Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lafora disease — from pathogenesis to treatment strategies

Abstract

Lafora disease is a severe, autosomal recessive, progressive myoclonus epilepsy. The disease usually manifests in previously healthy adolescents, and death commonly occurs within 10 years of symptom onset. Lafora disease is caused by loss-of-function mutations in EPM2A or NHLRC1, which encode laforin and malin, respectively. The absence of either protein results in poorly branched, hyperphosphorylated glycogen, which precipitates, aggregates and accumulates into Lafora bodies. Evidence from Lafora disease genetic mouse models indicates that these intracellular inclusions are a principal driver of neurodegeneration and neurological disease. The integration of current knowledge on the function of laforin–malin as an interacting complex suggests that laforin recruits malin to parts of glycogen molecules where overly long glucose chains are forming, so as to counteract further chain extension. In the absence of either laforin or malin function, long glucose chains in specific glycogen molecules extrude water, form double helices and drive precipitation of those molecules, which over time accumulate into Lafora bodies. In this article, we review the genetic, clinical, pathological and molecular aspects of Lafora disease. We also discuss traditional antiseizure treatments for this condition, as well as exciting therapeutic advances based on the downregulation of brain glycogen synthesis and disease gene replacement.

Key points

  • Lafora disease, a lethal, autosomal recessive, progressive myoclonus epilepsy, is caused by loss-of-function mutations in EPM2A or NHLRC1, which encode laforin and malin, respectively.

  • A large variety of pathogenic variants in EPM2A and NHLRC1 exists, with even distribution across both genes; variants include missense, nonsense and frameshift mutations, as well as larger deletions.

  • Laforin and malin are implicated in glycogen metabolism and are presented as part of a glycogen quality control mechanism, which decreases the risk of precipitation of individual glycogen molecules.

  • In the absence of a functional laforin–malin complex, structurally abnormal glycogen becomes insoluble and accumulates as Lafora bodies, which drive disease progression in the brain.

  • The lack of curative treatments and the current understanding of pathogenesis are driving investigations into a variety of therapeutic strategies for Lafora disease, including reduction in brain glycogen synthesis and replacement of the non-functional gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Causative mutations in Lafora disease.
Fig. 2: Impaired glycogen metabolism in Lafora disease.
Fig. 3: Mechanistic model for Lafora body formation and accumulation.
Fig. 4: Diagnosis of Lafora disease.
Fig. 5: Overview of therapeutic strategies in Lafora disease.

Similar content being viewed by others

References

  1. Delgado-Escueta, A. V., Ganesh, S. & Yamakawa, K. Advances in the genetics of progressive myoclonus epilepsy. Am. J. Med. Genet. 106, 129–138 (2001).

    CAS  PubMed  Google Scholar 

  2. Girard, J. M., Turnbull, J., Ramachandran, N. & Minassian, B. A. Progressive myoclonus epilepsy. Handb. Clin. Neurol. 113, 1731–1736 (2013).

    PubMed  Google Scholar 

  3. Lafora, G. R. & Glueck, B. Beitrag zur Histopathologie der myoklonischen Epilepsie [German]. Z. Gesamte Neurol. Psychiatr. 6, 1–14 (1911).

    Google Scholar 

  4. Sakai, M., Austin, J., Witmer, F. & Trueb, L. Studies in myoclonus epilepsy (Lafora body form). II. Polyglucosans in systemic deposits of myoclonus epilepsy and in corpora amylacea. Neurology 20, 160–176 (1970).

    CAS  PubMed  Google Scholar 

  5. Minassian, B. A. et al. Mutations in a gene encoding a novel protein tyrosine phosphatase cause progressive myoclonus epilepsy. Nat. Genet. 20, 171–174 (1998).

    CAS  PubMed  Google Scholar 

  6. Serratosa, J. M. et al. A novel protein tyrosine phosphatase gene is mutated in progressive myoclonus epilepsy of the Lafora type (EPM2). Hum. Mol. Genet. 8, 345–352 (1999).

    CAS  PubMed  Google Scholar 

  7. Chan, E. M. et al. Mutations in NHLRC1 cause progressive myoclonus epilepsy. Nat. Genet. 35, 125–127 (2003).

    CAS  PubMed  Google Scholar 

  8. Shahwan, A., Farrell, M. & Delanty, N. Progressive myoclonic epilepsies: a review of genetic and therapeutic aspects. Lancet Neurol. 4, 239–248 (2005).

    CAS  PubMed  Google Scholar 

  9. Madhavan, D. & Kuzniecky, R. I. Lafora disease. Rev. Neurol. Dis. 3, 131–135 (2006).

    PubMed  Google Scholar 

  10. Minassian, B. A. et al. Mutation spectrum and predicted function of laforin in Lafora’s progressive myoclonus epilepsy. Neurology 55, 341–346 (2000).

    CAS  PubMed  Google Scholar 

  11. Minassian, B. A. Lafora’s disease: towards a clinical, pathologic, and molecular synthesis. Pediatr. Neurol. 25, 21–29 (2001).

    CAS  PubMed  Google Scholar 

  12. Singh, S. & Ganesh, S. Lafora progressive myoclonus epilepsy: a meta-analysis of reported mutations in the first decade following the discovery of the EPM2A and NHLRC1 genes. Hum. Mutat. 30, 715–723 (2009).

    CAS  PubMed  Google Scholar 

  13. Ianzano, L. et al. Lafora progressive myoclonus epilepsy mutation database — EPM2A and NHLRC1 (EPM2B) genes. Hum. Mutat. 26, 397 (2005).

    PubMed  Google Scholar 

  14. Fernández-Sánchez, M. E. et al. Laforin, the dual-phosphatase responsible for Lafora disease, interacts with R5 (PTG), a regulatory subunit of protein phosphatase-1 that enhances glycogen accumulation. Hum. Mol. Genet. 12, 3161–3171 (2003).

    PubMed  Google Scholar 

  15. Raththagala, M. et al. Structural mechanism of laforin function in glycogen dephosphorylation and lafora disease. Mol. Cell 57, 261–272 (2015).

    CAS  PubMed  Google Scholar 

  16. Gayarre, J. et al. The phosphatase activity of laforin is dispensable to rescue Epm2a −/− mice from Lafora disease. Brain 137, 806–818 (2014).

    PubMed  Google Scholar 

  17. Nitschke, F. et al. Abnormal glycogen chain length pattern, not hyperphosphorylation, is critical in Lafora disease. EMBO Mol. Med. 9, 906–917 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ganesh, S. et al. Genotype–phenotype correlations for EPM2A mutations in Lafora’s progressive myoclonus epilepsy: exon 1 mutations associate with an early-onset cognitive deficit subphenotype. Hum. Mol. Genet. 11, 1263–1271 (2002).

    CAS  PubMed  Google Scholar 

  19. Roma-Mateo, C. et al. Lafora disease E3-ubiquitin ligase malin is related to TRIM32 at both the phylogenetic and functional level. BMC Evol. Biol. 11, 225 (2011).

    PubMed  PubMed Central  Google Scholar 

  20. Gómez-Abad, C. et al. Lafora disease due to EPM2B mutations: a clinical and genetic study. Neurology 64, 982–986 (2005).

    PubMed  Google Scholar 

  21. Franceschetti, S. et al. Clinical and genetic findings in 26 Italian patients with Lafora disease. Epilepsia 47, 640–643 (2006).

    PubMed  Google Scholar 

  22. Lohi, H., Chan, E. M., Scherer, S. W. & Minassian, B. A. On the road to tractability: the current biochemical understanding of progressive myoclonus epilepsies. Adv. Neurol. 97, 399–415 (2006).

    PubMed  Google Scholar 

  23. Singh, S. et al. Novel NHLRC1 mutations and genotype–phenotype correlations in patients with Lafora’s progressive myoclonic epilepsy. J. Med. Genet. 43, e48 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chan, E. M. et al. Progressive myoclonus epilepsy with polyglucosans (Lafora disease): evidence for a third locus. Neurology 63, 565–567 (2004).

    CAS  PubMed  Google Scholar 

  25. Lohi, H. et al. Genetic diagnosis in Lafora disease: genotype–phenotype correlations and diagnostic pitfalls. Neurology 68, 996–1001 (2007).

    CAS  PubMed  Google Scholar 

  26. Turnbull, J. et al. Early-onset Lafora body disease. Brain 135, 2684–2698 (2012).

    PubMed  PubMed Central  Google Scholar 

  27. Gómez-Abad, C. et al. Founder effect with variable age at onset in Arab families with Lafora disease and EPM2A mutation. Epilepsia 48, 1011–1014 (2007).

    PubMed  Google Scholar 

  28. Annesi, G. et al. A novel exon 1 mutation in a patient with atypical lafora progressive myoclonus epilepsy seen as childhood-onset cognitive deficit. Epilepsia 45, 294–295 (2004).

    PubMed  Google Scholar 

  29. Lesca, G. et al. Novel mutations in EPM2A and NHLRC1 widen the spectrum of Lafora disease. Epilepsia 51, 1691–1698 (2010).

    CAS  PubMed  Google Scholar 

  30. Baykan, B. et al. Late-onset and slow-progressing Lafora disease in four siblings with EPM2B mutation. Epilepsia 46, 1695–1697 (2005).

    CAS  PubMed  Google Scholar 

  31. Ferlazzo, E. et al. Mild Lafora disease: clinical, neurophysiologic, and genetic findings. Epilepsia 55, e129–e133 (2014).

    CAS  PubMed  Google Scholar 

  32. Traoré, M. et al. Novel mutation in the NHLRC1 gene in a Malian family with a severe phenotype of Lafora disease. Neurogenetics 10, 319–323 (2009).

    PubMed  PubMed Central  Google Scholar 

  33. Brackmann, F. A., Kiefer, A., Agaimy, A., Gencik, M. & Trollmann, R. Rapidly progressive phenotype of Lafora disease associated with a novel NHLRC1 mutation. Pediatr. Neurol. 44, 475–477 (2011).

    PubMed  Google Scholar 

  34. Kecmanovic, M. et al. Lafora disease: severe phenotype associated with homozygous deletion of the NHLRC1 gene. J. Neurol. Sci. 325, 170–173 (2013).

    CAS  PubMed  Google Scholar 

  35. Jara-Prado, A. et al. Late onset Lafora disease and novel EPM2A mutations: breaking paradigms. Epilepsy Res. 108, 1501–1510 (2014).

    CAS  PubMed  Google Scholar 

  36. Singh, S. & Ganesh, S. Phenotype variations in Lafora progressive myoclonus epilepsy: possible involvement of genetic modifiers? J. Hum. Genet. 57, 283–285 (2012).

    CAS  PubMed  Google Scholar 

  37. Guerrero, R. et al. A PTG variant contributes to a milder phenotype in Lafora disease. PLoS ONE 6, e21294 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Turnbull, J. et al. PTG depletion removes Lafora bodies and rescues the fatal epilepsy of Lafora disease. PLoS Genet. 7, e1002037 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    CAS  PubMed  Google Scholar 

  40. Nuovo, G. et al. Increased expression of importin-β, exportin-5 and nuclear transportable proteins in Alzheimer’s disease aids anatomic pathologists in its diagnosis. Ann. Diagn. Pathol. 32, 10–16 (2018).

    PubMed  Google Scholar 

  41. Ganesh, S. et al. Targeted disruption of the Epm2a gene causes formation of Lafora inclusion bodies, neurodegeneration, ataxia, myoclonus epilepsy and impaired behavioral response in mice. Hum. Mol. Genet. 11, 1251–1262 (2002).

    CAS  PubMed  Google Scholar 

  42. DePaoli-Roach, A. A. et al. Genetic depletion of the malin E3 ubiquitin ligase in mice leads to Lafora Bodies and the accumulation of insoluble laforin. J. Biol. Chem. 285, 25372–25381 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Duran, J., Gruart, A., Garcia-Rocha, M., Delgado-Garcia, J. M. & Guinovart, J. J. Glycogen accumulation underlies neurodegeneration and autophagy impairment in Lafora disease. Hum. Mol. Genet. 23, 3147–3156 (2014).

    CAS  PubMed  Google Scholar 

  44. Turnbull, J. et al. PTG protein depletion rescues malin-deficient Lafora disease in mouse. Ann. Neurol. 75, 442–446 (2014).

    CAS  PubMed  Google Scholar 

  45. Duran, J. et al. Deleterious effects of neuronal accumulation of glycogen in flies and mice. EMBO Mol. Med. 4, 719–729 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006).

    CAS  PubMed  Google Scholar 

  47. Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006).

    CAS  PubMed  Google Scholar 

  48. McMahon, J. et al. Impaired autophagy in neurons after disinhibition of mammalian target of rapamycin and its contribution to epileptogenesis. J. Neurosci. 32, 15704–15714 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Dias, D. M. et al. Biophysical characterization of laforin-carbohydrate interaction. Biochem. J. 473, 335–345 (2016).

    CAS  PubMed  Google Scholar 

  50. Christiansen, C. et al. The carbohydrate-binding module family 20 — diversity, structure, and function. FEBS J. 276, 5006–5029 (2009).

    CAS  PubMed  Google Scholar 

  51. Chan, E. M. et al. Laforin preferentially binds the neurotoxic starch-like polyglucosans, which form in its absence in progressive myoclonus epilepsy. Hum. Mol. Genet. 13, 1117–1129 (2004).

    CAS  PubMed  Google Scholar 

  52. Zhang, W., DePaoli-Roach, A. A. & Roach, P. J. Mechanisms of multisite phosphorylation and inactivation of rabbit muscle glycogen synthase. Arch. Biochem. Biophys. 304, 219–225 (1993).

    CAS  PubMed  Google Scholar 

  53. Lohi, H. et al. Novel glycogen synthase kinase 3 and ubiquitination pathways in progressive myoclonus epilepsy. Hum. Mol. Genet. 14, 2727–2736 (2005).

    CAS  PubMed  Google Scholar 

  54. Fontana, J. D. The presence of phosphate in glycogen. FEBS Lett. 109, 85–92 (1980).

    CAS  PubMed  Google Scholar 

  55. Worby, C. A., Gentry, M. S. & Dixon, J. E. Laforin, a dual specificity phosphatase that dephosphorylates complex carbohydrates. J. Biol. Chem. 281, 30412–30418 (2006).

    CAS  PubMed  Google Scholar 

  56. Tagliabracci, V. S. et al. Laforin is a glycogen phosphatase, deficiency of which leads to elevated phosphorylation of glycogen in vivo. Proc. Natl Acad. Sci. USA 104, 19262–19266 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tagliabracci, V. S. et al. Abnormal metabolism of glycogen phosphate as a cause for Lafora disease. J. Biol. Chem. 283, 33816–33825 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Nitschke, F. et al. Hyperphosphorylation of glucosyl C6 carbons and altered structure of glycogen in the neurodegenerative epilepsy Lafora disease. Cell Metab. 17, 756–767 (2013).

    CAS  PubMed  Google Scholar 

  59. Roach, P. J. Glycogen phosphorylation and Lafora disease. Mol. Aspects Med. 46, 78–84 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Vernia, S., Rubio, T., Heredia, M., Rodriguez de Cordoba, S. & Sanz, P. Increased endoplasmic reticulum stress and decreased proteasomal function in lafora disease models lacking the phosphatase laforin. PLoS ONE 4, e5907 (2009).

    PubMed  PubMed Central  Google Scholar 

  61. Rao, S. N. et al. Sequestration of chaperones and proteasome into Lafora bodies and proteasomal dysfunction induced by Lafora disease-associated mutations of malin. Hum. Mol. Genet. 19, 4726–4734 (2010).

    CAS  PubMed  Google Scholar 

  62. Mittal, S., Dubey, D., Yamakawa, K. & Ganesh, S. Lafora disease proteins malin and laforin are recruited to aggresomes in response to proteasomal impairment. Hum. Mol. Genet. 16, 753–762 (2007).

    CAS  PubMed  Google Scholar 

  63. Ganesh, S. et al. The Lafora disease gene product laforin interacts with HIRIP5, a phylogenetically conserved protein containing a NIfU-like domain. Hum. Mol. Genet. 12, 2359–2368 (2003).

    CAS  PubMed  Google Scholar 

  64. Wang, Y. et al. Epm2a suppresses tumor growth in an immunocompromised host by inhibiting Wnt signaling. Cancer Cell 10, 179–190 (2006).

    CAS  PubMed  Google Scholar 

  65. Worby, C. A., Gentry, M. S. & Dixon, J. E. Malin decreases glycogen accumulation by promoting the degradation of protein targeting to glycogen (PTG). J. Biol. Chem. 283, 4069–4076 (2008).

    CAS  PubMed  Google Scholar 

  66. Gentry, M. S., Roma-Mateo, C. & Sanz, P. Laforin, a protein with many faces: glucan phosphatase, adapter proteinet et alii. FEBS J. 280, 525–537 (2013).

    CAS  PubMed  Google Scholar 

  67. Solaz-Fuster, M. C. et al. Regulation of glycogen synthesis by the laforin-malin complex is modulated by the AMP-activated protein kinase pathway. Hum. Mol. Genet. 17, 667–678 (2008).

    CAS  PubMed  Google Scholar 

  68. Sanchez-Martin, P., Roma-Mateo, C., Viana, R. & Sanz, P. Ubiquitin conjugating enzyme E2-N and sequestosome-1 (p62) are components of the ubiquitination process mediated by the malin-laforin E3-ubiquitin ligase complex. Int. J. Biochem. Cell Biol. 69, 204–214 (2015).

    CAS  PubMed  Google Scholar 

  69. Vilchez, D. et al. Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat. Neurosci. 10, 1407–1413 (2007).

    CAS  PubMed  Google Scholar 

  70. Moreno, D., Towler, M. C., Hardie, D. G., Knecht, E. & Sanz, P. The laforin–malin complex, involved in Lafora disease, promotes the incorporation of K63-linked ubiquitin chains into AMP-activated protein kinase β subunits. Mol. Biol. Cell 21, 2578–2588 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Rubio-Villena, C., Garcia-Gimeno, M. A. & Sanz, P. Glycogenic activity of R6, a protein phosphatase 1 regulatory subunit, is modulated by the laforin–malin complex. Int. J. Biochem. Cell Biol. 45, 1479–1488 (2013).

    CAS  PubMed  Google Scholar 

  72. Deshaies, R. J. & Joazeiro, C. A. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399–434 (2009).

    CAS  PubMed  Google Scholar 

  73. Tan, J. M. et al. Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum. Mol. Genet. 17, 431–439 (2008).

    CAS  PubMed  Google Scholar 

  74. Nathan, J. A., Kim, H. T., Ting, L., Gygi, S. P. & Goldberg, A. L. Why do cell proteins linked to K63-polyubiquitin chains not associate with proteasomes? EMBO J. 32, 552–565 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sharma, J., Mulherkar, S., Mukherjee, D. & Jana, N. R. Malin regulates Wnt signaling pathway through degradation of dishevelled2. J. Biol. Chem. 287, 6830–6839 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Fong, N. M. et al. Identification of binding sites on protein targeting to glycogen for enzymes of glycogen metabolism. J. Biol. Chem. 275, 35034–35039 (2000).

    CAS  PubMed  Google Scholar 

  77. Zeeman, S. C., Kossmann, J. & Smith, A. M. in In Annual Review of Plant Biology Vol. 61 (eds Merchant, S. et al.) 209–234 (2010).

  78. Gilbert, R. G. et al. Improving human health through understanding the complex structure of glucose polymers. Anal. Bioanal. Chem. 405, 8969–8980 (2013).

    CAS  PubMed  Google Scholar 

  79. Powell, P. O. et al. Extraction, isolation and characterisation of phytoglycogen from su-1 maize leaves and grain. Carbohydr. Polym. 101, 423–431 (2014).

    CAS  PubMed  Google Scholar 

  80. Irimia, J. M. et al. Muscle glycogen remodeling and glycogen phosphate metabolism following exhaustive exercise of wild type and laforin knockout mice. J. Biol. Chem. 290, 22686–22698 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wu, A. C. & Gilbert, R. G. Molecular weight distributions of starch branches reveal genetic constraints on biosynthesis. Biomacromolecules 11, 3539–3547 (2010).

    CAS  PubMed  Google Scholar 

  82. Manners, D. J. Recent developments in our understanding of glycogen structure. Carbohydr. Polym. 16, 37–82 (1991).

    CAS  Google Scholar 

  83. Buleon, A., Colonna, P., Planchot, V. & Ball, S. Starch granules: structure and biosynthesis. Int. J. Biol. Macromol. 23, 85–112 (1998).

    CAS  PubMed  Google Scholar 

  84. Umeki, K. & Kainuma, K. Fine structure of Naegeli amylodextrin obtained by acid treatment of defatted waxy-maize starch — structural evidence to support the double-helix hypothesis. Carbohydr. Res. 96, 143–159 (1981).

    CAS  Google Scholar 

  85. Bischof, S. et al. Cecropia peltata accumulates starch or soluble glycogen by differentially regulating starch biosynthetic genes. Plant Cell 25, 1400–1415 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Fujita, N. et al. Elongated phytoglycogen chain length in transgenic rice endosperm expressing active starch synthase IIa affects the altered solubility and crystallinity of the storage α-glucan. J. Exp. Bot. 63, 5859–5872 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Sullivan, M., Nitschke, S., Steup, M., Minassian, B. & Nitschke, F. Pathogenesis of Lafora disease: transition of soluble glycogen to insoluble polyglucosan. Int. J. Mol. Sci. 18, E1743 (2017).

    PubMed  Google Scholar 

  88. Roach, P. J., Depaoli-Roach, A. A., Hurley, T. D. & Tagliabracci, V. S. Glycogen and its metabolism: some new developments and old themes. Biochem. J. 441, 763–787 (2012).

    CAS  PubMed  Google Scholar 

  89. Palmer, T. N., Macaskie, L. E. & Grewal, K. K. Spatial-distribution of unit chains in glycogen. Carbohydr. Res. 115, 139–150 (1983).

    CAS  Google Scholar 

  90. Petty, H. R., Worth, R. G. & Kindzelskii, A. L. Imaging sustained dissipative patterns in the metabolism of individual living cells. Phys. Rev. Lett. 84, 2754–2757 (2000).

    CAS  PubMed  Google Scholar 

  91. Rickey Welch, G. & Easterby, J. S. Metabolic channeling versus free diffusion: transition-time analysis. Trends Biochem. Sci. 19, 193–197 (1994).

    Google Scholar 

  92. Aw, T. Y. Intracellular compartmentation of organelles and gradients of low molecular weight species. Int. Rev. Cytol. 192, 223–253 (1999).

    Google Scholar 

  93. Tiberia, E. et al. Increased laforin and laforin binding to glycogen underlie Lafora body formation in malin-deficient Lafora disease. J. Biol. Chem. 287, 25650–25659 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Jiang, S. et al. Starch binding domain-containing protein 1/genethonin 1 is a novel participant in glycogen metabolism. J. Biol. Chem. 285, 34960–34971 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang, P. et al. SGK1 (glucose transport), dishevelled2 (wnt signaling), LC3/p62 (autophagy) and p53 (apoptosis) proteins are unaltered in Lafora disease. All Results J. Biol. 7, 28–33 (2016).

    CAS  Google Scholar 

  96. Khiari, H. M., Lesca, G., Malafosse, A. & Mrabet, A. A novel exon 3 mutation in a Tunisian patient with Lafora’s disease. J. Neurol. Sci. 304, 136–137 (2011).

    CAS  PubMed  Google Scholar 

  97. Villanueva, V., Alvarez-Linera, J., Gomez-Garre, P., Gutierrez, J. & Serratosa, J. M. MRI volumetry and proton MR spectroscopy of the brain in Lafora disease. Epilepsia 47, 788–792 (2006).

    PubMed  Google Scholar 

  98. Andrade, D. M. et al. Skin biopsy in Lafora disease: genotype–phenotype correlations and diagnostic pitfalls. Neurology 61, 1611–1614 (2003).

    CAS  PubMed  Google Scholar 

  99. Cardinali, S. et al. A pilot study of a ketogenic diet in patients with Lafora body disease. Epilepsy Res. 69, 129–134 (2006).

    CAS  PubMed  Google Scholar 

  100. Schorlemmer, K. et al. Sustained seizure remission on perampanel in progressive myoclonic epilepsy (Lafora disease). Epilepsy Behav. Case Rep. 1, 118–121 (2013).

    PubMed  PubMed Central  Google Scholar 

  101. Dirani, M., Nasreddine, W., Abdulla, F. & Beydoun, A. Seizure control and improvement of neurological dysfunction in Lafora disease with perampanel. Epilepsy Behav. Case Rep. 2, 164–166 (2014).

    PubMed  PubMed Central  Google Scholar 

  102. Goldsmith, D. & Minassian, B. A. Efficacy and tolerability of perampanel in ten patients with Lafora disease. Epilepsy Behav. 62, 132–135 (2016).

    PubMed  PubMed Central  Google Scholar 

  103. Hajnsek, S. et al. Vagus nerve stimulation in Lafora body disease. Epilepsy Behav. Case Rep. 1, 150–152 (2013).

    PubMed  PubMed Central  Google Scholar 

  104. Mikati, M. A. & Tabbara, F. Managing Lafora body disease with vagal nerve stimulation. Epilept. Disord. 19, 82–86 (2017).

    Google Scholar 

  105. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ronnett, G. V., Ramamurthy, S., Kleman, A. M., Landree, L. E. & Aja, S. AMPK in the brain: its roles in energy balance and neuroprotection. J. Neurochem. 109, 17–23 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Hardie, D. G. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell. Biol. 8, 774–785 (2007).

    CAS  PubMed  Google Scholar 

  108. Yang, Y. et al. Chronic metformin treatment facilitates seizure termination. Biochem. Biophys. Res. Commun. 484, 450–455 (2017).

    CAS  PubMed  Google Scholar 

  109. Dulovic, M. et al. The protective role of AMP-activated protein kinase in alpha-synuclein neurotoxicity in vitro. Neurobiol. Dis 63, 1–11 (2014).

    CAS  PubMed  Google Scholar 

  110. Ashabi, G., Khodagholi, F., Khalaj, L., Goudarzvand, M. & Nasiri, M. Activation of AMP-activated protein kinase by metformin protects against global cerebral ischemia in male rats: interference of AMPK/PGC-1α pathway. Metab. Brain Dis. 29, 47–58 (2014).

    CAS  PubMed  Google Scholar 

  111. Berthier, A. et al. Pharmacological interventions to ameliorate neuropathological symptoms in a mouse model of Lafora disease. Mol. Neurobiol. 53, 1296–1309 (2016).

    CAS  PubMed  Google Scholar 

  112. Sanchez-Elexpuru, G., Serratosa, J. M., Sanz, P. & Sanchez, M. P. 4-PBA and metformin decrease sensitivity to PTZ-induced seizures in a malin knockout model of Lafora disease. Neuroreport 28, 268–271 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Sanchez-Elexpuru, G., Serratosa, J. M. & Sanchez, M. P. Sodium selenate treatment improves symptoms and seizure susceptibility in a malin-deficient mouse model of Lafora disease. Epilepsia 58, 467–475 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Burke, J. F. & Mogg, A. E. Suppression of a nonsense mutation in mammalian cells in vivo by the aminoglycoside antibiotics G-418 and paromomycin. Nucleic Acids Res. 13, 6265–6272 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Bolze, F., Mocek, S., Zimmermann, A. & Klingenspor, M. Aminoglycosides, but not PTC124 (Ataluren), rescue nonsense mutations in the leptin receptor and in luciferase reporter genes. Sci. Rep. 7, 1020 (2017).

    PubMed  PubMed Central  Google Scholar 

  116. Clancy, J. P. et al. Evidence that systemic gentamicin suppresses premature stop mutations in patients with cystic fibrosis. Am. J. Respir. Crit. Care Med. 163, 1683–1692 (2001).

    CAS  PubMed  Google Scholar 

  117. Wilschanski, M. et al. Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N. Engl. J. Med. 349, 1433–1441 (2003).

    CAS  PubMed  Google Scholar 

  118. Politano, L. et al. Gentamicin administration in Duchenne patients with premature stop codon. Preliminary results. Acta Myol. 22, 15–21 (2003).

    CAS  PubMed  Google Scholar 

  119. Schroers, A. et al. Gentamicin treatment in McArdle disease: failure to correct myophosphorylase deficiency. Neurology 66, 285–286 (2006).

    CAS  PubMed  Google Scholar 

  120. Wargo, K. A. & Edwards, J. D. Aminoglycoside-induced nephrotoxicity. J. Pharm. Pract. 27, 573–577 (2014).

    PubMed  Google Scholar 

  121. Guthrie, O. W. Aminoglycoside induced ototoxicity. Toxicology 249, 91–96 (2008).

    PubMed  Google Scholar 

  122. Saraiva, J., Nobre, R. J. & de Almeida, L. P. Gene therapy for the CNS using AAVs: the impact of systemic delivery by AAV9. J. Control. Release 241, 94–109 (2016).

    CAS  PubMed  Google Scholar 

  123. Choudhury, S. R. et al. Viral vectors for therapy of neurologic diseases. Neuropharmacology 120, 63–80 (2017).

    CAS  PubMed  Google Scholar 

  124. Jan, A. T. et al. Perspective insights of exosomes in neurodegenerative diseases: a critical appraisal. Front. Aging Neurosci. 9, 317 (2017).

    PubMed  PubMed Central  Google Scholar 

  125. Duskey, J. T. et al. in International Review of Neurobiology 1–28 (Elsevier, 2017).

  126. Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20, 1172–1179 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Foust, K. D. et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 27, 59–65 (2009).

    CAS  PubMed  Google Scholar 

  128. Bottros, M. M. & Christo, P. J. Current perspectives on intrathecal drug delivery. J. Pain Res. 7, 615–626 (2014).

    PubMed  PubMed Central  Google Scholar 

  129. Haché, M. et al. Intrathecal injections in children with spinal muscular atrophy: nusinersen clinical trial experience. J. Child Neurol. 31, 899–906 (2016).

    PubMed  PubMed Central  Google Scholar 

  130. Gray, S. J., Kalburgi, S. N., McCown, T. J. & Samulski, R. J. Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates. Gene Ther. 20, 450–459 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Samaranch, L. et al. Adeno-associated virus serotype 9 transduction in the central nervous system of nonhuman primates. Hum. Gene Ther. 23, 382–389 (2011).

    PubMed Central  Google Scholar 

  132. Gray, S. J. et al. Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol. Ther. 19, 1058–1069 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Bessis, N., GarciaCozar, F. J. & Boissier, M. C. Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther. 11 (Suppl. 1), S10–S17 (2004).

    CAS  PubMed  Google Scholar 

  134. Biffi, A. et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 341, 1233158 (2013).

    PubMed  Google Scholar 

  135. Cartier, N. & Aubourg, P. Hematopoietic stem cell transplantation and hematopoietic stem cell gene therapy in X-linked adrenoleukodystrophy. Brain Pathol. 20, 857–862 (2010).

    PubMed  PubMed Central  Google Scholar 

  136. Auger, A. et al. Efficient delivery of structurally diverse protein cargo into mammalian cells by a bacterial toxin. Mol. Pharm. 12, 2962–2971 (2015).

    CAS  PubMed  Google Scholar 

  137. Pederson, B. A. et al. Inhibiting glycogen synthesis prevents Lafora disease in a mouse model. Ann. Neurol. 74, 297–300 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Duran, J. & Guinovart, J. J. Brain glycogen in health and disease. Mol. Aspects Med. 46, 70–77 (2015).

    CAS  PubMed  Google Scholar 

  139. Cameron, J. M. et al. Identification of a novel mutation in GYS1 (muscle-specific glycogen synthase) resulting in sudden cardiac death, that is diagnosable from skin fibroblasts. Mol. Genet. Metab. 98, 378–382 (2009).

    CAS  PubMed  Google Scholar 

  140. Kollberg, G. et al. Cardiomyopathy and exercise intolerance in muscle glycogen storage disease 0. N. Engl. J. Med. 357, 1507–1514 (2007).

    CAS  PubMed  Google Scholar 

  141. Sukigara, S. et al. Muscle glycogen storage disease 0 presenting recurrent syncope with weakness and myalgia. Neuromuscul. Disord. 22, 162–165 (2012).

    PubMed  Google Scholar 

  142. Pederson, B. A. et al. Abnormal cardiac development in the absence of heart glycogen. Mol. Cell. Biol. 24, 7179–7187 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Whelan, W. J. The initiation of glycogen synthesis. Bioessays 5, 136–140 (1986).

    CAS  PubMed  Google Scholar 

  144. Testoni, G. et al. Lack of glycogenin causes glycogen accumulation and muscle function impairment. Cell Metab. 26, 256–266. e4 (2017).

    CAS  PubMed  Google Scholar 

  145. Malfatti, E. et al. A new muscle glycogen storage disease associated with glycogenin-1 deficiency. Ann. Neurol. 76, 891–898 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Hedberg-Oldfors, C. et al. Polyglucosan myopathy and functional characterization of a novel GYG1 mutation. Acta Neurol. Scand. 137, 308–315 (2018).

    CAS  PubMed  Google Scholar 

  147. Crooke, S. T. & Bennett, C. F. Progress in antisense oligonucleotide therapeutics. Annu. Rev. Pharmacol. Toxicol. 36, 107–129 (1996).

    CAS  PubMed  Google Scholar 

  148. Bennett, C. F. & Swayze, E. E. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol. 50, 259–293 (2010).

    CAS  PubMed  Google Scholar 

  149. Schoch, K. M. & Miller, T. M. Antisense oligonucleotides: translation from mouse models to human neurodegenerative diseases. Neuron 94, 1056–1070 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Smith, R. A. et al. Antisense oligonucleotide therapy for neurodegenerative disease. J. Clin. Invest. 116, 2290–2296 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. DeVos, S. L. et al. Antisense reduction of tau in adult mice protects against seizures. J. Neurosci. 33, 12887–12897 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Kordasiewicz, H. B. et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron 74, 1031–1044 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Lagier-Tourenne, C. et al. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc. Natl Acad. Sci. USA 110, E4530–E4539 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Passini, M. A. et al. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci. Transl. Med. 3, 72ra18 (2011).

    PubMed  PubMed Central  Google Scholar 

  155. Geary, R. S., Norris, D., Yu, R. & Bennett, C. F. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv. Drug Deliv. Rev. 87, 46–51 (2015).

    CAS  PubMed  Google Scholar 

  156. Hua, Y. et al. Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev. 24, 1634–1644 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Hua, Y., Vickers, T. A., Okunola, H. L., Bennett, C. F. & Krainer, A. R. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am. J. Hum. Genet. 82, 834–848 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Stein, C. A. & Castanotto, D. FDA-approved oligonucleotide therapies in 2017. Mol. Ther. 25, 1069–1075 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Davidson, B. L. & McCray, P. B. Current prospects for RNA interference-based therapies. Nat. Rev. Genet. 12, 329–340 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. MacRae, I. J. et al. Structural basis for double-stranded RNA processing by Dicer. Science 311, 195–198 (2006).

    CAS  PubMed  Google Scholar 

  161. McBride, J. L. et al. Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington’s disease. Mol. Ther. 19, 2152–2162 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Harper, S. Q. et al. RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc. Natl Acad. Sci. USA 102, 5820–5825 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Machida, Y. et al. rAAV-mediated shRNA ameliorated neuropathology in Huntington disease model mouse. Biochem. Biophys. Res. Commun. 343, 190–197 (2006).

    CAS  PubMed  Google Scholar 

  164. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Mali, P., Esvelt, K. M. & Church, G. M. Cas9 as a versatile tool for engineering biology. Nat. Methods 10, 957–963 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Doudna, J. A. & Charpentier, E. The new frontier of genome engineering with CRISPR–Cas9. Science 346, 1258096 (2014).

    PubMed  Google Scholar 

  167. Chapman, J. R., Taylor, M. R. & Boulton, S. J. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell 47, 497–510 (2012).

    CAS  PubMed  Google Scholar 

  168. Rothkamm, K., Krüger, I., Thompson, L. H. & Löbrich, M. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol. Cell. Biol. 23, 5706–5715 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Swiech, L. et al. In vivo interrogation of gene function in the mammalian brain using CRISPR–Cas9. Nat. Biotechnol. 33, 102–106 (2015).

    CAS  PubMed  Google Scholar 

  170. Platt, R. J. et al. CRISPR–Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Shinmyo, Y. et al. CRISPR/Cas9-mediated gene knockout in the mouse brain using in utero electroporation. Sci. Rep 6, 20611 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Feng, W. et al. Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme. Nat. Commun. 8, 14758 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Solmesky, L. J. et al. A novel image-based high-throughput screening assay discovers therapeutic candidates for adult polyglucosan body disease. Biochem. J. 474, 3403–3420 (2017).

    CAS  PubMed  Google Scholar 

  175. Kakhlon, O. et al. Polyglucosan neurotoxicity caused by glycogen branching enzyme deficiency can be reversed by inhibition of glycogen synthase. J. Neurochem. 127, 101–113 (2013).

    CAS  PubMed  Google Scholar 

  176. Ashe, K. M. et al. Inhibition of glycogen biosynthesis via mTORC1 suppression as an adjunct therapy for Pompe disease. Mol. Genet. Metab. 100, 309–315 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ research work, some of which is described in this Review, is funded by families and friends of the Chelsea’s Hope Lafora Disease Research Fund, Associazione Italiana Lafora (AILA), France-Lafora, the Milana and Tatjana Gajic Lafora Disease Foundation, Genome Canada, the Ontario Brain Institute and the National Institute of Neurological Disorders and Stroke of the NIH under award number P01 NS097197. B.A.M. holds the University of Texas Southwestern Jimmy Elizabeth Westcott Chair in Pediatric Neurology. The authors thank S. Arnold (University of Texas Southwestern) for providing images of EEG and skin biopsy material from a patient with Lafora disease. This Review is dedicated to the memory of Adela Richer, a patient with Lafora disease who inspired this work and sadly passed away as the article was being completed.

Reviewer information

Nature Reviews Neurology thanks J. Guinovart and the other anonymous reviewers for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

F.N., S.J.A., S.N. and S.M. researched data for the article. F.N., S.N. and B.A.M. made substantial contributions to discussions of the content. All authors wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Berge A. Minassian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

The Lafora Progressive Myoclonus Epilepsy Mutation and Polymorphism Database: http://projects.tcag.ca/lafora/

OMIM 254780: https://www.omim.org/entry/254780?search=254780&highlight=254780

OMIM 611556: https://www.omim.org/entry/611556?search=611556&highlight=611556

OMIM 613507: https://www.omim.org/entry/613507?search=613507&highlight=613507

Online Mendelian Inheritance in Man: https://www.omim.org/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nitschke, F., Ahonen, S.J., Nitschke, S. et al. Lafora disease — from pathogenesis to treatment strategies. Nat Rev Neurol 14, 606–617 (2018). https://doi.org/10.1038/s41582-018-0057-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-018-0057-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing