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res. 24, 365–376 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. McIntyre, A. B. R. et al. Limits in the detection of m(6)A changes using MeRIP/m(6)A-seq. Sci. Rep. 10, 6590 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chen, K. et al. High-resolution N(6)-methyladenosine (m(6)A) map using photo-crosslinking-assisted m(6)A sequencing. Angew. Chem. Int. Ed. Engl. 54, 1587–1590 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Linder, B. et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12, 767–772 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Molinie, B. et al. m(6)A-LAIC-seq reveals the census and complexity of the m(6)A epitranscriptome. Nat. Methods 13, 692–698 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Pendleton, K. E. et al. The U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169, 824–835.e14 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Doxtader, K. A. et al. Structural basis for regulation of METTL16, an S-adenosylmethionine homeostasis factor. Mol. Cell 71, 1001–1011.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mendel, M. et al. Methylation of structured RNA by the m(6)A writer METTL16 is essential for mouse embryonic development. Mol. Cell 71, 986–1000.e11 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ma, H. et al. N(6-)Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat. Chem. Biol. 15, 88–94 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. van Tran, N. et al. The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res. 47, 7719–7733 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Ignatova, V. V. et al. The rRNA m(6)A methyltransferase METTL5 is involved in pluripotency and developmental programs. Genes Dev. 34, 715–729 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Leismann, J. et al. The 18S ribosomal RNA m(6) A methyltransferase Mettl5 is required for normal walking behavior in Drosophila. EMBO Rep. 21, e49443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chen, H. et al. METTL4 is an snRNA m(6)Am methyltransferase that regulates RNA splicing. Cell Res. 30, 544–547 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Goh, Y. T., Koh, C. W. Q., Sim, D. Y., Roca, X. & Goh, W. S. S. METTL4 catalyzes m6Am methylation in U2 snRNA to regulate pre-mRNA splicing. Nucleic Acids Res. 48, 9250–9261 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Huang, T., Chen, W., Liu, J., Gu, N. & Zhang, R. Genome-wide identification of mRNA 5-methylcytosine in mammals. Nat. Struct. Mol. Biol. 26, 380–388 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Schwartz, S. et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159, 148–162 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Carlile, T. M. et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515, 143–146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Seok, H. et al. Position-specific oxidation of miR-1 encodes cardiac hypertrophy. Nature 584, 279–285 (2020).

    Article  CAS  PubMed  Google Scholar 

  151. Xiang, J. F. et al. N(6)-Methyladenosines modulate A-to-I RNA editing. Mol. Cell 69, 126–135.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19, 327–341 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Liu, P. et al. m(6)A-independent genome-wide METTL3 and METTL14 redistribution drives the senescence-associated secretory phenotype. Nat. Cell Biol. 23, 355–365 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Su, R. et al. METTL16 exerts an m(6)A-independent function to facilitate translation and tumorigenesis. Nat. Cell Biol. 24, 205–216 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Tan, M. H. et al. Dynamic landscape and regulation of RNA editing in mammals. Nature 550, 249–254 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Robertson, M. Biology in the 1980s, plus or minus a decade. Nature 285, 358–359 (1980).

    Article  CAS  PubMed  Google Scholar 

  157. Zhang, B. et al. m6A demethylase FTO attenuates cardiac dysfunction by regulating glucose uptake and glycolysis in mice with pressure overload-induced heart failure. Signal. Transduct. Target. Ther. 6, 377 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hu, L. et al. YTHDF1 regulates pulmonary hypertension through translational control of MAGED1. Am. J. Respir. Crit. Care Med. 203, 1158–1172 (2021).

    Article  CAS  PubMed  Google Scholar 

  159. Vlachogiannis, N. I. et al. Increased adenosine-to-inosine RNA editing in rheumatoid arthritis. J. Autoimmun. 106, 102329 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Qin, Y. et al. The m(6)A methyltransferase METTL3 promotes hypoxic pulmonary arterial hypertension. Life Sci. 274, 119366 (2021).

    Article  CAS  PubMed  Google Scholar 

  161. Chen, J. et al. METTL14-dependent m6A regulates vascular calcification induced by indoxyl sulfate. Life Sci. 239, 117034 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. Panneerdoss, S. et al. Cross-talk among writers, readers, and erasers of m(6)A regulates cancer growth and progression. Sci. Adv. 4, eaar8263 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Liu, T. et al. MiR-4729 regulates TIE1 mRNA m6A modification and angiogenesis in hemorrhoids by targeting METTL14. Ann. Transl. Med. 9, 232 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Xu, H. et al. YTHDF2 alleviates cardiac hypertrophy via regulating Myh7 mRNA decoy. Cell Biosci. 11, 132 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gong, R. et al. Loss of m(6)A methyltransferase METTL3 promotes heart regeneration and repair after myocardial injury. Pharmacol. Res. 174, 105845 (2021).

    Article  CAS  PubMed  Google Scholar 

  166. Zhao, K. et al. METTL3 improves cardiomyocyte proliferation upon myocardial infarction via upregulating miR-17-3p in a DGCR8-dependent manner. Cell Death Discov. 7, 291 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wang, J. et al. WTAP promotes myocardial ischemia/reperfusion injury by increasing endoplasmic reticulum stress via regulating m(6)A modification of ATF4 mRNA. Aging 13, 11135–11149 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Cheng, P. et al. Amelioration of acute myocardial infarction injury through targeted ferritin nanocages loaded with an ALKBH5 inhibitor. Acta Biomater. 140, 481–491 (2022).

    Article  CAS  PubMed  Google Scholar 

  169. Koh, C. W. Q., Goh, Y. T. & Goh, W. S. S. Atlas of quantitative single-base-resolution N(6)-methyl-adenine methylomes. Nat. Commun. 10, 5636 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Meyer, K. D. DART-seq: an antibody-free method for global m(6)A detection. Nat. Methods 16, 1275–1280 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wang, Y., Xiao, Y., Dong, S., Yu, Q. & Jia, G. Antibody-free enzyme-assisted chemical approach for detection of N(6)-methyladenosine. Nat. Chem. Biol. 16, 896–903 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Garcia-Campos, M. A. et al. Deciphering the “m(6)A code” via antibody-independent quantitative profiling. Cell 178, 731–747.e16 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Zhang, Z. et al. Single-base mapping of m(6)A by an antibody-independent method. Sci. Adv. 5, eaax0250 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Hu, L. et al. m(6)A RNA modifications are measured at single-base resolution across the mammalian transcriptome. Nat. Biotechnol. 40, 1210–1219 (2022).

    Article  CAS  PubMed  Google Scholar 

  175. Ramaswami, G. et al. Accurate identification of human Alu and non-Alu RNA editing sites. Nat. Methods 9, 579–581 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bahn, J. H. et al. Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Res. 22, 142–150 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ramaswami, G. et al. Identifying RNA editing sites using RNA sequencing data alone. Nat. Methods 10, 128–132 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Pratanwanich, P. N. et al. Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore. Nat. Biotechnol. 39, 1394–1402 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. Leger, A. et al. RNA modifications detection by comparative nanopore direct RNA sequencing. Nat. Commun. 12, 7198 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Nguyen, T. A. et al. Direct identification of A-to-I editing sites with nanopore native RNA sequencing. Nat. Methods 19, 833–844 (2022).

    Article  CAS  PubMed  Google Scholar 

  181. Quin, J. et al. ADAR RNA modifications, the epitranscriptome and innate immunity. Trends Biochem. Sci. 46, 758–771 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Eisenberg, E. & Levanon, E. Y. A-to-I RNA editing–immune protector and transcriptome diversifier. Nat. Rev. Genet. 19, 473–490 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Nishikura, K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat. Rev. Mol. Cell Biol. 17, 83–96 (2016).

    Article  CAS  PubMed  Google Scholar 

  184. Mannion, N. M. et al. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep. 9, 1482–1494 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Pestal, K. et al. Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development. Immunity 43, 933–944 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. George, C. X., Ramaswami, G., Li, J. B. & Samuel, C. E. Editing of cellular self-RNAs by adenosine deaminase ADAR1 suppresses innate immune stress responses. J. Biol. Chem. 291, 6158–6168 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Crow, Y. J. & Stetson, D. B. The type I interferonopathies: 10 years on. Nat. Rev. Immunol. 22, 471–483 (2022).

    Article  CAS  PubMed  Google Scholar 

  188. Gatsiou, A., Vlachogiannis, N., Lunella, F. F., Sachse, M. & Stellos, K. Adenosine-to-inosine RNA editing in health and disease. Antioxid. Redox Signal. 29, 846–863 (2018).

    Article  CAS  PubMed  Google Scholar 

  189. Sakurai, M. et al. ADAR1 controls apoptosis of stressed cells by inhibiting Staufen1-mediated mRNA decay. Nat. Struct. Mol. Biol. 24, 534–543 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kawahara, Y. et al. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315, 1137–1140 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Solomon, O. et al. Global regulation of alternative splicing by adenosine deaminase acting on RNA (ADAR). RNA 19, 591–604 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Chung, H. et al. Human ADAR1 prevents endogenous RNA from triggering translational shutdown. Cell 172, 811–824.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Chen, L. et al. Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nat. Med. 19, 209–216 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Patterson, J. B. & Samuel, C. E. Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol. Cell Biol. 15, 5376–5388 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Poulsen, H., Nilsson, J., Damgaard, C. K., Egebjerg, J. & Kjems, J. CRM1 mediates the export of ADAR1 through a nuclear export signal within the Z-DNA binding domain. Mol. Cell Biol. 21, 7862–7871 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Sun, T. et al. Decoupling expression and editing preferences of ADAR1 p150 and p110 isoforms. Proc. Natl Acad. Sci. USA 118, e2021757118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Chalk, A. M., Taylor, S., Heraud-Farlow, J. E. & Walkley, C. R. The majority of A-to-I RNA editing is not required for mammalian homeostasis. Genome Biol. 20, 268 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Kierzek, E. & Kierzek, R. The thermodynamic stability of RNA duplexes and hairpins containing N6-alkyladenosines and 2-methylthio-N6-alkyladenosines. Nucleic Acids Res. 31, 4472–4480 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Liu, N. et al. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518, 560–564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Edupuganti, R. R. et al. N(6)-methyladenosine (m(6)A) recruits and repels proteins to regulate mRNA homeostasis. Nat. Struct. Mol. Biol. 24, 870–878 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Zhou, K. I. et al. Regulation of co-transcriptional pre-mRNA splicing by m(6)A through the low-complexity protein hnRNPG. Mol. Cell 76, 70–81.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Wang, X. et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Barbieri, I. et al. Promoter-bound METTL3 maintains myeloid leukaemia by m(6)A-dependent translation control. Nature 552, 126–131 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Meyer, K. D. et al. 5′UTR m(6)A promotes Cap-independent translation. Cell 163, 999–1010 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Zhou, J. et al. Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature 526, 591–594 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Shi, H. et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res. 27, 315–328 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Han, D. et al. Anti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cells. Nature 566, 270–274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Du, H. et al. YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat. Commun. 7, 12626 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Park, O. H. et al. Endoribonucleolytic cleavage of m(6)A-containing RNAs by RNase P/MRP complex. Mol. Cell 74, 494–507.e8 (2019).

    Article  CAS  PubMed  Google Scholar 

  210. Fu, Y. & Zhuang, X. m(6)A-binding YTHDF proteins promote stress granule formation. Nat. Chem. Biol. 16, 955–963 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Choe, J. et al. mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature 561, 556–560 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Huang, H. et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 20, 285–295 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Liu, J. et al. N(6)-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science 367, 580–586 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. He, P. C. & He, C. m(6)A RNA methylation: from mechanisms to therapeutic potential. EMBO J. 40, e105977 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Patil, D. P. et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537, 369–373 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Wen, J. et al. Zc3h13 regulates nuclear RNA m(6)A methylation and mouse embryonic stem cell self-renewal. Mol. Cell 69, 1028–1038.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Yue, Y. et al. VIRMA mediates preferential m(6)A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 4, 10 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Guo, J. et al. Oocyte stage-specific effects of MTOR determine granulosa cell fate and oocyte quality in mice. Proc. Natl Acad. Sci. USA 115, E5326–E5333 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Batista, P. J. et al. m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15, 707–719 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Yoon, K. J. et al. Temporal control of mammalian cortical neurogenesis by m(6)A methylation. Cell 171, 877–889.e17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Vu, L. P. et al. The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat. Med. 23, 1369–1376 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Li, H. B. et al. m(6)A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature 548, 338–342 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Wu, Y. et al. Mettl3-mediated m(6)A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. Nat. Commun. 9, 4772 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Zheng, G. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  225. Jia, G. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Fischer, J. et al. Inactivation of the FTO gene protects from obesity. Nature 458, 894–898 (2009).

    Article  CAS  PubMed  Google Scholar 

  227. Zaccara, S., Ries, R. J. & Jaffrey, S. R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20, 608–624 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We deeply apologize to investigators whose research could not be discussed in this Review owing to space limitations. We thank M. Birgaoanu (Newcastle University, Newcastle upon Tyne, UK) for proofreading the manuscript and for help with the reference formatting before submission. The authors’ work is supported by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (MODVASC, grant agreement no. 759248) to K.S. and by the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK Research and Innovation (UKRI) to A.G. and K.S.

Author information

Authors and Affiliations

Authors

Contributions

A.G. researched data for the article and wrote the manuscript. K.S. edited the manuscript before submission. Both authors contributed to the concept and interpretation of the published studies, discussed the content of the article and jointly conceived the display items for initial submission. A.G. drafted the display items for initial submission.

Corresponding authors

Correspondence to Aikaterini Gatsiou or Konstantinos Stellos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Christoph Dieterich, Shizuka Uchida and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatsiou, A., Stellos, K. RNA modifications in cardiovascular health and disease. Nat Rev Cardiol 20, 325–346 (2023). https://doi.org/10.1038/s41569-022-00804-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-022-00804-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing