Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Spinocerebellar ataxia

Abstract

The spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of autosomal dominantly inherited progressive disorders, the clinical hallmark of which is loss of balance and coordination accompanied by slurred speech; onset is most often in adult life. Genetically, SCAs are grouped as repeat expansion SCAs, such as SCA3/Machado–Joseph disease (MJD), and rare SCAs that are caused by non-repeat mutations, such as SCA5. Most SCA mutations cause prominent damage to cerebellar Purkinje neurons with consecutive cerebellar atrophy, although Purkinje neurons are only mildly affected in some SCAs. Furthermore, other parts of the nervous system, such as the spinal cord, basal ganglia and pontine nuclei in the brainstem, can be involved. As there is currently no treatment to slow or halt SCAs (many SCAs lead to premature death), the clinical care of patients with SCA focuses on managing the symptoms through physiotherapy, occupational therapy and speech therapy. Intense research has greatly expanded our understanding of the pathobiology of many SCAs, revealing that they occur via interrelated mechanisms (including proteotoxicity, RNA toxicity and ion channel dysfunction), and has led to the identification of new targets for treatment development. However, the development of effective therapies is hampered by the heterogeneity of the SCAs; specific therapeutic approaches may be required for each disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Repeat expansions that cause ataxia.
Fig. 2: Geographical distribution of SCAs.
Fig. 3: Common disease mechanisms underlying SCAs.
Fig. 4: Ion channel dysfunction associated with SCAs.
Fig. 5: Flowchart of molecular genetic diagnosis of SCAs.
Fig. 6: The use of SARA scores in assessing the progression of SCAs.

Similar content being viewed by others

References

  1. Harding, A. E. Classification of the hereditary ataxias and paraplegias. Lancet 1, 1151–1155 (1983).

    Article  CAS  PubMed  Google Scholar 

  2. Synofzik, M. & Nemeth, A. H. Recessive ataxias. Handb. Clin. Neurol. 155, 73–89 (2018).

    Article  PubMed  Google Scholar 

  3. Zanni, G. & Bertini, E. X-linked ataxias. Handb. Clin. Neurol. 155, 175–189 (2018).

    Article  PubMed  Google Scholar 

  4. Durr, A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 9, 885–894 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Schols, L., Bauer, P., Schmidt, T., Schulte, T. & Riess, O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 3, 291–304 (2004).

    Article  PubMed  Google Scholar 

  6. Diallo, A. et al. Survival in patients with spinocerebellar ataxia types 1, 2, 3, and 6 (EUROSCA): a longitudinal cohort study. Lancet Neurol. 17, 327–334 (2018).

    Article  PubMed  Google Scholar 

  7. Paulson, H. L., Shakkottai, V. G., Clark, H. B. & Orr, H. T. Polyglutamine spinocerebellar ataxias - from genes to potential treatments. Nat. Rev. Neurosci. 18, 613–626 (2017). This review provides an update on the molecular mechanisms underlying the polyglutamine SCAs and potential disease-modifying treatments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koide, R. et al. Unstable expansion of CAG repeat in hereditary dentatorubral- pallidoluysian atrophy (DRPLA). Nat. Genet. 6, 9–13 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Holmes, S. E. et al. Expansion of a novel CAG trinucleotide repeat in the 5’ region of PPP2R2B is associated with SCA12 [letter]. Nat. Genet. 23, 391–392 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Cohen, R. L. & Margolis, R. L. Spinocerebellar ataxia type 12: clues to pathogenesis. Curr. Opin. Neurol. 29, 735–742 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Ikeda, Y., Daughters, R. S. & Ranum, L. P. Bidirectional expression of the SCA8 expansion mutation: one mutation, two genes. Cerebellum 7, 150–158 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Cleary, J. D. & Ranum, L. P. Repeat associated non-ATG (RAN) translation: new starts in microsatellite expansion disorders. Curr. Opin. Genet. Dev. 26, 6–15 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Matsuura, T. et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat. Genet. 26, 191–194 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Seidel, K. et al. Brain pathology of spinocerebellar ataxias. Acta Neuropathol. 124, 1–21 (2012). This review provides a comprehensive account of the brain pathology of SCAs.

    Article  CAS  PubMed  Google Scholar 

  15. Koeppen, A. H. The neuropathology of the adult cerebellum. Handb. Clin. Neurol. 154, 129–149 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen, D. H., Raskind, W. H. & Bird, T. D. Spinocerebellar ataxia type 14. Handb. Clin. Neurol. 103, 555–559 (2012).

    Article  PubMed  Google Scholar 

  17. Adachi, T. et al. Autopsy case of spinocerebellar ataxia type 31 with severe dementia at the terminal stage. Neuropathology 35, 273–279 (2015).

    Article  PubMed  Google Scholar 

  18. Scherzed, W. et al. Pathoanatomy of cerebellar degeneration in spinocerebellar ataxia type 2 (SCA2) and type 3 (SCA3). Cerebellum 11, 749–760 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Koeppen, A. H. The neuropathology of spinocerebellar ataxia type 3/Machado-Joseph disease. Adv. Exp. Med. Biol. 1049, 233–241 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Estrada, R., Galarraga, J., Orozco, G., Nodarse, A. & Auburger, G. Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies. Acta Neuropathol. 97, 306–310 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Klockgether, T. Update on degenerative ataxias. Curr. Opin. Neurol. 24, 339–345 (2011).

    Article  PubMed  Google Scholar 

  22. Ruano, L., Melo, C., Silva, M. C. & Coutinho, P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 42, 174–183 (2014). This systemic review provides an overview of the available prevalence studies of SCAs.

    Article  PubMed  Google Scholar 

  23. Hersheson, J., Haworth, A. & Houlden, H. The inherited ataxias: genetic heterogeneity, mutation databases, and future directions in research and clinical diagnostics. Hum. Mutat. 33, 1324–1332 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Sequeiros, J., Martins, S. & Silveira, I. Epidemiology and population genetics of degenerative ataxias. Handb. Clin. Neurol. 103, 227–251 (2012).

    Google Scholar 

  25. Paradisi, I., Ikonomu, V. & Arias, S. Spinocerebellar ataxias in Venezuela: genetic epidemiology and their most likely ethnic descent. J. Hum. Genet. 61, 215–222 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Gaspar, C. et al. Ancestral origins of the Machado-Joseph disease mutation: a worldwide haplotype study. Am. J. Hum. Genet. 68, 523–528 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Martins, S. et al. Asian origin for the worldwide-spread mutational event in Machado-Joseph disease. Arch. Neurol. 64, 1502–1508 (2007).

    Article  PubMed  Google Scholar 

  28. Bettencourt, C., Santos, C., Kay, T., Vasconcelos, J. & Lima, M. Analysis of segregation patterns in Machado-Joseph disease pedigrees. J. Hum. Genet. 53, 920–923 (2008).

    Article  PubMed  Google Scholar 

  29. Bettencourt, C. & Lima, M. Machado-Joseph disease: from first descriptions to new perspectives. Orphanet J. Rare Dis. 6, 35 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Orozco-Diaz, G., Nodarse-Fleites, A., Cordoves-Sagaz, R. & Auburger, G. Autosomal dominant cerebellar ataxia: clinical analysis of 263 patients from a homogeneous population in Holguin, Cuba. Neurology 40, 1369–1375 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Hekman, K. E. & Gomez, C. M. The autosomal dominant spinocerebellar ataxias: emerging mechanistic themes suggest pervasive Purkinje cell vulnerability. J. Neurol. Neurosurg. Psychiatry 86, 554–561 (2015).

    Article  PubMed  Google Scholar 

  32. Matsuyama, Z. et al. Molecular features of the CAG repeats of spinocerebellar ataxia 6 (SCA6). Hum. Mol. Genet. 6, 1283–1287 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Sasaki, H., Yabe, I. & Tashiro, K. The hereditary spinocerebellar ataxias in Japan. Cytogenet. Genome Res. 100, 198–205 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Vale, J. et al. Autosomal dominant cerebellar ataxia: frequency analysis and clinical characterization of 45 families from Portugal. Eur. J. Neurol. 17, 124–128 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Jonasson, J. et al. Evidence for a common spinocerebellar ataxia type 7 (SCA7) founder mutation in Scandinavia. Eur. J. Hum. Genet. 8, 918–922 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Bryer, A. et al. The hereditary adult-onset ataxias in South Africa. J. Neurol. Sci. 216, 47–54 (2003).

    Article  PubMed  Google Scholar 

  37. Alonso, E. et al. Distinct distribution of autosomal dominant spinocerebellar ataxia in the Mexican population. Mov. Disord. 22, 1050–1053 (2007).

    Article  PubMed  Google Scholar 

  38. Lone, W. G. et al. Exploration of CAG triplet repeat in nontranslated region of SCA12 gene. J. Genet. 95, 427–432 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Teive, H. A. et al. Spinocerebellar ataxia type 10 — a review. Parkinsonism Relat. Disord. 17, 655–661 (2011).

    Article  PubMed  Google Scholar 

  40. Paulson, H. Repeat expansion diseases. Handb. Clin. Neurol. 147, 105–123 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ikeuchi, T. et al. Dentatorubral-pallidoluysian atrophy: clinical features are closely related to unstable expansions of trinucleotide (CAG) repeat. Ann. Neurol. 37, 769–775 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Gouw, L. G. et al. Analysis of the dynamic mutation in the SCA7 gene shows marked parental effects on CAG repeat transmission. Hum. Mol. Genet. 7, 525–532 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Stoyas, C. A. & La Spada, A. R. The CAG-polyglutamine repeat diseases: a clinical, molecular, genetic, and pathophysiologic nosology. Handb. Clin. Neurol. 147, 143–170 (2018).

    Article  PubMed  Google Scholar 

  44. Duennwald, M. L. Polyglutamine misfolding in yeast: toxic and protective aggregation. Prion 5, 285–290 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805–810 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Huynh, D. P., Figueroa, K., Hoang, N. & Pulst, S. M. Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat. Genet. 26, 44–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Gunawardena, S. et al. Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40, 25–40 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Lee, W. C., Yoshihara, M. & Littleton, J. T. Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington’s disease. Proc. Natl Acad. Sci. USA 101, 3224–3229 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Seidel, K. et al. Axonal inclusions in spinocerebellar ataxia type 3. Acta Neuropathol. 120, 449–460 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gruber, A. et al. Molecular and structural architecture of polyQ aggregates in yeast. Proc. Natl Acad. Sci. USA 115, E3446–E3453 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Serpionov, G. V., Alexandrov, A. I., Antonenko, Y. N. & Ter-Avanesyan, M. D. A protein polymerization cascade mediates toxicity of non-pathological human huntingtin in yeast. Sci. Rep. 5, 18407 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Todd, T. W. & Lim, J. Aggregation formation in the polyglutamine diseases: protection at a cost? Mol. Cells 36, 185–194 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hoffner, G. & Djian, P. Polyglutamine aggregation in Huntington disease: does structure determine toxicity? Mol. Neurobiol. 52, 1297–1314 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Kokona, B. et al. Studying polyglutamine aggregation in Caenorhabditis elegans using an analytical ultracentrifuge equipped with fluorescence detection. Protein Sci. 25, 605–617 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Sahoo, B. et al. Folding landscape of mutant huntingtin exon1: diffusible multimers, oligomers and fibrils, and no detectable monomer. PLOS ONE 11, e0155747 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Chen, S., Ferrone, F. A. & Wetzel, R. Huntington’s disease age-of-onset linked to polyglutamine aggregation nucleation. Proc. Natl Acad. Sci. USA 99, 11884–11889 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Robertson, A. L. et al. The structural impact of a polyglutamine tract is location-dependent. Biophys. J. 95, 5922–5930 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yushchenko, T., Deuerling, E. & Hauser, K. Insights into the aggregation mechanism of polyQ proteins with different glutamine repeat lengths. Biophys. J. 114, 1847–1857 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Adegbuyiro, A., Sedighi, F., Pilkington, A. W., Groover, S. & Legleiter, J. Proteins containing expanded polyglutamine tracts and neurodegenerative disease. Biochemistry 56, 1199–1217 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Zhuchenko, O. et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel. Nat. Genet. 15, 62–69 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. La Spada, A. R. & Taylor, J. P. Polyglutamines placed into context. Neuron 38, 681–684 (2003).

    Article  PubMed  Google Scholar 

  62. Silva, A., de Almeida, A. V. & Macedo-Ribeiro, S. Polyglutamine expansion diseases: more than simple repeats. J. Struct. Biol. 201, 139–154 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Lim, J. et al. Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1. Nature 452, 713–718 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rousseaux, M. W. C. et al. ATXN1-CIC complex is the primary driver of cerebellar pathology in spinocerebellar ataxia type 1 through a gain-of-function mechanism. Neuron 97, 1235–1243 (2018). This study shows that aberrant molecular interactions of the SCA1 disease protein ATXN1 induce changes in gene expression that drive cerebellar degeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Duvick, L. et al. SCA1-like disease in mice expressing wild-type ataxin-1 with a serine to aspartic acid replacement at residue 776. Neuron 67, 929–935 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Perez Ortiz, J. M. et al. Reduction of protein kinase A-mediated phosphorylation of ATXN1-S776 in Purkinje cells delays onset of Ataxia in a SCA1 mouse model. Neurobiol. Dis. 116, 93–105 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim, M. W., Chelliah, Y., Kim, S. W., Otwinowski, Z. & Bezprozvanny, I. Secondary structure of Huntingtin amino-terminal region. Structure 17, 1205–1212 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Caron, N. S., Desmond, C. R., Xia, J. & Truant, R. Polyglutamine domain flexibility mediates the proximity between flanking sequences in huntingtin. Proc. Natl Acad. Sci. USA 110, 14610–14615 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Costa, M. C. & Paulson, H. L. Toward understanding Machado-Joseph disease. Prog. Neurobiol. 97, 239–257 (2012).

    Article  CAS  Google Scholar 

  70. Havel, L. S., Li, S. & Li, X. J. Nuclear accumulation of polyglutamine disease proteins and neuropathology. Mol. Brain 2, 21 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Helmlinger, D., Tora, L. & Devys, D. Transcriptional alterations and chromatin remodeling in polyglutamine diseases. Trends Genet. 22, 562–570 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Li, L. B., Yu, Z., Teng, X. & Bonini, N. M. RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature 453, 1107–1111 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Banez-Coronel, M. et al. RAN translation in Huntington disease. Neuron 88, 667–677 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Scoles, D. R. et al. Repeat associated non-AUG translation (RAN translation) dependent on sequence downstream of the ATXN2 CAG repeat. PLOS ONE 10, e0128769 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Zu, T. et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc. Natl Acad. Sci. USA 108, 260–265 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Ayhan, F. et al. SCA8 RAN polySer protein preferentially accumulates in white matter regions and is regulated by eIF3F. EMBO J. 37, e99023 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Alves, S. et al. The autophagy/lysosome pathway is impaired in SCA7 patients and SCA7 knock-in mice. Acta Neuropathol. 128, 705–722 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Ashkenazi, A. et al. Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature 545, 108–111 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cushman-Nick, M., Bonini, N. M. & Shorter, J. Hsp104 suppresses polyglutamine-induced degeneration post onset in a drosophila MJD/SCA3 model. PLOS Genet. 9, e1003781 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hekman, K. E. et al. A conserved eEF2 coding variant in SCA26 leads to loss of translational fidelity and increased susceptibility to proteostatic insult. Hum. Mol. Genet. 21, 5472–5483 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tripathy, D. et al. Mutations in TGM6 induce the unfolded protein response in SCA35. Hum. Mol. Genet. 26, 3749–3762 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Takahashi, H. et al. Identification and characterization of PKCgamma, a kinase associated with SCA14, as an amyloidogenic protein. Hum. Mol. Genet. 24, 525–539 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Armbrust, K. R. et al. Mutant beta-III spectrin causes mGluR1alpha mislocalization and functional deficits in a mouse model of spinocerebellar ataxia type 5. J. Neurosci. 34, 9891–9904 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Avery, A. W., Thomas, D. D. & Hays, T. S. beta-III-spectrin spinocerebellar ataxia type 5 mutation reveals a dominant cytoskeletal mechanism that underlies dendritic arborization. Proc. Natl Acad. Sci. USA 114, E9376–E9385 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, N. & Ashizawa, T. RNA toxicity and foci formation in microsatellite expansion diseases. Curr. Opin. Genet. Dev. 44, 17–29 (2017). This article reviews the role of RNA toxicity in repeat expansion diseases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu, W. et al. Characteristic RNA foci of the abnormal hexanucleotide GGCCUG repeat expansion in spinocerebellar ataxia type 36 (Asidan). Eur. J. Neurol. 21, 1377–1386 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Niimi, Y. et al. Abnormal RNA structures (RNA foci) containing a penta-nucleotide repeat (UGGAA)n in the Purkinje cell nucleus is associated with spinocerebellar ataxia type 31 pathogenesis. Neuropathology 33, 600–611 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Seixas, A. I. et al. A pentanucleotide ATTTC repeat insertion in the non-coding region of DAB1, mapping to SCA37, causes spinocerebellar ataxia. Am. J. Hum. Genet. 101, 87–103 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. White, M. et al. Transgenic mice with SCA10 pentanucleotide repeats show motor phenotype and susceptibility to seizure: a toxic RNA gain-of-function model. J. Neurosci. Res. 90, 706–714 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Shieh, S. Y. & Bonini, N. M. Genes and pathways affected by CAG-repeat RNA-based toxicity in Drosophila. Hum. Mol. Genet. 20, 4810–4821 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ishiguro, T. et al. Regulatory role of RNA chaperone TDP-43 for RNA misfolding and repeat-associated translation in SCA31. Neuron 94, 108–124 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Coutelier, M. et al. A panel study on patients with dominant cerebellar ataxia highlights the frequency of channelopathies. Brain 140, 1579–1594 (2017).

    Article  PubMed  Google Scholar 

  93. Bushart, D. D. & Shakkottai, V. G. Ion channel dysfunction in cerebellar ataxia. Neurosci. Lett. 688, 41–48 (2018). This insightful review discusses the direct and indirect ways that channel physiology is perturbed in various SCAs, including discussion of routes to symptomatic or disease-modifying therapy.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Dell’Orco, J. M., Pulst, S. M. & Shakkottai, V. G. Potassium channel dysfunction underlies Purkinje neuron spiking abnormalities in spinocerebellar ataxia type 2. Hum. Mol. Genet. 26, 3935–3945 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Egorova, P. A., Zakharova, O. A., Vlasova, O. L. & Bezprozvanny, I. B. In vivo analysis of cerebellar Purkinje cell activity in SCA2 transgenic mouse model. J. Neurophysiol. 115, 2840–2851 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Serra, H. G. et al. Gene profiling links SCA1 pathophysiology to glutamate signaling in Purkinje cells of transgenic mice. Hum. Mol. Genet. 13, 2535–2543 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Du, X. & Gomez, C. M. Spinocerebellar [corrected] ataxia type 6: molecular mechanisms and calcium channel genetics. Adv. Exp. Med. Biol. 1049, 147–173 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Khare, S. et al. C-Terminal proline deletions in KCNC3 cause delayed channel inactivation and an adult-onset progressive SCA13 with spasticity. Cerebellum 17, 692–697 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Duarri, A. et al. Mutations in potassium channel kcnd3 cause spinocerebellar ataxia type 19. Ann. Neurol. 72, 870–880 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Fogel, B. L., Hanson, S. M. & Becker, E. B. Do mutations in the murine ataxia gene TRPC3 cause cerebellar ataxia in humans? Mov. Disord. 30, 284–286 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Coutelier, M. et al. A recurrent mutation in CACNA1G alters Cav3.1 T-type calcium-channel conduction and causes autosomal-dominant cerebellar ataxia. Am. J. Hum. Genet. 97, 726–737 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Watson, L. M. et al. Dominant mutations in GRM1 cause spinocerebellar ataxia type 44. Am. J. Hum. Genet. 101, 451–458 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yue, Q., Jen, J. C., Nelson, S. F. & Baloh, R. W. Progressive ataxia due to a missense mutation in a calcium-channel gene. Am. J. Hum. Genet. 61, 1078–1087 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ophoff, R. A. et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87, 543–552 (1996).

    Article  CAS  PubMed  Google Scholar 

  105. Herman-Bert, A. et al. Mapping of spinocerebellar ataxia 13 to chromosome 19q13.3-q13.4 in a family with autosomal dominant cerebellar ataxia and mental retardation. Am. J. Hum. Genet. 67, 229–235 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lee, Y. C. et al. Mutations in KCND3 cause spinocerebellar ataxia type 22. Ann. Neurol. 72, 859–869 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bushart, D. D. et al. Targeting potassium channels to treat cerebellar ataxia. Ann. Clin. Transl Neurol. 5, 297–314 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hourez, R. et al. Aminopyridines correct early dysfunction and delay neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J. Neurosci. 31, 11795–11807 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kasumu, A. W. et al. Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2. Chem. Biol. 19, 1340–1353 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jayabal, S., Chang, H. H., Cullen, K. E. & Watt, A. J. 4-Aminopyridine reverses ataxia and cerebellar firing deficiency in a mouse model of spinocerebellar ataxia type 6. Sci. Rep. 6, 29489 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Laco, M. N., Oliveira, C. R., Paulson, H. L. & Rego, A. C. Compromised mitochondrial complex II in models of Machado-Joseph disease. Biochim. Biophys. Acta 1822, 139–149 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Raposo, M. et al. Accumulation of mitochondrial DNA common deletion since the preataxic stage of Machado-Joseph disease. Mol. Neurobiol. 56, 119–124 (2018).

    Article  PubMed  CAS  Google Scholar 

  113. Hsu, J. Y. et al. The truncated C-terminal fragment of mutant ATXN3 disrupts mitochondria dynamics in spinocerebellar ataxia type 3 models. Front. Mol. Neurosci. 10, 196 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Stucki, D. M. et al. Mitochondrial impairments contribute to Spinocerebellar ataxia type 1 progression and can be ameliorated by the mitochondria-targeted antioxidant MitoQ. Free Radic. Biol. Med. 97, 427–440 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Sanchez, I., Balague, E. & Matilla-Duenas, A. Ataxin-1 regulates the cerebellar bioenergetics proteome through the GSK3beta-mTOR pathway which is altered in Spinocerebellar ataxia type 1 (SCA1). Hum. Mol. Genet. 25, 4021–4040 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Sen, N. E. et al. Search for SCA2 blood RNA biomarkers highlights Ataxin-2 as strong modifier of the mitochondrial factor PINK1 levels. Neurobiol. Dis. 96, 115–126 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Mancini, C. et al. Mice harbouring a SCA28 patient mutation in AFG3L2 develop late-onset ataxia associated with enhanced mitochondrial proteotoxicity. Neurobiol. Dis. 124, 14–28 (2018).

    Article  PubMed  CAS  Google Scholar 

  118. Duarte-Silva, S. et al. Neuroprotective effects of creatine in the CMVMJD135 mouse model of spinocerebellar ataxia type 3. Mov. Disord. 33, 815–826 (2018).

    Article  CAS  PubMed  Google Scholar 

  119. Dickey, A. S. et al. PPARdelta activation by bexarotene promotes neuroprotection by restoring bioenergetic and quality control homeostasis. Sci. Transl Med. 9, eaal2332 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Gasset-Rosa, F. et al. Polyglutamine-expanded huntingtin exacerbates age-related disruption of nuclear integrity and nucleocytoplasmic transport. Neuron 94, 48–57 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. McCullough, S. D. & Grant, P. A. Histone acetylation, acetyltransferases, and ataxia—alteration of histone acetylation and chromatin dynamics is implicated in the pathogenesis of polyglutamine-expansion disorders. Adv. Protein Chem. Struct. Biol. 79, 165–203 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yang, S., Li, X. J. & Li, S. Molecular mechanisms underlying Spinocerebellar Ataxia 17 (SCA17) pathogenesis. Rare Dis. 4, e1223580 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Chatterjee, A. et al. The role of the mammalian DNA end-processing enzyme polynucleotide kinase 3′-phosphatase in spinocerebellar ataxia type 3 pathogenesis. PLOS Genet. 11, e1004749 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Jones, L., Houlden, H. & Tabrizi, S. J. DNA repair in the trinucleotide repeat disorders. Lancet Neurol. 16, 88–96 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Giuliano, P. et al. DNA damage induced by polyglutamine-expanded proteins. Hum. Mol. Genet. 12, 2301–2309 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Barclay, S. S. et al. Systems biology analysis of Drosophila in vivo screen data elucidates core networks for DNA damage repair in SCA1. Hum. Mol. Genet. 23, 1345–1364 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Tsoi, H., Lau, T. C., Tsang, S. Y., Lau, K. F. & Chan, H. Y. CAG expansion induces nucleolar stress in polyglutamine diseases. Proc. Natl Acad. Sci. USA 109, 13428–13433 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Loureiro, J. R., Oliveira, C. L. & Silveira, I. Unstable repeat expansions in neurodegenerative diseases: nucleocytoplasmic transport emerges on the scene. Neurobiol. Aging 39, 174–183 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Grima, J. C. et al. Mutant huntingtin disrupts the nuclear pore complex. Neuron 94, 93–107 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Baron, O. et al. Stall in canonical autophagy-lysosome pathways prompts nucleophagy-based nuclear breakdown in neurodegeneration. Curr. Biol. 27, 3626–3642 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Klockgether, T. et al. The natural history of degenerative ataxia: a retrospective study in 466 patients. Brain 121, 589–600 (1998).

    Article  PubMed  Google Scholar 

  132. Jacobi, H. et al. Biological and clinical characteristics of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal RISCA study: analysis of baseline data. Lancet Neurol. 12, 650–658 (2013). This paper describes phenotypical differences between individuals with and without a mutation in SCA1, SCA2, SCA3/MJD and SCA6, assessed ~10 years before the onset of manifest ataxia.

    Article  PubMed  Google Scholar 

  133. Velazquez-Perez, L. et al. Progression of early features of spinocerebellar ataxia type 2 in individuals at risk: a longitudinal study. Lancet Neurol. 13, 482–489 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Reetz, K. et al. Brain atrophy measures in preclinical and manifest spinocerebellar ataxia type 2. Ann. Clin. Transl Neurol. 5, 128–137 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Maas, R. P., van Gaalen, J., Klockgether, T. & van de Warrenburg, B. P. The preclinical stage of spinocerebellar ataxias. Neurology 85, 96–103 (2015).

    Article  PubMed  Google Scholar 

  136. Zu, T. et al. Recovery from polyglutamine-induced neurodegeneration in conditional SCA1 transgenic mice. J. Neurosci. 24, 8853–8861 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pulst, S. M. Spinocerebellar ataxia type 13. GeneReviews https://www.ncbi.nlm.nih.gov/books/NBK1225/ (updated 1 Mar 2012).

  138. Mao, R. et al. Childhood-onset ataxia: testing for large CAG-repeats in SCA2 and SCA7. Am. J. Med. Genet. 110, 338–345 (2002).

    Article  PubMed  Google Scholar 

  139. Schöls, L. et al. Spinocerebellar ataxia type 6: genotype and phenotype in German kindreds. J. Neurol. Neurosurg. Psychiatry 64, 67–73 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Geschwind, D. H. et al. Spinocerebellar ataxia type 6 — frequency of the mutation and genotype-phenotype correlations. Neurology 49, 1247–1251 (1997).

    Article  CAS  PubMed  Google Scholar 

  141. Nakamura, K. et al. Natural history of spinocerebellar ataxia type 31: a 4-year prospective study. Cerebellum 16, 518–524 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. van de Warrenburg, B. P. et al. Age at onset variance analysis in spinocerebellar ataxias: a study in a Dutch-French cohort. Ann. Neurol. 57, 505–512 (2005).

    Article  PubMed  Google Scholar 

  143. Tezenas du, M. S. et al. Modulation of the age at onset in spinocerebellar ataxia by CAG tracts in various genes. Brain 137, 2444–2455 (2014).

    Article  Google Scholar 

  144. Bettencourt, C. et al. DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases. Ann. Neurol. 79, 983–990 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cancel, G. et al. Somatic mosaicism of the CAG repeat expansion in spinocerebellar ataxia type 3/Machado-Joseph disease. Hum. Mutat. 11, 23–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  146. Watase, K., Venken, K. J., Sun, Y., Orr, H. T. & Zoghbi, H. Y. Regional differences of somatic CAG repeat instability do not account for selective neuronal vulnerability in a knock-in mouse model of SCA1. Hum. Mol. Genet. 12, 2789–2795 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Schmitz-Hubsch, T. et al. Spinocerebellar ataxia types 1, 2, 3, and 6: disease severity and nonataxia symptoms. Neurology 71, 982–989 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. van, G. J., Giunti, P. & van de Warrenburg, B. P. Movement disorders in spinocerebellar ataxias. Mov. Disord. 26, 792–800 (2011).

    Article  Google Scholar 

  149. Lindblad, K. et al. An expanded CAG repeat sequence in spinocerebellar ataxia type 7. Genome Res. 6, 965–971 (1996).

    Article  CAS  PubMed  Google Scholar 

  150. Pedroso, J. L. et al. Sleep disorders in cerebellar ataxias. Arq. Neuropsiquiatr. 69, 253–257 (2011).

    Article  PubMed  Google Scholar 

  151. Johansson, J. et al. Expanded CAG repeats in Swedish spinocerebellar ataxia type 7 (SCA7) patients: effect of CAG repeat length on the clinical manifestation. Hum. Mol. Genet. 7, 171–176 (1998).

    Article  CAS  PubMed  Google Scholar 

  152. Kim, J. M. et al. Importance of low-range CAG expansion and CAA interruption in SCA2 Parkinsonism. Arch. Neurol. 64, 1510–1518 (2007).

    Article  PubMed  Google Scholar 

  153. Charles, P. et al. Are interrupted SCA2 CAG repeat expansions responsible for parkinsonism? Neurology 69, 1970–1975 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Elden, A. C. et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466, 1069–1075 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Chio, A. et al. ATXN2 polyQ intermediate repeats are a modifier of ALS survival. Neurology 84, 251–258 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Rolfs, A. et al. Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann. Neurol. 54, 367–375 (2003).

    Article  PubMed  Google Scholar 

  157. Tsuji, S. Dentatorubral-pallidoluysian atrophy. Handb. Clin. Neurol. 103, 587–594 (2012).

    Article  PubMed  Google Scholar 

  158. Giocondo, F. & Curcio, G. Spinocerebellar ataxia: a critical review of cognitive and socio-cognitive deficits. Int. J. Neurosci. 128, 182–191 (2018).

    Article  PubMed  Google Scholar 

  159. Schmahmann, J. D. & Sherman, J. C. The cerebellar cognitive affective syndrome. Brain 121, 561–579 (1998).

    Article  PubMed  Google Scholar 

  160. Schmitz-Hubsch, T. et al. Depression comorbidity in spinocerebellar ataxia. Mov. Disord. 26, 870–876 (2011).

    Article  PubMed  Google Scholar 

  161. Lo, R. Y. et al. Depression and clinical progression in spinocerebellar ataxias. Parkinsonism Relat. Disord. 22, 87–92 (2016).

    Article  PubMed  Google Scholar 

  162. Schmitz-Hubsch, T. et al. Self-rated health status in spinocerebellar ataxia — results from a European multicenter study. Mov. Disord. 25, 587–595 (2010).

    Article  PubMed  Google Scholar 

  163. Jacobi, H. et al. Long-term evolution of patient-reported outcome measures in spinocerebellar ataxias. J. Neurol. 265, 2040–2051 (2018).

    Article  PubMed  Google Scholar 

  164. Coutelier, M. et al. Efficacy of exome-targeted capture sequencing to detect mutations in known cerebellar ataxia genes. JAMA Neurol. 75, 591–599 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Schols, L. et al. Do CTG expansions at the SCA8 locus cause ataxia? Ann. Neurol. 54, 110–115 (2003).

    Article  PubMed  CAS  Google Scholar 

  166. Moseley, M. L. et al. SCA8 CTG repeat: en masse contractions in sperm and intergenerational sequence changes may play a role in reduced penetrance. Hum. Mol. Genet. 9, 2125–2130 (2000).

    Article  CAS  PubMed  Google Scholar 

  167. Ishiura, H. et al. Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy. Nat. Genet. 50, 581–590 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Ebbert, M. T. W. et al. Long-read sequencing across the C9orf72 ‘GGGGCC’ repeat expansion: implications for clinical use and genetic discovery efforts in human disease. Mol. Neurodegener. 13, 46 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Klockgether, T. Sporadic ataxia with adult onset: classification and diagnostic criteria. Lancet Neurol. 9, 94–104 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Moseley, M. L. et al. Incidence of dominant spinocerebellar and Friedreich triplet repeats among 361 ataxia families. Neurology 51, 1666–1671 (1998).

    Article  CAS  PubMed  Google Scholar 

  171. Schöls, L. et al. Genetic background of apparently idiopathic sporadic cerebellar ataxia. Hum. Genet. 107, 132–137 (2000).

    Article  PubMed  Google Scholar 

  172. Abele, M. et al. The aetiology of sporadic adult-onset ataxia. Brain 125, 961–968 (2002).

    Article  CAS  PubMed  Google Scholar 

  173. Giordano, I. et al. Clinical and genetic characteristics of sporadic adult-onset degenerative ataxia. Neurology 89, 1043–1049 (2017).

    Article  PubMed  Google Scholar 

  174. Goizet, C., Lesca, G. & Durr, A. Presymptomatic testing in Huntington’s disease and autosomal dominant cerebellar ataxias. Neurology 59, 1330–1336 (2002).

    Article  CAS  PubMed  Google Scholar 

  175. Cruz-Marino, T. et al. SCA2 predictive testing in Cuba: challenging concepts and protocol evolution. J. Community Genet. 6, 265–273 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Schuler-Faccini, L. et al. Genetic counseling and presymptomatic testing programs for Machado-Joseph disease: lessons from Brazil and Portugal. Genet. Mol. Biol. 37, 263–270 (2014).

    Article  PubMed  Google Scholar 

  177. Rodrigues, C. S. et al. Presymptomatic testing for neurogenetic diseases in Brazil: assessing who seeks and who follows through with testing. J. Genet. Couns. 21, 101–112 (2012).

    Article  PubMed  Google Scholar 

  178. Jacobi, H. et al. Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. Lancet Neurol. 14, 1101–1108 (2015). This paper reports 8-year follow-up data of a large cohort of patients with SCA1, SCA2, SCA3/MJD or SCA6.

    Article  PubMed  Google Scholar 

  179. Jacobi, H. et al. The natural history of spinocerebellar ataxia type 1, 2, 3, and 6: a 2-year follow-up study. Neurology 77, 1035–1041 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Ashizawa, T. et al. Clinical characteristics of patients with spinocerebellar ataxias 1, 2, 3 and 6 in the US; a prospective observational study. Orphanet J. Rare Dis. 8, 177 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Yasui, K. et al. A 3-year cohort study of the natural history of spinocerebellar ataxia type 6 in Japan. Orphanet J. Rare Dis. 9, 118 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Lee, Y. C. et al. Comparison of cerebellar ataxias: a three-year prospective longitudinal assessment. Mov. Disord. 26, 2081–2087 (2011).

    Article  PubMed  Google Scholar 

  183. Franca, M. C. et al. Progression of ataxia in patients with Machado-Joseph disease. Mov. Disord. 24, 1387–1390 (2009).

    Article  PubMed  Google Scholar 

  184. Jardim, L. B. et al. Progression rate of neurological deficits in a 10-year cohort of SCA3 patients. Cerebellum 9, 419–428 (2010).

    Article  PubMed  Google Scholar 

  185. Schmitz-Hubsch, T. et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66, 1717–1720 (2006).

    Article  CAS  PubMed  Google Scholar 

  186. Tezenas du, M. S. et al. Factors influencing disease progression in autosomal dominant cerebellar ataxia and spastic paraplegia. Arch. Neurol. 69, 500–508 (2012).

    Article  Google Scholar 

  187. Salman, M. S. Epidemiology of cerebellar diseases and therapeutic approaches. Cerebellum 17, 4–11 (2018).

    Article  PubMed  Google Scholar 

  188. Zesiewicz, T. A. et al. Comprehensive systematic review summary: treatment of cerebellar motor dysfunction and ataxia: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 90, 464–471 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Romano, S. et al. Riluzole in patients with hereditary cerebellar ataxia: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 14, 985–991 (2015). This paper reports anti-ataxic effects of riluzole in a randomized, controlled trial in patients with SCAs and Friedreich ataxia.

    Article  CAS  PubMed  Google Scholar 

  190. Lei, L. F. et al. Safety and efficacy of valproic acid treatment in SCA3/MJD patients. Parkinsonism Relat. Disord. 26, 55–61 (2016).

    Article  PubMed  Google Scholar 

  191. Saute, J. A. et al. A randomized, phase 2 clinical trial of lithium carbonate in Machado-Joseph disease. Mov. Disord. 29, 568–573 (2014).

    Article  CAS  PubMed  Google Scholar 

  192. Zesiewicz, T. A. et al. A randomized trial of varenicline (Chantix) for the treatment of spinocerebellar ataxia type 3. Neurology 78, 545–550 (2012).

    Article  CAS  PubMed  Google Scholar 

  193. Schmitz-Hubsch, T. et al. Responsiveness of different rating instruments in spinocerebellar ataxia patients. Neurology 74, 678–684 (2010).

    Article  CAS  PubMed  Google Scholar 

  194. Zesiewicz, T. A. & Sullivan, K. L. Treatment of ataxia and imbalance with varenicline (chantix): report of 2 patients with spinocerebellar ataxia (types 3 and 14). Clin. Neuropharmacol. 31, 363–365 (2008).

    Article  PubMed  Google Scholar 

  195. Braga, N. P. et al. Current concepts in the treatment of hereditary ataxias. Arq. Neuropsiquiatr. 74, 244–252 (2016).

    Article  Google Scholar 

  196. Fonteyn, E. M. et al. The effectiveness of allied health care in patients with ataxia: a systematic review. J. Neurol. 261, 251–258 (2014).

    Article  PubMed  Google Scholar 

  197. Milne, S. C., Corben, L. A., Georgiou-Karistianis, N., Delatycki, M. B. & Yiu, E. M. Rehabilitation for individuals with genetic degenerative ataxia: a systematic review. Neurorehabil. Neural Repair 31, 609–622 (2017).

    Article  PubMed  Google Scholar 

  198. Ilg, W. et al. Long-term effects of coordinative training in degenerative cerebellar disease. Mov. Disord. 25, 2239–2246 (2010).

    Article  PubMed  Google Scholar 

  199. Synofzik, M. & Ilg, W. Motor training in degenerative spinocerebellar disease: ataxia-specific improvements by intensive physiotherapy and exergames. Biomed. Res. Int. 2014, 583507 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Miyai, I. et al. Cerebellar ataxia rehabilitation trial in degenerative cerebellar diseases. Neurorehabil. Neural Repair 26, 515–522 (2012).

    Article  PubMed  Google Scholar 

  201. Trujillo-Martin, M. M., Serrano-Aguilar, P., Monton-Alvarez, F. & Carrillo-Fumero, R. Effectiveness and safety of treatments for degenerative ataxias: a systematic review. Mov. Disord. 24, 1111–1124 (2009).

    Article  PubMed  Google Scholar 

  202. Marquer, A., Barbieri, G. & Perennou, D. The assessment and treatment of postural disorders in cerebellar ataxia: a systematic review. Ann. Phys. Rehabil. Med. 57, 67–78 (2014).

    Article  CAS  PubMed  Google Scholar 

  203. Keith, R. A., Granger, C. V., Hamilton, B. B. & Sherwin, F. S. The functional independence measure: a new tool for rehabilitation. Adv. Clin. Rehabil. 1, 6–18 (1987).

    CAS  PubMed  Google Scholar 

  204. Vogel, A. P., Keage, M. J., Johansson, K. & Schalling, E. Treatment for dysphagia (swallowing difficulties) in hereditary ataxia. Cochrane Database Syst. Rev. 11, CD010169 (2015).

    Google Scholar 

  205. EuroQol Group. EuroQol — a new facility for the measurement of health-related quality of life. Health Policy 16, 199–208 (1990).

    Article  Google Scholar 

  206. Sanchez-Lopez, C. R., Perestelo-Perez, L., Escobar, A., Lopez-Bastida, J. & Serrano-Aguilar, P. Health-related quality of life in patients with spinocerebellar ataxia. Neurologia 32, 143–151 (2017).

    Article  CAS  PubMed  Google Scholar 

  207. Schmitz-Hubsch, T. et al. SCA functional index: a useful compound performance measure for spinocerebellar ataxia. Neurology 71, 486–492 (2008).

    Article  CAS  PubMed  Google Scholar 

  208. du Montcel, S. T. et al. Composite cerebellar functional severity score: validation of a quantitative score of cerebellar impairment. Brain 131, 1352–1361 (2008).

    Article  PubMed  Google Scholar 

  209. Ilg, W. et al. Individual changes in preclinical spinocerebellar ataxia identified via increased motor complexity. Mov. Disord. 31, 1891–1900 (2016).

    Article  PubMed  Google Scholar 

  210. Schulz, J. B. et al. Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. Neuroimage 49, 158–168 (2010).

    Article  PubMed  Google Scholar 

  211. Stefanescu, M. R. et al. Structural and functional MRI abnormalities of cerebellar cortex and nuclei in SCA3, SCA6 and Friedreich’s ataxia. Brain 138, 1182–1197 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Wüllner, U., Klockgether, T., Petersen, D., Naegele, T. & Dichgans, J. Magnetic resonance imaging in hereditary and idiopathic ataxia [see comments]. Neurology 43, 318–325 (1993).

    Article  PubMed  Google Scholar 

  213. Lukas, C. et al. Spinal cord atrophy in spinocerebellar ataxia type 3 and 6: impact on clinical disability. J. Neurol. 255, 1244–1249 (2008).

    Article  PubMed  Google Scholar 

  214. Martins, C. R. Jr et al. Spinal cord damage in spinocerebellar ataxia type 1. Cerebellum 16, 792–796 (2017).

    Article  PubMed  Google Scholar 

  215. Reetz, K. et al. Genotype-specific patterns of atrophy progression are more sensitive than clinical decline in SCA1, SCA3 and SCA6. Brain 136, 905–917 (2013).

    Article  PubMed  Google Scholar 

  216. Mascalchi, M. et al. Progression of brain atrophy in spinocerebellar ataxia type 2: a longitudinal tensor-based morphometry study. PLOS ONE 9, e89410 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Adanyeguh, I. M. et al. Autosomal dominant cerebellar ataxias: Imaging biomarkers with high effect sizes. Neuroimage Clin. 19, 858–867 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Mascalchi, M. et al. Histogram analysis of DTI-derived indices reveals pontocerebellar degeneration and its progression in SCA2. PLOS ONE 13, e0200258 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Guimaraes, R. P. et al. A multimodal evaluation of microstructural white matter damage in spinocerebellar ataxia type 3. Mov. Disord. 28, 1125–1132 (2013).

    Article  PubMed  Google Scholar 

  220. Guerrini, L. et al. Brainstem neurodegeneration correlates with clinical dysfunction in SCA1 but not in SCA2. A quantitative volumetric, diffusion and proton spectroscopy MR study. Brain 127, 1785–1795 (2004).

    Article  CAS  PubMed  Google Scholar 

  221. Doss, S. et al. Cerebellar neurochemical alterations in spinocerebellar ataxia type 14 appear to include glutathione deficiency. J. Neurol. 262, 1927–1935 (2015).

    Article  CAS  PubMed  Google Scholar 

  222. Joers, J. M. et al. Neurochemical abnormalities in premanifest and early spinocerebellar ataxias. Ann. Neurol. 83, 816–829 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Chen, H. C. et al. The merit of proton magnetic resonance spectroscopy in the longitudinal assessment of spinocerebellar ataxias and multiple system atrophy-cerebellar type. Cerebellum Ataxias 1, 17 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Wilke, C. et al. Serum neurofilament light is increased in multiple system atrophy of cerebellar type and in repeat-expansion spinocerebellar ataxias: a pilot study. J. Neurol. 265, 1618–1624 (2018).

    Article  PubMed  Google Scholar 

  225. Schniepp, R. et al. 4-Aminopyridine and cerebellar gait: a retrospective case series. J. Neurol. 259, 2491–2493 (2012).

    Article  PubMed  Google Scholar 

  226. Keiser, M. S., Kordasiewicz, H. B. & McBride, J. L. Gene suppression strategies for dominantly inherited neurodegenerative diseases: lessons from Huntington’s disease and spinocerebellar ataxia. Hum. Mol. Genet. 25, R53–R64 (2016).

    Article  CAS  PubMed  Google Scholar 

  227. Scoles, D. R. & Pulst, S. M. Oligonucleotide therapeutics in neurodegenerative diseases. RNA Biol. 15, 707–714 (2018).

    PubMed  PubMed Central  Google Scholar 

  228. Costa, M. C. et al. Toward RNAi therapy for the polyglutamine disease Machado-Joseph disease. Mol. Ther. 21, 1898–1908 (2013).

    Article  CAS  Google Scholar 

  229. Keiser, M. S., Monteys, A. M., Corbau, R., Gonzalez-Alegre, P. & Davidson, B. L. RNAi prevents and reverses phenotypes induced by mutant human ataxin-1. Ann. Neurol. 80, 754–765 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Miyazaki, Y., Du, X., Muramatsu, S. & Gomez, C. M. An miRNA-mediated therapy for SCA6 blocks IRES-driven translation of the CACNA1A second cistron. Sci. Transl Med. 8, 347ra94 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Curtis, H. J., Seow, Y., Wood, M. J. A. & Varela, M. A. Knockdown and replacement therapy mediated by artificial mirtrons in spinocerebellar ataxia 7. Nucleic Acids Res. 45, 7870–7885 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Matsuzono, K. et al. Antisense oligonucleotides reduce RNA foci in spinocerebellar ataxia 36 patient iPSCs. Mol. Ther. Nucleic Acids 8, 211–219 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Scoles, D. R. et al. Antisense oligonucleotide therapy for spinocerebellar ataxia type 2. Nature 544, 362–366 (2017). This study demonstrates the efficacy of intrathecal antisense oligonucleotide treatment in a mouse model of SCA2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Toonen, L. J. A., Rigo, F., van, A. H. & van Roon-Mom, W. M. C. Antisense oligonucleotide-mediated removal of the polyglutamine repeat in spinocerebellar ataxia type 3 mice. Mol. Ther. Nucleic Acids 8, 232–242 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. McLoughlin, H. S. et al. Oligonucleotide therapy mitigates disease in spinocerebellar ataxia type 3 mice. Ann. Neurol. 84, 64–77 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Yang, W. Y., Gao, R., Southern, M., Sarkar, P. S. & Disney, M. D. Design of a bioactive small molecule that targets r(AUUCU) repeats in spinocerebellar ataxia 10. Nat. Commun. 7, 11647 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. van Roon-Mom, W. M. C., Roos, R. A. C. & de Bot, S. T. Dose-dependent lowering of mutant huntingtin using antisense oligonucleotides in huntington disease patients. Nucleic Acid. Ther. 28, 59–62 (2018).

    Article  PubMed  CAS  Google Scholar 

  238. Costa, M. D. C. et al. Unbiased screen identifies aripiprazole as a modulator of abundance of the polyglutamine disease protein, ataxin-3. Brain 139, 2891–2908 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Teixeira-Castro, A. et al. Serotonergic signalling suppresses ataxin 3 aggregation and neurotoxicity in animal models of Machado-Joseph disease. Brain 138, 3221–3237 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Wang, Z. J. et al. Divalproex sodium modulates nuclear localization of ataxin-3 and prevents cellular toxicity caused by expanded ataxin-3. CNS Neurosci. Ther. 24, 404–411 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Ou, Z. et al. Autophagy promoted the degradation of mutant ATXN3 in neurally differentiated spinocerebellar ataxia-3 human induced pluripotent stem cells. Biomed. Res. Int. 2016, 6701793 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Marcelo, A. et al. Cordycepin activates autophagy through AMPK phosphorylation to reduce abnormalities in Machado-Joseph disease models. Hum. Mol. Genet. 28, 51–63 (2019).

    PubMed  Google Scholar 

  243. Verkerk, A. J. et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914 (1991).

    Article  CAS  PubMed  Google Scholar 

  244. Hall, D. A. & Berry-Kravis, E. Fragile X syndrome and fragile X-associated tremor ataxia syndrome. Handb. Clin. Neurol. 147, 377–391 (2018).

    Article  PubMed  Google Scholar 

  245. Misra, C., Lin, F. & Kalsotra, A. Deregulation of RNA metabolism in microsatellite expansion diseases. Adv. Neurobiol. 20, 213–238 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Harish, P., Malerba, A., Dickson, G. & Bachtarzi, H. Progress on gene therapy, cell therapy, and pharmacological strategies toward the treatment of oculopharyngeal muscular dystrophy. Hum. Gene Ther. 26, 286–292 (2015).

    Article  CAS  PubMed  Google Scholar 

  247. Todd, T. W. & Petrucelli, L. Insights into the pathogenic mechanisms of Chromosome 9 open reading frame 72 (C9orf72) repeat expansions. J. Neurochem. 138 (Suppl. 1), 145–162 (2016).

    Article  CAS  PubMed  Google Scholar 

  248. Staisch, J. et al. A mutation causing reduced BK channel activity leads to cognitive impairment and progressive cerebellar ataxia. Neurology 86 (P5), 394 (2016).

    Google Scholar 

Download references

Reviewer information

Nature Reviews Disease Primers thanks L. Ranum, B. W. Soong, S. Tsuji, H. Zoghbi and the other anonymous reviewer(s), for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (T.K.); Epidemiology (C.M.); Mechanisms/pathophysiology (H.L.P.); Diagnosis, screening and prevention (T.K.); Management (C.M.); Quality of life (T.K.); Outlook (T.K. and H.L.P.); Overview of the Primer (T.K.)

Corresponding author

Correspondence to Thomas Klockgether.

Ethics declarations

Competing interests

T.K. declares that he received honoraria for consulting services from Biohaven Pharmaceuticals. C.M. declares that she received an honorarium for educational service from Roche. H.L.P. has received research grants and contracts from Cydan, Inc. and Ionis Pharmaceuticals.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Ataxia sections of the Neuromuscular Disease Center: https://neuromuscular.wustl.edu/ataxia/domatax.html

Guidelines of the UK patient organization (Ataxia UK): https://www.ataxia.org.uk/Handlers/Download.ashx?IDMF=261e0aa4-5ca0-4b90-9db0-1ecb6ef8738a

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klockgether, T., Mariotti, C. & Paulson, H.L. Spinocerebellar ataxia. Nat Rev Dis Primers 5, 24 (2019). https://doi.org/10.1038/s41572-019-0074-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41572-019-0074-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing