Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Impact of predictive, preventive and precision medicine strategies in epilepsy

Abstract

Over the last decade, advances in genetics, neuroimaging and EEG have enabled the aetiology of epilepsy to be identified earlier in the disease course than ever before. At the same time, progress in the study of experimental models of epilepsy has provided a better understanding of the mechanisms underlying the condition and has enabled the identification of therapies that target specific aetiologies. We are now witnessing the impact of these advances in our daily clinical practice. Thus, now is the time for a paradigm shift in epilepsy treatment from a reactive attitude, treating patients after the onset of epilepsy and the initiation of seizures, to a proactive attitude that is more broadly integrated into a ‘P4 medicine’ approach. This P4 approach, which is personalized, predictive, preventive and participatory, puts patients at the centre of their own care and, ultimately, aims to prevent the onset of epilepsy. This aim will be achieved by adapting epilepsy treatments not only to a given syndrome but also to a given patient and moving from the usual anti-seizure treatments to personalized treatments designed to target specific aetiologies. In this Review, we present the current state of this ongoing revolution, emphasizing the impact on clinical practice.

Key points

  • Advances in genetics, biochemistry, neurophysiology and imaging have led to the development of diagnostic biomarkers for epilepsy and the redefinition of some epileptic syndromes to incorporate aetiology.

  • Three new types of targeted therapies have been applied to the treatment of epilepsies: substitutive therapy, therapies that block signalling pathways and therapies that normalize ion channel conductance.

  • Targeted therapies and gene therapy are components of personalized medicine, which belongs to ‘P4’ medicine, a new proactive approach that puts the patient at the centre of care.

  • Primary and secondary prevention of epilepsy is becoming a reality in humans, particularly in the case of monogenic epilepsy, where certain therapies seem to have an anti-epileptogenic effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Use of biomarkers in the management of epilepsy.
Fig. 2: A P4 medicine-type approach applied to the management of epilepsy.

Similar content being viewed by others

References

  1. Fisher, R. S. et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46, 470–472 (2005).

    Google Scholar 

  2. World Health Organization. Epilepsy: a public health imperative (WHO, 2019). This report provides an overview of the challenges of epilepsy diagnosis and treatment throughout the world, highlighting the gaps between high-income and low-income countries.

  3. Perucca, E. Antiepileptic drugs: evolution of our knowledge and changes in drug trials. Epileptic Disord. 21, 319–329 (2019).

    PubMed  Google Scholar 

  4. Sander, J. W. Some aspects of prognosis in the epilepsies: a review. Epilepsia 34, 1007–1016 (1993).

    CAS  PubMed  Google Scholar 

  5. Kwan, P. & Brodie, M. J. Early identification of refractory epilepsy. N. Engl. J. Med. 342, 314–319 (2000).

    CAS  PubMed  Google Scholar 

  6. Kalilani, L., Sun, X., Pelgrims, B., Noack-Rink, M. & Villanueva, V. The epidemiology of drug-resistant epilepsy: a systematic review and meta-analysis. Epilepsia 59, 2179–2193 (2018).

    PubMed  Google Scholar 

  7. Chen, Z., Brodie, M. J., Liew, D. & Kwan, P. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs a 30-year longitudinal cohort study. JAMA Neurol. 75, 279–286 (2018).

    PubMed  Google Scholar 

  8. Devinsky, O. et al. Epilepsy. Nat. Rev. Dis. Primers 4, 445–517 (2018). This review provides a general overview of the current state of knowledge in epilepsy definitions, classification, pathophysiology, management and therapies.

    Google Scholar 

  9. Scheffer, I. E. et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58, 512–521 (2017). This position paper from the International League Against Epilepsy describes changes to the classification of epilepsy, which were implemented in 2017, and defines major concepts such as epileptic syndrome, epileptic and developmental encephalopathy, and genetic generalized epilepsies.

    PubMed  PubMed Central  Google Scholar 

  10. International League Against Epilepsy. Proposal for revised clinical and electroencephalographic classification of epileptic seizures: from the Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 22, 489–501 (1981).

    Google Scholar 

  11. Zuberi, S. M. & Brunklaus, A. Epilepsy in 2017: precision medicine drives epilepsy classification and therapy. Nat. Rev. Neurol. 14, 67–68 (2018).

    PubMed  Google Scholar 

  12. US Food and Drug Administration–National Institutes of Health Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Ressource (FDA–NIH, 2016). This paper gives an overview of the different types of biomarkers available.

  13. Engel, J. et al. Epilepsy biomarkers. Epilepsia 54, 61–69 (2013).

    PubMed  PubMed Central  Google Scholar 

  14. Koutroumanidis, M. et al. The role of EEG in the diagnosis and classification of the epilepsy syndromes: a tool for clinical practice by the ILAE neurophysiology task force (Part 1). Epileptic Disord. 19, 233–298 (2017).

    PubMed  Google Scholar 

  15. Kessler, S. K. & McGinnis, E. A practical guide to treatment of childhood absence epilepsy. Pediatr. Drugs 21, 15–24 (2019).

    Google Scholar 

  16. Tassinari, C. A. et al. Encephalopathy with electrical status epilepticus during slow sleep or ESES syndrome including the acquired aphasia. Clin. Neurophysiol. 111, S94–S102 (2000).

    PubMed  Google Scholar 

  17. International League Against Epilepsy. Childhood absence epilepsy. ILAE https://www.epilepsydiagnosis.org/syndrome/cae-genetics.html (2020).

  18. Nariai, H. et al. Scalp EEG Ictal gamma and beta activity during infantile spasms: Evidence of focality. Epilepsia 58, 882–892 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. Iwatani, Y. et al. Ictal high-frequency oscillations on scalp EEG recordings in symptomatic West syndrome. Epilepsy Res. 102, 60–70 (2012).

    PubMed  Google Scholar 

  20. Irahara, K. et al. High gamma activity of 60-70Hz in the area surrounding a cortical tuber in an infant with tuberous sclerosis. Ital. J. Pediatr. 38, 15 (2012).

    PubMed  PubMed Central  Google Scholar 

  21. Yu, H. J., Lee, C. G., Nam, S. H., Lee, J. & Lee, M. Clinical and ictal characteristics of infantile seizures: EEG correlation via long-term video EEG monitoring. Brain Dev. 35, 771–777 (2013).

    PubMed  Google Scholar 

  22. Graus, F. et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 15, 391–404 (2016). This review provides an overview of autoimmune epilepsy from a clinical, pathophysiological and biological point of view, in particular the contribution of autoantibodies to therapeutic decisions and prognosis.

    PubMed  PubMed Central  Google Scholar 

  23. Giordano, A. et al. Diagnosing autoimmune encephalitis in a real-world single-centre setting. J. Neurol. 267, 449–460 (2020).

    CAS  PubMed  Google Scholar 

  24. Esposito, S., Principi, N., Calabresi, P. & Rigante, D. An evolving redefinition of autoimmune encephalitis. Autoimmun. Rev. 18, 155–163 (2019).

    PubMed  Google Scholar 

  25. Broadley, J. et al. Prognosticating autoimmune encephalitis: a systematic review. J. Autoimmun. 96, 24–34 (2019).

    PubMed  Google Scholar 

  26. Meinck, H. M. et al. Antibodies against glutamic acid decarboxylase: Prevalence in neurological diseases. J. Neurol. Neurosurg. Psychiatry 71, 100–103 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Graus, F. et al. Syndrome and outcome of antibody-negative limbic encephalitis. Eur. J. Neurol. 25, 1011–1016 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yuzyuk, T. et al. Effect of dietary lysine restriction and arginine supplementation in two patients with pyridoxine-dependent epilepsy. Mol. Genet. Metab. 118, 167–172 (2016).

    CAS  PubMed  Google Scholar 

  29. Wilson, M. P., Plecko, B., Mills, P. B. & Clayton, P. T. Disorders affecting vitamin B6 metabolism. J. Inherit. Metab. Dis. 42, 629–646 (2019).

    CAS  PubMed  Google Scholar 

  30. van Karnebeek, C. D. M. et al. Pyridoxine-dependent epilepsy: an expanding clinical spectrum. Pediatr. Neurol. 59, 6–12 (2016).

    PubMed  Google Scholar 

  31. Osman, C., Foulds, N., Hunt, D., Edwards, C. J. & Prevett, M. Diagnosis of pyridoxine-dependent epilepsy in an adult presenting with recurrent status epilepticus. Epilepsia 61, e1–e6 (2020).

    PubMed  Google Scholar 

  32. van Karnebeek, C. D. M. et al. Metabolic evaluation of epilepsy: a diagnostic algorithm with focus on treatable conditions. Front. Neurol. 9, 1016 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Nair, S. S., Harikrishnan, S., Sarma, P. S. & Thomas, S. V. Metabolic syndrome in young adults with epilepsy. Seizure 37, 61–64 (2016).

    PubMed  Google Scholar 

  34. Speed, D. et al. Describing the genetic architecture of epilepsy through heritability analysis. Brain 137, 2680–2689 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. The International League Against Epilepsy Consortium on Complex Epilepsies. Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies. Nat. Commun. 9, 5269 (2018).

    Google Scholar 

  36. Hattori, J. et al. A screening test for the prediction of Dravet syndrome before one year of age. Epilepsia 49, 626–633 (2008).

    PubMed  Google Scholar 

  37. Chemaly, N. et al. Early and long-term electroclinical features of patients with epilepsy and PCDH19 mutation. Epileptic Disord. 20, 457–467 (2018).

    PubMed  Google Scholar 

  38. Trivisano, M. et al. Defining the electroclinical phenotype and outcome of PCDH19-related epilepsy: a multicenter study. Epilepsia 59, 2260–2271 (2018).

    CAS  PubMed  Google Scholar 

  39. Bahi-Buisson, N. et al. The three stages of epilepsy in patients with CDKL5 mutations. Epilepsia 49, 1027–1037 (2008).

    CAS  PubMed  Google Scholar 

  40. von Stülpnagel, C. et al. Chewing induced reflex seizures (“eating epilepsy”) and eye closure sensitivity as a common feature in pediatric patients with SYNGAP1 mutations: review of literature and report of 8 cases. Seizure 65, 131–137 (2019).

    Google Scholar 

  41. Aaberg, K. M. et al. Seizures, syndromes, and etiologies in childhood epilepsy: the International League Against Epilepsy 1981, 1989, and 2017 classifications used in a population-based cohort. Epilepsia 58, 1880–1891 (2017). This article classified a cohort of patients using the International League Against Epilepsy classification of epilsepsy and illustrated the number of patients that can be classified by aetiology and those with unknown aetiology.

    PubMed  Google Scholar 

  42. Sánchez Fernández, I., Loddenkemper, T., Gaínza-Lein, M., Rosen Sheidley, B. & Poduri, A. Diagnostic yield of genetic tests in epilepsy: a meta-analysis and cost-effectiveness study. Neurology 92, E418–E428 (2019).

    PubMed Central  Google Scholar 

  43. Myers, K. A., Johnstone, D. L. & Dyment, D. A. Epilepsy genetics: current knowledge, applications, and future directions. Clin. Genet. 95, 95–111 (2019).

    CAS  PubMed  Google Scholar 

  44. Schwarze, K., Buchanan, J., Taylor, J. C. & Wordsworth, S. Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet. Med. 20, 1122–1130 (2018).

    PubMed  Google Scholar 

  45. Costain, G., Cordeiro, D., Matviychuk, D. & Mercimek-Andrews, S. Clinical application of targeted next-generation sequencing panels and whole exome sequencing in childhood epilepsy. Neuroscience 418, 291–310 (2019).

    CAS  PubMed  Google Scholar 

  46. Stark, Z. et al. Prospective comparison of the cost-effectiveness of clinical whole-exome sequencing with that of usual care overwhelmingly supports early use and reimbursement. Genet. Med. 19, 867–874 (2017).

    PubMed  Google Scholar 

  47. National Human Genome Research Institute. The cost of sequencing a human genome. NIH https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost (2016).

  48. Oates, S. et al. Incorporating epilepsy genetics into clinical practice: a 360° evaluation. NPJ Genomic Med. 3, 13 (2018).

    Google Scholar 

  49. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    CAS  Google Scholar 

  50. Ye, Z. et al. Somatic mutation: the hidden genetics of brain malformations and focal epilepsies. Epilepsy Res. 155, 106161 (2019).

    CAS  PubMed  Google Scholar 

  51. Klein, K. M. et al. A distinctive seizure type in patients with Cdkl5 mutations: hypermotor-tonic-spasms sequence. Neurology 76, 1436–1438 (2011).

    CAS  PubMed  Google Scholar 

  52. Lim, C. X., Ricos, M. G., Dibbens, L. M. & Heron, S. E. KCNT1 mutations in seizure disorders: The phenotypic spectrum and functional effects. J. Med. Genet. 53, 217–225 (2016).

    CAS  PubMed  Google Scholar 

  53. Burgess, R. et al. The genetic landscape of epilepsy of infancy with migrating focal seizures. Ann. Neurol. 86, 821–831 (2019).

    CAS  PubMed  Google Scholar 

  54. Pitkänen, A., Ekolle Ndode-Ekane, X., Lapinlampi, N. & Puhakka, N. Epilepsy biomarkers – toward etiology and pathology specificity. Neurobiol. Dis. 123, 42–58 (2019).

    PubMed  Google Scholar 

  55. Pitkänen, A. et al. Advances in the development of biomarkers for epilepsy. Lancet Neurol. 15, 843–856 (2016). This review provides an overview of the different types of diagnostic biomarkers under development.

    PubMed  Google Scholar 

  56. van Vliet, E. A. et al. WONOEP appraisal: Imaging biomarkers in epilepsy. Epilepsia 58, 315–330 (2017).

    PubMed  Google Scholar 

  57. Jozwiak, S. et al. WONOEP appraisal: development of epilepsy biomarkers — What we can learn from our patients? Epilepsia 58, 951–961 (2017).

    PubMed  PubMed Central  Google Scholar 

  58. Kobylarek, D. et al. Advances in the potential biomarkers of epilepsy. Front. Neurol. 10, 685 (2019).

    PubMed  PubMed Central  Google Scholar 

  59. West, S. et al. Surgery for epilepsy. Cochrane Database Syst. Rev. 6, CD010541 (2019).

    PubMed  Google Scholar 

  60. Frauscher, B. et al. High-frequency oscillations: the state of clinical research. Epilepsia 58, 1316–1329 (2017).

    PubMed  PubMed Central  Google Scholar 

  61. Thomschewski, A., Hincapié, A. S. & Frauscher, B. Localization of the epileptogenic zone using high frequency oscillations. Front. Neurol. 10, 94 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Haegelen, C. et al. High-frequency oscillations, extent of surgical resection, and surgical outcome in drug-resistant focal epilepsy. Epilepsia 54, 848–857 (2013).

    PubMed  PubMed Central  Google Scholar 

  63. Akiyama, T. et al. Focal resection of fast ripples on extraoperative intracranial EEG improves seizure outcome in pediatric epilepsy. Epilepsia 52, 1802–1811 (2011).

    PubMed  Google Scholar 

  64. Van Klink, N. E. C. et al. High frequency oscillations in intra-operative electrocorticography before and after epilepsy surgery. Clin. Neurophysiol. 125, 2212–2219 (2014).

    PubMed  Google Scholar 

  65. Jacobs, J. et al. Removing high-frequency oscillations: a prospective multicenter study on seizure outcome. Neurology 91, e1040–e1052 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. Roehri, N. et al. High-frequency oscillations are not better biomarkers of epileptogenic tissues than spikes. Ann. Neurol. 83, 84–97 (2018).

    CAS  PubMed  Google Scholar 

  67. Mouthaan, B. E. et al. Single pulse electrical stimulation to identify epileptogenic cortex: clinical information obtained from early evoked responses. Clin. Neurophysiol. 127, 1088–1098 (2016).

    CAS  PubMed  Google Scholar 

  68. Fedele, T. et al. Resection of high frequency oscillations predicts seizure outcome in the individual patient. Sci. Rep. 7, 13836 (2017).

    PubMed  PubMed Central  Google Scholar 

  69. Kuchenbuch, M. et al. Quantitative analysis and EEG markers of KCNT1 epilepsy of infancy with migrating focal seizures. Epilepsia 60, 20–32 (2019).

    CAS  PubMed  Google Scholar 

  70. Martin, H. C. et al. Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. Hum. Mol. Genet. 23, 3200–3211 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Perenthaler, E., Yousefi, S., Niggl, E. & Barakat, T. S. Beyond the exome: the non-coding genome and enhancers in neurodevelopmental disorders and malformations of cortical development. Front. Cell. Neurosci. 13, 352 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lu, S. et al. A hidden human proteome encoded by ‘non-coding’ genes. Nucleic Acids Res. 47, 8111–8125 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sim, N. S. et al. Precise detection of low-level somatic mutation in resected epilepsy brain tissue. Acta Neuropathol. 138, 901–912 (2019).

    CAS  PubMed  Google Scholar 

  74. Dubey, D., Pittock, S. J. & McKeon, A. Antibody prevalence in epilepsy and encephalopathy score: increased specificity and applicability. Epilepsia 60, 367–369 (2019).

    PubMed  Google Scholar 

  75. Dubey, D. et al. Predictive models in the diagnosis and treatment of autoimmune epilepsy. Epilepsia 58, 1181–1189 (2017).

    CAS  PubMed  Google Scholar 

  76. Husari, K. S. & Dubey, D. Autoimmune epilepsy. Neurotherapeutics 16, 685–702 (2019). This article proposes the use of composite diagnostic biomarkers that incorporate clinical, imaging and molecular (CSF) biomarkers.

    PubMed  PubMed Central  Google Scholar 

  77. President’s Council of Advisors on Science and Technology. Priorities for personalized medicine (PCAST, 2008).

  78. Nimmesgern, E., Benediktsson, I. & Norstedt, I. Personalized medicine in Europe. Clin. Transl. Sci. 10, 61–63 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Denny, J. C. et al. The ‘All of Us’ research program. N. Engl. J. Med. 381, 668–676 (2019).

    PubMed  Google Scholar 

  80. Hulsen, T. et al. From big data to precision medicine. Front. Med. 6, 34 (2019).

    Google Scholar 

  81. Kearney, H., Byrne, S., Cavalleri, G. L. & Delanty, N. Tackling epilepsy with high-definition precision medicine: a review. JAMA Neurol. 76, 1109–1116 (2019). This article describes the concept of precision medicine and its application to the field of epilepsy.

    Google Scholar 

  82. Striano, P. & Minassian, B. A. From genetic testing to precision medicine in epilepsy. Neurotherapeutics 17, 609–615 (2020).

    PubMed  Google Scholar 

  83. Brown, R. J. & Reuber, M. Psychological and psychiatric aspects of psychogenic non-epileptic seizures (PNES): a systematic review. Clin. Psychol. Rev. 45, 157–182 (2016).

    PubMed  Google Scholar 

  84. Kanemoto, K. et al. PNES around the world: where we are now and how we can close the diagnosis and treatment gaps — an ILAE PNES task force report. Epilepsia Open 2, 307–316 (2017).

    PubMed  PubMed Central  Google Scholar 

  85. Aaberg, K. M. et al. Incidence and prevalence of childhood epilepsy: a nationwide cohort study. Pediatrics 139, e20163908 (2017).

    PubMed  Google Scholar 

  86. Kotagal, P., Costa, M., Wyllie, E. & Wolgamuth, B. Paroxysmal nonepileptic events in children and adolescents. Pediatrics 110, e46 (2002).

    PubMed  Google Scholar 

  87. Boesebeck, F., Freermann, S., Kellinghaus, C. & Evers, S. Misdiagnosis of epileptic and non-epileptic seizures in a neurological intensive care unit. Acta Neurol. Scand. 122, 189–195 (2010).

    CAS  PubMed  Google Scholar 

  88. Chaves, J. & Sander, J. W. Seizure aggravation in idiopathic generalized epilepsies. Epilepsia 46, 133–139 (2005).

    PubMed  Google Scholar 

  89. Parker, A. P., Agathonikou, A., Robinson, R. O. & Panayiotopoulos, C. P. Inappropriate use of carbamazepine and vigabatrin in typical absence seizures. Dev. Med. Child Neurol. 40, 517–519 (2008).

    Google Scholar 

  90. Pawluski, J. L. et al. Long-term negative impact of an inappropriate first antiepileptic medication on the efficacy of a second antiepileptic medication in mice. Epilepsia 59, e109–e113 (2018). This article highlights the negative impact on the long-term outcome of receiving an inappropriate first anti-epileptic medication, even if this medication is administered on a temporary basis.

    PubMed  Google Scholar 

  91. Guerrini, R. et al. Lamotrigine and seizure aggravation in severe myoclonic epilepsy. Epilepsia 39, 508–512 (1998).

    CAS  PubMed  Google Scholar 

  92. de Lange, I. M. et al. Influence of contraindicated medication use on cognitive outcome in Dravet syndrome and age at first afebrile seizure as a clinical predictor in SCN1A-related seizure phenotypes. Epilepsia 59, 1154–1165 (2018).

    PubMed  Google Scholar 

  93. Hauser, W. A., Annegers, J. F. & Kurland, L. T. Prevalence of epilepsy in Rochester, Minnesota: 1940–1980. Epilepsia 32, 429–445 (1991).

    CAS  PubMed  Google Scholar 

  94. Fisher, R. S. et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55, 475–482 (2014).

    Google Scholar 

  95. Mohanraj, R. & Brodie, M. J. Early predictors of outcome in newly diagnosed epilepsy. Seizure 22, 333–344 (2013).

    PubMed  Google Scholar 

  96. Shinnar, S. et al. Predictors of multiple seizures in a cohort of children prospectively followed from the time of their first unprovoked seizure. Ann. Neurol. 48, 140–147 (2000).

    CAS  PubMed  Google Scholar 

  97. Kim, L. G., Johnson, T. L., Marson, A. G. & Chadwick, D. W. Prediction of risk of seizure recurrence after a single seizure and early epilepsy: further results from the MESS trial. Lancet Neurol. 5, 317–322 (2006).

    PubMed  Google Scholar 

  98. Hauser, W. A., Rich, S. S., Lee, J. R. J., Annegers, J. F. & Anderson, V. E. Risk of recurrent seizures after two unprovoked seizures. N. Engl. J. Med. 338, 429–434 (1998).

    CAS  PubMed  Google Scholar 

  99. O’Callaghan, F. J. K. et al. The effect of lead time to treatment and of age of onset on developmental outcome at 4 years in infantile spasms: evidence from the United Kingdom Infantile Spasms Study. Epilepsia 52, 1359–1364 (2011). This article shows the impact of a delay in the adequate management of infantile spasms on long-term outcome.

    PubMed  Google Scholar 

  100. Auvin, S. et al. Diagnosis delay in West syndrome: misdiagnosis and consequences. Eur. J. Pediatr. 171, 1695–1701 (2012).

    PubMed  Google Scholar 

  101. Eisermann, M. M. et al. Infantile spasms in down syndrome — effects of delayed anticonvulsive treatment. Epilepsy Res. 55, 21–27 (2003).

    CAS  PubMed  Google Scholar 

  102. Bok, L. A. et al. Long-term outcome in pyridoxine-dependent epilepsy. Dev. Med. Child Neurol. 54, 849–854 (2012).

    PubMed  Google Scholar 

  103. Al Teneiji, A. et al. Phenotype, biochemical features, genotype and treatment outcome of pyridoxine-dependent epilepsy. Metab. Brain Dis. 32, 443–451 (2017).

    CAS  PubMed  Google Scholar 

  104. Malmgren, K. & Edelvik, A. Long-term outcomes of surgical treatment for epilepsy in adults with regard to seizures, antiepileptic drug treatment and employment. Seizure 44, 217–224 (2017).

    PubMed  Google Scholar 

  105. Skirrow, C. et al. Determinants of IQ outcome after focal epilepsy surgery in childhood: a longitudinal case-control neuroimaging study. Epilepsia 60, 872–884 (2019).

    PubMed  Google Scholar 

  106. Delalande, O. et al. Vertical parasagittal hemispherotomy: surgical procedures and clinical long-term outcomes in a population of 83 children. Neurosurgery 60, 19–32 (2007).

    Google Scholar 

  107. Hussain, S. A. et al. Recognition of infantile spasms is often delayed: the ASSIST study. J. Pediatr. 190, 215–221.e1 (2017).

    PubMed  Google Scholar 

  108. O’Callaghan, F. J. K. et al. Vigabatrin with hormonal treatment versus hormonal treatment alone (ICISS) for infantile spasms: 18-month outcomes of an open-label, randomised controlled trial. Lancet Child Adolesc. Health 2, 715–725 (2018).

    PubMed  Google Scholar 

  109. Hancock, E. C., Osborne, J. P. & Edwards, S. W. Treatment of infantile spasms. Cochrane Database Syst. Rev. 6, CD001770 (2013).

    Google Scholar 

  110. Abel, T. J., Losito, E., Ibrahim, G. M., Asano, E. & Rutka, J. T. Multimodal localization and surgery for epileptic spasms of focal origin: a review. Neurosurg. Focus. 45, E4 (2018).

    PubMed  Google Scholar 

  111. Yum, M. S. et al. Surgical treatment for localization-related infantile spasms: Excellent long-term outcomes. Clin. Neurol. Neurosurg. 113, 213–217 (2011).

    PubMed  Google Scholar 

  112. Iwatani, Y. et al. Long-term developmental outcome in patients with West syndrome after epilepsy surgery. Brain Dev. 34, 731–738 (2012).

    PubMed  Google Scholar 

  113. Chipaux, M. et al. Refractory spasms of focal onset — a potentially curable disease that should lead to rapid surgical evaluation. Seizure 51, 163–170 (2017).

    PubMed  Google Scholar 

  114. Schulz, A. et al. Study of intraventricular cerliponase alfa for CLN2 disease. N. Engl. J. Med. 378, 1898–1907 (2018). This article highlights the efficacy of substitutive therapies; in particular, we recommend the figures that illustrate the slowing of disease progression in patients treated with cerliponase alfa compared with historical case series.

    CAS  PubMed  Google Scholar 

  115. Schulz, A. et al. Persistent treatment effect of cerliponase alfa in children with CLN2 disease: a 3 year update from an ongoing multicenter extension study. Mol. Genet. Metab. 126, S133 (2019).

    Google Scholar 

  116. Papetti, L. et al. Metabolic epilepsy: an update. Brain Dev. 35, 827–841 (2013).

    PubMed  Google Scholar 

  117. Wolf, N. I., García-Cazorla, A. & Hoffmann, G. F. Epilepsy and inborn errors of metabolism in children. J. Inherit. Metab. Dis. 32, 609 (2009).

    CAS  PubMed  Google Scholar 

  118. French, J. A. et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet 388, 2153–2163 (2016).

    CAS  PubMed  Google Scholar 

  119. Gastaldi, M., Thouin, A. & Vincent, A. Antibody-mediated autoimmune encephalopathies and immunotherapies. Neurotherapeutics 13, 147–162 (2016).

    CAS  PubMed  Google Scholar 

  120. Strehlow, V. et al. GRIN2A-related disorders: genotype and functional consequence predict phenotype. Brain 142, 80–92 (2019).

    PubMed  Google Scholar 

  121. Ben-Shalom, R. et al. Opposing effects on NaV1.2 function underlie differences between SCN2A variants observed in individuals with autism spectrum disorder or infantile seizures. Biol. Psychiatry 82, 224–232 (2017). This article shows that different mutations in the same gene can have the opposite functional effect and that a treatment contraindicated in one case might be a targeted treatment in the other.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Sanders, S. J. et al. Progress in understanding and treating SCN2A-mediated disorders. Trends Neurosci. 41, 442–456 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Lauxmann, S. et al. Relationship of electrophysiological dysfunction and clinical severity in SCN2A-related epilepsies. Hum. Mutat. 39, 1942–1956 (2018).

    CAS  PubMed  Google Scholar 

  124. Kang, S. K. et al. Spectrum of KV2.1 dysfunction in KCNB1-associated neurodevelopmental disorders. Ann. Neurol. 86, 899–912 (2019).

    CAS  PubMed  Google Scholar 

  125. Zutshi, D. et al. Racial variations in lacosamide serum concentrations in adult patients with epilepsy. J. Neurol. Sci. 412, 116742 (2020).

    CAS  PubMed  Google Scholar 

  126. Orsini, A. et al. Personalized medicine in epilepsy patients. J. Transl. Genet. Genom. 2, 16 (2018).

    Google Scholar 

  127. McCormack, M. et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N. Engl. J. Med. 364, 1134–1143 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Man, C. B. L. et al. Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese. Epilepsia 48, 1015–1018 (2007).

    CAS  PubMed  Google Scholar 

  129. Silvado, C. E., Terra, V. C. & Twardowschy, C. A. CYP2C9 polymorphisms in epilepsy: Influence on phenytoin treatment. Pharmacogenomics Pers. Med. 11, 51–58 (2018).

    CAS  Google Scholar 

  130. US Food and Drug Administration. Human gene therapy for rare diseases, guidance for industry (FDA, 2020).

  131. FDA (Food and Drug Administration). Application of current statutory authorities to human somatic cell therapy products and gene therapy products. Fed. Regist. 58, 53248–53251 (1993).

    Google Scholar 

  132. Ginn, S. L., Amaya, A. K., Alexander, I. E., Edelstein, M. & Abedi, M. R. Gene therapy clinical trials worldwide to 2017: an update. J. Gene Med. 20, e3015 (2018).

    PubMed  Google Scholar 

  133. Wang, F. et al. Clinical translation of gene medicine. J. Gene Med. 21, 1–8 (2019).

    Google Scholar 

  134. Gene Therapy Clinical Trials Worldwide. Abedia.com http://www.abedia.com/wiley/index.html (2019).

  135. Gene Therapy Clinical Trials Worldwide. Hippocampal NPY gene transfer in subjects with Intractable Temporal Lobe Epilepsy. Abedia.com http://www.abedia.com/wiley/record_detail.php?ID=1758 (2004).

  136. Wickham, J. et al. Inhibition of epileptiform activity by neuropeptide Y in brain tissue from drug-resistant temporal lobe epilepsy patients. Sci. Rep. 9, 19393 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Noe’, F. et al. Gene therapy in epilepsy: the focus on NPY. Peptides 28, 377–383 (2007).

    PubMed  Google Scholar 

  138. Nikitidou Ledri, L. et al. Translational approach for gene therapy in epilepsy: Model system and unilateral overexpression of neuropeptide Y and Y2 receptors. Neurobiol. Dis. 86, 52–61 (2016).

    CAS  Google Scholar 

  139. Noè, F. et al. Neuropeptide Y gene therapy decreases chronic spontaneous seizures in a rat model of temporal lobe epilepsy. Brain 131, 1506–1515 (2008).

    PubMed  Google Scholar 

  140. Sztainberg, Y. et al. Reversal of phenotypes in MECP2 duplication mice using genetic rescue or antisense oligonucleotides. Nature 528, 123–126 (2015). This article provides a proof-of-concept evidence that gene therapy can be effective in a mouse model of Rett syndrome, showing the impact of this strategy on epilepsy but also on the whole developmental phenotype linked to the pathogenic variant.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Lenk, G. M. et al. Scn8a antisense oligonucleotide is protective in mouse models of SCN8A encephalopathy and Dravet syndrome. Ann. Neurol. 87, 339–346 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Burbano Portilla, L. E. Antisense Oligonucleotide Precision Therapy in KCNT1 — Severe Epilepsy. Thesis, Univ. Melbourne (2019).

  143. Hsiao, J. et al. Upregulation of haploinsufficient gene expression in the brain by targeting a long non-coding RNA improves seizure phenotype in a model of Dravet syndrome. EBioMedicine 9, 257–277 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Isom, L. L. et al. Targeted augmentation of nuclear gene output (TANGO) of SCN1A prevents SUDEP in a mouse model of Dravet syndrome [abstract 1.116]. Am. Epilepsy Soc. https://www.aesnet.org/meetings_events/annual_meeting_abstracts/view/2421112 (2019).

  145. Isom, L. L. et al. Targeted augmentation of nuclear gene output (TANGO) of SCN1A prevents seizures and SUDEP in a mouse model of Dravet syndrome [abstract 1.051]. Am. Epilepsy Soc. https://www.aesnet.org/meetings_events/annual_meeting_abstracts/view/500169 (2018).

  146. Liau, et al. TANGO oligonucleotides for the treatment of Dravet syndrome: safety, biodistribution, and pharmacology in the non-human primate [abstract 2.195]. Am. Epilepsy Soc. https://www.aesnet.org/meetings_events/annual_meeting_abstracts/view/2421641 (2019).

  147. Kim, J. et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N. Engl. J. Med. 381, 1644–1652 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Amariles, P. & Madrigal-Cadavid, J. Ethical, economic, societal, clinical, and pharmacology uncertainties associated with Milasen and other personalized drugs. Ann. Pharmacother. 54, 937–938 (2020).

    PubMed  Google Scholar 

  149. Young, A. N. et al. A GABA-selective AAV vector upregulates endogenous Scn1a expression and reverses multiple phenotypes in a mouse model of Dravet syndrome [abstract 3.1]. Am. Epilepsy Soc. https://www.aesnet.org/meetings_events/annual_meeting_abstracts/view/2421999 (2019).

  150. Miller, I. et al. From gene replacement to gene regulation: developing a disease-modifying AAV gene therapy vector for SCN1A–positive (SCN1A+) pediatric epilepsy [abstract 1.091]. Am. Epilepsy Soc. https://www.aesnet.org/meetings_events/annual_meeting_abstracts/view/2421087 (2019).

  151. Colasante, G. et al. dCas9-based scn1a gene activation restores inhibitory interneuron excitability and attenuates seizures in Dravet syndrome mice. Mol. Ther. 28, 235–253 (2019). This article was the first to use a technique derived from CRISPR–Cas9 gene editing as therapy in a mouse model of monogenic epilepsy; we believe this is a promising approach.

    PubMed  Google Scholar 

  152. Hood, L., Balling, R. & Auffray, C. Revolutionizing medicine in the 21st century through systems approaches. Biotechnol. J. 7, 992–1001 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Flores, M., Glusman, G., Brogaard, K., Price, N. D. & Hood, L. P4 medicine: how systems medicine will transform the healthcare sector and society. Personalized Med. 10, 565–576 (2013). This article discusses the concept of personalized, preventive, predictive and participatory, or ‘P4’, medicine.

    CAS  Google Scholar 

  154. Pitkänen, A. & Engel, J. Past and present definitions of epileptogenesis and its biomarkers. Neurotherapeutics 11, 231–241 (2014).

    PubMed  PubMed Central  Google Scholar 

  155. Rakhade, S. N. & Jensen, F. E. Epileptogenesis in the immature brain: emerging mechanisms. Nat. Rev. Neurol. 5, 380–391 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Łukawski, K. et al. Mechanisms of epileptogenesis and preclinical approach to antiepileptogenic therapies. Pharmacol. Rep. 70, 284–293 (2018).

    PubMed  Google Scholar 

  157. Löscher, W. The holy grail of epilepsy prevention: preclinical approaches to antiepileptogenic treatments. Neuropharmacology 167, 107605 (2020). This article provides an overview of the different anti-epileptogenic treatment strategies being developed in animal models and the difficulties of translating the findings into humans.

    PubMed  Google Scholar 

  158. Clossen, B. L. & Reddy, D. S. Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy. Biochim. Biophys. Acta 1863, 1519–1538 (2017).

    CAS  PubMed Central  Google Scholar 

  159. Józ´wiak, S. & Kotulska, K. Prevention of epileptogenesis - a new goal for epilepsy therapy. Pediatr. Neurol. 51, 758–759 (2014).

    PubMed  Google Scholar 

  160. Bar-Klein, G. et al. Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis. Brain 140, 1692–1705 (2017).

    PubMed  Google Scholar 

  161. Broekaart, D. W. M. et al. Increased expression of (immuno)proteasome subunits during epileptogenesis is attenuated by inhibition of the mammalian target of rapamycin pathway. Epilepsia 58, 1462–1472 (2017).

    CAS  PubMed  Google Scholar 

  162. Klein, P. & Tyrlikova, I. No prevention or cure of epilepsy as yet. Neuropharmacology 168, 107762 (2020).

    CAS  PubMed  Google Scholar 

  163. Colebunders, R. et al. From river blindness to river epilepsy: implications for onchocerciasis elimination programmes. PLoS Negl. Trop. Dis. 13, e0007407 (2019).

    PubMed  PubMed Central  Google Scholar 

  164. Fodjo, J. N. S., Makoy, Y. L. & Colebunders, R. Epilepsy prevention. Lancet 394, 2072 (2019).

    PubMed  Google Scholar 

  165. Siewe, J. N. F. et al. Low prevalence of epilepsy and onchocerciasis after more than 20 years of ivermectin treatment in the Imo River Basin in Nigeria. Infect. Dis. Poverty 8, 8 (2019).

    PubMed  PubMed Central  Google Scholar 

  166. Specchio, N. et al. Pediatric status epilepticus: identification of prognostic factors using the new ILAE classification after 5 years of follow-up. Epilepsia 60, 2486–2498 (2019).

    PubMed  Google Scholar 

  167. Fatuzzo, D., Novy, J. & Rossetti, A. O. Use of newer antiepileptic drugs and prognosis in adults with status epilepticus: comparison between 2009 and 2017. Epilepsia 59, e98–e102 (2018).

    PubMed  Google Scholar 

  168. Neligan, A. & Shorvon, S. D. Prognostic factors, morbidity and mortality in tonic-clonic status epilepticus: a review. Epilepsy Res. 93, 1–10 (2011).

    CAS  PubMed  Google Scholar 

  169. Tremont-Lukats, I., Ratilal, B. O., Armstrong, T. & Gilbert, M. R. Antiepileptic drugs for preventing seizures in people with brain tumors. Cochrane Database Syst. Rev. 2, CD004424 (2008).

    Google Scholar 

  170. Thompson, K., Pohlmann-Eden, B., Campbell, L. A. & Abel, H. Pharmacological treatments for preventing epilepsy following traumatic head injury. Cochrane Database Syst. Rev. 8, CD009900 (2015).

    Google Scholar 

  171. Greenhalgh, J., Weston, J., Dundar, Y., Nevitt, S. J. & Marson, A. G. Antiepileptic drugs as prophylaxis for postcraniotomy seizures. Cochrane Database Syst. Rev. 5, CD007286 (2018).

    PubMed  Google Scholar 

  172. Sloviter, R. S. Epileptogenesis meets Occam’s Razor. Curr. Opin. Pharmacol. 35, 105–110 (2017).

    CAS  PubMed  Google Scholar 

  173. Kossoff, E. H., Ferenc, L. & Comi, A. M. An infantile-onset, severe, yet sporadic seizure pattern is common in Sturge-Weber syndrome. Epilepsia 50, 2154–2157 (2009).

    PubMed  Google Scholar 

  174. Bombardieri, R., Pinci, M., Moavero, R., Cerminara, C. & Curatolo, P. Early control of seizures improves long-term outcome in children with tuberous sclerosis complex. Eur. J. Paediatr. Neurol. 14, 146–149 (2010).

    PubMed  Google Scholar 

  175. Shirley, M. D. et al. Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N. Engl. J. Med. 368, 1971–1979 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Kuchenbuch, M. & Nabbout, R. Sturge–Weber syndrome. J. Pediatr. Epilepsy 05, 082–088 (2016).

    Google Scholar 

  177. Sujansky, E. & Conradi, S. Outcome of Sturge-Weber syndrome in 52 adults. Am. J. Med. Genet. 57, 35–45 (1995).

    CAS  PubMed  Google Scholar 

  178. Ville, D., Enjolras, O., Chiron, C. & Dulac, O. Prophylactic antiepileptic treatment in Sturge-Weber disease. Seizure 11, 145–150 (2002).

    CAS  PubMed  Google Scholar 

  179. Pascual-Castroviejo, I., Pascual-Pascual, S. I., Velazquez-Fragua, R. & Viaño, J. Sturge-Weber syndrome. Study of 55 patients. Can. J. Neurol. Sci. 35, 301–307 (2008).

    PubMed  Google Scholar 

  180. Day, A. M. et al. Hypothesis: presymptomatic treatment of Sturge-Weber syndrome with aspirin and antiepileptic drugs may delay seizure onset. Pediatr. Neurol. 90, 8–12 (2019).

    PubMed  Google Scholar 

  181. Holmes, G. L. et al. Tuberous sclerosis complex and epilepsy: recent developments and future challenges. Epilepsia 48, 617–630 (2007).

    PubMed  Google Scholar 

  182. Nabbout, R. et al. Epilepsy in tuberous sclerosis complex: findings from the TOSCA Study. Epilepsia Open 4, 73–84 (2019).

    PubMed  Google Scholar 

  183. Doman´ska-Pakieła, D. et al. EEG abnormalities preceding the epilepsy onset in tuberous sclerosis complex patients — a prospective study of 5 patients. Eur. J. Paediatr. Neurol. 18, 458–468 (2014).

    PubMed  Google Scholar 

  184. Wu, J. Y. et al. Scalp EEG spikes predict impending epilepsy in TSC infants: a longitudinal observational study. Epilepsia 60, 2428–2436 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Józ´wiak, S. et al. Antiepileptic treatment before the onset of seizures reduces epilepsy severity and risk of mental retardation in infants with tuberous sclerosis complex. Eur. J. Paediatr. Neurol. 15, 424–431 (2011). This article describes the positive impact of preventive therapeutic management of tuberous sclerosis complex, particularly in terms of cognition and epilepsy.

    PubMed  Google Scholar 

  186. Jozwiak, S. et al. Preventive antiepileptic treatment in tuberous sclerosis complex: a long-term, prospective trial. Pediatr. Neurol. 101, 18–25 (2019).

    PubMed  Google Scholar 

  187. Jansen, A. C. et al. Long-term, prospective study evaluating clinical and molecular biomarkers of epileptogenesis in a genetic model of epilepsy – tuberous sclerosis complex. Impact 2019, 6–9 (2019).

    Google Scholar 

  188. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02849457 (2020)

  189. Weschke, B. et al. First results of the EPISTOP study. Neuropediatrics 50, S1–S55 (2019).

    Google Scholar 

  190. Bok, L. A. et al. Antenatal treatment in two Dutch families with pyridoxine-dependent seizures. Eur. J. Pediatr. 169, 297–303 (2010).

    PubMed  Google Scholar 

  191. Klein, P. & Tyrlikova, I. Prevention of epilepsy: should we be avoiding clinical trials? Epilepsy Behav. 72, 188–194 (2017).

    PubMed  Google Scholar 

  192. Klepper, J. Glucose transporter deficiency syndrome (GLUT1DS) and the ketogenic diet. Epilepsia 49, 46–49 (2008).

    PubMed  Google Scholar 

  193. Klepper, J., Fischbarg, J., Vera, J. C., Wang, D. & De Vivo, D. C. GLUT1-deficiency: Barbiturates potentiate haploinsufficiency in vitro. Pediatr. Res. 46, 677–683 (1999).

    CAS  PubMed  Google Scholar 

  194. Wong, H. Y. et al. Sodium valproate inhibits glucose transport and exacerbates Glut1-deficiency in vitro. J. Cell. Biochem. 96, 775–785 (2005).

    CAS  PubMed  Google Scholar 

  195. Klepper, J., Flörcken, A., Fischbarg, J. & Voit, T. Effects of anticonvulsants on GLUT1-mediated glucose transport in GLUT1 deficiency syndrome in vitro. Eur. J. Pediatr. 162, 84–89 (2003).

    CAS  PubMed  Google Scholar 

  196. Stockler, S. et al. Pyridoxine dependent epilepsy and antiquitin deficiency. Clinical and molecular characteristics and recommendations for diagnosis, treatment and follow-up. Mol. Genet. Metab. 104, 48–60 (2011).

    CAS  PubMed  Google Scholar 

  197. Hoffmann, G. F. et al. Pyridoxal 5’-phosphate may be curative in early-onset epileptic encephalopathy. J. Inherit. Metab. Dis. 30, 96–99 (2006).

    PubMed  Google Scholar 

  198. Mercimek-Mahmutoglu, S. et al. Treatment of intractable epilepsy in a female with SLC6A8 deficiency. Mol. Genet. Metab. 101, 409–412 (2010).

    CAS  PubMed  Google Scholar 

  199. Stockler-Ipsiroglu, S. et al. Guanidinoacetate methyltransferase (GAMT) deficiency: outcomes in 48 individuals and recommendations for diagnosis, treatment and monitoring. Mol. Genet. Metab. 111, 16–25 (2014).

    CAS  PubMed  Google Scholar 

  200. Battini, R. et al. Arginine:glycine amidinotransferase (AGAT) deficiency in a newborn: Early treatment can prevent phenotypic expression of the disease. J. Pediatr. 148, 828–830 (2006).

    CAS  PubMed  Google Scholar 

  201. Schlingmann, K. P. et al. Novel TRPM6 mutations in 21 families with primary hypomagnesemia and secondary hypocalcemia. J. Am. Soc. Nephrol. 16, 3061–3069 (2005).

    PubMed  Google Scholar 

  202. Schaller, A. et al. Molecular and biochemical characterisation of a novel mutation in POLG associated with Alpers syndrome. BMC Neurol. 11, 4 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Pronicka, E. et al. Drug-resistant epilepsia and fulminant valproate liver toxicity. Alpers-Huttenlocher syndrome in two children confirmed post mortem by identification of p.W748S mutation in POLG gene. Med. Sci. Monit. 17, 203–209 (2011).

    Google Scholar 

  204. Lin, C. M. & Thajeb, P. Valproic acid aggravates epilepsy due to MELAS in a patient with an A3243G mutation of mitochondrial DNA. Metab. Brain Dis. 22, 105–109 (2007).

    CAS  PubMed  Google Scholar 

  205. Hsu, Y. C. et al. Adult-onset of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome presenting as acute meningoencephalitis: a case report. J. Emerg. Med. 43, e163–e166 (2012).

    PubMed  Google Scholar 

  206. Saneto, R. P. et al. POLG DNA testing as an emerging standard of care before instituting valproic acid therapy for pediatric seizure disorders. Seizure 19, 140–146 (2010).

    PubMed  PubMed Central  Google Scholar 

  207. Veldman, A. et al. Successful treatment of molybdenum cofactor deficiency type a with cPMP. Pediatrics 125, e1249–e1254 (2010).

    PubMed  Google Scholar 

  208. Hyland, K. et al. Folinic acid responsive seizures: a new syndrome? J. Inherit. Metab. Dis. 18, 177–181 (1995).

    CAS  PubMed  Google Scholar 

  209. Witters, P. et al. Clinical and biochemical improvement with galactose supplementation in SLC35A2-CDG. Genet. Med. 22, 1102–1107 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Yuskaitis, C. J. et al. Chronic mTORC1 inhibition rescues behavioral and biochemical deficits resulting from neuronal Depdc5 loss in mice. Hum. Mol. Genet. 28, 2952–2964 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. de Calbiac, H. et al. Depdc5 knockdown causes mTOR-dependent motor hyperactivity in zebrafish. Ann. Clin. Transl. Neurol. 5, 510–523 (2018).

    PubMed  PubMed Central  Google Scholar 

  212. Dutchak, P. A. et al. Regulation of hematopoiesis and methionine homeostasis by mTORC1 inhibitor NPRL2. Cell Rep. 12, 371–379 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Vawter-Lee, M., Franz, D. N., Fuller, C. E. & Greiner, H. M. Clinical letter: a case report of targeted therapy with sirolimus for NPRL3 epilepsy. Seizure 73, 43–45 (2019).

    PubMed  Google Scholar 

  214. Franz, D. N. et al. Everolimus for treatment-refractory seizures in TSC: extension of a randomized controlled trial. Neurol. Clin. Pract. 8, 412–420 (2018).

    PubMed  PubMed Central  Google Scholar 

  215. Krueger, D. A. et al. Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. Ann. Neurol. 74, 679–687 (2013).

    CAS  PubMed  Google Scholar 

  216. Toledano, M. et al. Utility of an immunotherapy trial in evaluating patients with presumed autoimmune epilepsy. Neurology 82, 1578–1586 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Scheibe, F. et al. Bortezomib for treatment of therapy-refractory anti-NMDA receptor encephalitis. Neurology 88, 366–370 (2017).

    CAS  PubMed  Google Scholar 

  218. Thompson, J. et al. The importance of early immunotherapy in patients with faciobrachial dystonic seizures. Brain 141, 348–356 (2018).

    PubMed  Google Scholar 

  219. Irani, S. R. et al. Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. Brain 136, 3151–3162 (2013).

    PubMed  Google Scholar 

  220. Kenney-Jung, D. L. et al. Febrile infection-related epilepsy syndrome treated with anakinra. Ann. Neurol. 80, 939–945 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Lortie, A., Chiron, C., Mumford, J. & Dulac, O. The potential for increasing seizure frequency, relapse, and appearance of new seizure types with vigabatrin. Neurology 43, 24–27 (1993).

    Google Scholar 

  222. Xu, X. et al. Early clinical features and diagnosis of Dravet syndrome in 138 Chinese patients with SCN1A mutations. Brain Dev. 36, 676–681 (2014).

    PubMed  Google Scholar 

  223. Mueller, A. et al. Low long-term efficacy and tolerability of add-on rufinamide in patients with Dravet syndrome. Epilepsy Behav. 21, 282–284 (2011).

    CAS  PubMed  Google Scholar 

  224. Horn, C. S., Ater, S. B. & Hurst, D. L. Carbamazepine-exacerbated epilepsy in children and adolescents. Pediatr. Neurol. 2, 340–345 (1986).

    CAS  PubMed  Google Scholar 

  225. Saito, Y., Oguni, H., Awaya, Y., Hayashi, K. & Osawa, M. Phenytoin-induced choreoathetosis in patients with severe myoclonic epilepsy in infancy. Neuropediatrics 32, 231–235 (2001).

    CAS  PubMed  Google Scholar 

  226. Castro, M. J. et al. First mutation in the voltage-gated NaV1.1 subunit gene SCN1A with co-occurring familial hemiplegic migraine and epilepsy. Cephalalgia 29, 308–313 (2009).

    PubMed  Google Scholar 

  227. Wolff, M. et al. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain 140, 1316–1336 (2017).

    PubMed  Google Scholar 

  228. Brunklaus, A. et al. Biological concepts in human sodium channel epilepsies and their relevance in clinical practice. Epilepsia 61, 387–399 (2020).

    CAS  PubMed  Google Scholar 

  229. Howell, K. B. et al. SCN2A encephalopathy. Neurology 85, 958–966 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Dilena, R. et al. Efficacy of sodium channel blockers in SCN2A early infantile epileptic encephalopathy. Brain Dev. 39, 345–348 (2017).

    PubMed  Google Scholar 

  231. Blanchard, M. G. et al. De novo gain-of-function and loss-of-function mutations of SCN8A in patients with intellectual disabilities and epilepsy. J. Med. Genet. 52, 330–337 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Ohba, C. et al. Early onset epileptic encephalopathy caused by de novo SCN8A mutations. Epilepsia 55, 994–1000 (2014).

    CAS  PubMed  Google Scholar 

  233. Boerma, R. S. et al. Remarkable phenytoin sensitivity in 4 children with SCN8A-related epilepsy: a molecular neuropharmacological approach. Neurotherapeutics 13, 192–197 (2016).

    CAS  PubMed  Google Scholar 

  234. McNally, M. A. et al. SCN8A epileptic encephalopathy: detection of fetal seizures guides multidisciplinary approach to diagnosis and treatment. Pediatr. Neurol. 64, 87–91 (2016).

    PubMed  Google Scholar 

  235. Gardella, E. et al. The phenotype of SCN8A developmental and epileptic encephalopathy. Neurology 91, e1112–e1124 (2018).

    PubMed  Google Scholar 

  236. Dilena, R. et al. Early treatment with quinidine in 2 patients with epilepsy of infancy with migrating focal seizures (EIMFS) due to gain-of-function KCNT1 mutations: functional studies, clinical responses, and critical issues for personalized therapy. Neurotherapeutics 15, 1112–1126 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Yoshitomi, S. et al. Quinidine therapy and therapeutic drug monitoring in four patients with KCNT1 mutations. Epileptic Disord. 21, 48–54 (2019).

    PubMed  Google Scholar 

  238. Mikati, M. A. et al. Quinidine in the treatment of KCNT1-positive epilepsies. Ann. Neurol. 78, 995–999 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Bearden, D. et al. Targeted treatment of migrating partial seizures of infancy with quinidine. Ann. Neurol. 76, 457–461 (2014).

    CAS  PubMed  Google Scholar 

  240. Evely, K. M., Pryce, K. D. & Bhattacharjee, A. The Phe932Ile mutation in KCNT1 channels associated with severe epilepsy, delayed myelination and leukoencephalopathy produces a loss-of-function channel phenotype. Neuroscience 351, 65–70 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Ambrosino, P. et al. De novo gain-of-function variants in KCNT2 as a novel cause of developmental and epileptic encephalopathy. Ann. Neurol. 83, 1198–1204 (2018).

    CAS  PubMed  Google Scholar 

  242. Mao, X. et al. The epilepsy of infancy with migrating focal seizures: identification of de novo mutations of the KCNT2 gene that exert inhibitory effects on the corresponding heteromeric KNa1.1/KNa1.2 potassium channel. Front. Cell. Neurosci. 14, 1 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Weckhuysen, S. et al. Extending the KCNQ2 encephalopathy spectrum: clinical and neuroimaging findings in 17 patients. Neurology 81, 1697–1703 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Millichap, J. J. et al. KCNQ2 encephalopathy: features, mutational hot spots, and ezogabine treatment of 11 patients. Neurol. Genet. 2, e96 (2016).

    PubMed  PubMed Central  Google Scholar 

  245. Schenzer, A. et al. Molecular determinants of KCNQ (KV7) K+ channel sensitivity to the anticonvulsant retigabine. J. Neurosci. 25, 5051–5060 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Mulkey, S. B. et al. Neonatal nonepileptic myoclonus is a prominent clinical feature of KCNQ2 gain-of-function variants R201C and R201H. Epilepsia 58, 436–445 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Lauritano, A. et al. A novel homozygous KCNQ3 loss-of-function variant causes non-syndromic intellectual disability and neonatal-onset pharmacodependent epilepsy. Epilepsia Open 4, 464–475 (2019).

    PubMed  PubMed Central  Google Scholar 

  248. Byers, H. M., Beatty, C. W., Hahn, S. H. & Gospe, S. M. Dramatic response after lamotrigine in a patient with epileptic encephalopathy and a de novo CACNA1A variant. Pediatr. Neurol. 60, 79–82 (2016).

    PubMed  PubMed Central  Google Scholar 

  249. Coulter, D. A., Huguenard, J. R. & Prince, D. A. Characterization of ethosuximide reduction of low-threshold calcium current in thalamic neurons. Ann. Neurol. 25, 582–593 (1989).

    CAS  PubMed  Google Scholar 

  250. Gawel, K. et al. Phenotypic characterization of larval zebrafish (Danio rerio) with partial knockdown of the cacna1a gene. Mol. Neurobiol. 57, 1904–1916 (2020).

    CAS  PubMed  Google Scholar 

  251. Damaj, L. et al. CACNA1A haploinsufficiency causes cognitive impairment, autism and epileptic encephalopathy with mild cerebellar symptoms. Eur. J. Hum. Genet. 23, 1505–1512 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Surges, R., Freiman, T. M. & Feuerstein, T. J. Gabapentin increases the hyperpolarization-activated cation current Ih in rat CA1 pyramidal cells. Epilepsia 44, 150–156 (2003).

    CAS  PubMed  Google Scholar 

  253. Poolos, N. P., Migliore, M. & Johnston, D. Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nat. Neurosci. 5, 767–774 (2002).

    CAS  PubMed  Google Scholar 

  254. Chen, X., Shu, S. & Bayliss, D. A. HCN1 channel subunits are a molecular substrate for hypnotic actions of ketamine. J. Neurosci. 29, 600–609 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Gao, J. et al. HCN channels contribute to the sensitivity of intravenous anesthetics in developmental mice. Oncotarget 9, 12907–12917 (2018).

    PubMed  PubMed Central  Google Scholar 

  256. Gao, K. et al. A de novo loss-of-function GRIN2A mutation associated with childhood focal epilepsy and acquired epileptic aphasia. PLoS ONE 12, e0170818 (2017).

    PubMed  PubMed Central  Google Scholar 

  257. Pierson, T. M. et al. GRIN2A mutation and early-onset epileptic encephalopathy: personalized therapy with memantine. Ann. Clin. Transl. Neurol. 1, 190–198 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Smigiel, R. et al. Further evidence for GRIN2B mutation as the cause of severe epileptic encephalopathy. Am. J. Med. Genet. A 170, 3265–3270 (2016).

    CAS  PubMed  Google Scholar 

  259. Mullier, B. et al. GRIN2B gain of function mutations are sensitive to radiprodil, a negative allosteric modulator of GluN2B-containing NMDA receptors. Neuropharmacology 123, 322–331 (2017).

    CAS  PubMed  Google Scholar 

  260. Li, D. et al. GRIN2D recurrent de novo dominant mutation causes a severe epileptic encephalopathy treatable with NMDA receptor channel blockers. Am. J. Hum. Genet. 99, 802–816 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Willoughby, J. O., Pope, K. J. & Eaton, V. Nicotine as an antiepileptic agent in ADNFLE: an N-of-one study. Epilepsia 44, 1238–1240 (2003).

    CAS  PubMed  Google Scholar 

  262. Lossius, K. et al. Remarkable effect of transdermal nicotine in children with CHRNA4-related autosomal dominant sleep-related hypermotor epilepsy. Epilepsy Behav. 105, 106944 (2020).

    PubMed  Google Scholar 

Download references

Acknowledgements

R.N. was supported at Imagine institute by the Bettencourt Schueller Foundation.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Rima Nabbout.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks A. Poduri and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Electro-clinical syndromes

Clusters of common clinical and EEG characteristics that enable the grouping of patients with epilepsy into more homogenous patient groups in terms of outcome and response to anti-seizure medicines.

Seizure semiology

Clinical symptoms linked to epileptic seizures.

Ictal

The period of time during an epileptic seizure.

Antisense oligonucleotides

(ASOs). Synthetic oligonucleotides that have a sequence that is complementary to a target messenger RNA resulting in binding of the messenger RNA and inhibition of the synthesis of the target protein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabbout, R., Kuchenbuch, M. Impact of predictive, preventive and precision medicine strategies in epilepsy. Nat Rev Neurol 16, 674–688 (2020). https://doi.org/10.1038/s41582-020-0409-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-020-0409-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research