Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of imaging in the diagnosis and management of axial spondyloarthritis

Abstract

MRI of the sacroiliac joints is increasingly acknowledged as being indispensable in the early diagnosis of axial spondyloarthritis (axSpA) and as having a prominent role in the prognosis and classification of axSpA. Technological advances include improvements in the resolution of structural lesions and in methodologies for the quantification of lesions. Limited access and expertise in interpretation of MRI have led to a resurgence of interest in CT, especially the development of low radiation protocols for assessing the sacroiliac joints. Trials of TNF inhibitors in patients with non-radiographic axSpA have led to greater understanding of the role of MRI in selecting which patients might respond well to this therapy. The role of MRI features as target end points in treat-to-target strategies remains unclear because the effect of such targeting on structural damage parameters has only recently been explored. The relative importance of active and structural lesions for prognostic risk assessment and selection of appropriate treatment is also an area of current research. Given the increased capacity to visualize a broad array of lesions in both the sacroiliac joints and the spine using MRI and CT, these modalities will probably be increasingly employed for assessment of the disease-modifying activity of new therapies.

Key points

  • Low-dose CT of the sacroiliac joints has superior diagnostic accuracy to plain radiography for axial spondyloarthritis (axSpA) and can be widely implemented.

  • MRI scans of the sacroiliac joint should be interpreted contextually using complementary diagnostic information provided by T1-weighted and fat-suppressed sequences.

  • Routine MRI evaluation of patients presenting with back pain and suspected axSpA should be confined to the pelvis because imaging of the spine is of little additional benefit.

  • The utility of the assessment of sacroiliac joint structural lesions or spinal lesions by MRI for improving current classification for axSpA is still uncertain.

  • Lesions in the sacroiliac joints and spine on MRI have potential prognostic value for structural progression, especially the presence of fat metaplasia.

  • MRI inflammatory scores can discriminate between active therapy and placebo and have been a consistent predictor of the efficacy of novel treatments in clinical trials over the past two decades.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: T1W and STIR sequences of a healthy sacroiliac joint.
Fig. 2: Bone marrow oedema in the sacroiliac joints on MRI and false positivity for axSpA.
Fig. 3: Structural lesions in the sacroiliac joints on MRI.
Fig. 4: Development of backfill after anti-TNF therapy.

Similar content being viewed by others

References

  1. Maksymowych, W. P. Seronegative spondyloarthritis: diagnosis and management. DeckerIP https://www.deckerip.com/products/medicine/table-of-contents/ (2018).

  2. Van Mens, L. J. J., van de Sande, M. G. H. & Baeten, D. L. P. New treatment paradigms in spondyloarthritis. Curr. Opin. Rheumatol. 30, 79–86 (2018).

    Article  PubMed  Google Scholar 

  3. Dougados, M. et al. The DESIR cohort: a 10-year follow-up of early inflammatory back pain in France: study design and baseline characteristics of the 708 recruited patients. Joint Bone Spine 78, 598–603 (2011).

    Article  PubMed  Google Scholar 

  4. Dougados, M. et al. Sacroiliac radiographic progression in recent onset axial spondyloarthritis: the 5-year data of the DESIR cohort. Ann. Rheum. Dis. 76, 1823–1828 (2017).

    Article  PubMed  Google Scholar 

  5. van den Berg, R. et al. Percentage of patients with spondyloarthritis in patients referred because of chronic back pain and performance of classification criteria: experience from the Spondyloarthritis Caught Early (SPACE) cohort. Rheumatology 52, 1492–1499 (2013).

    Article  PubMed  Google Scholar 

  6. Ez-Zaitouni, Z. et al. Presence of multiple spondyloarthritis (SpA) features is important but not sufficient for a diagnosis of axial spondyloarthritis: data from the SPondyloArthritis Caught Early (SPACE) cohort. Ann. Rheum. Dis. 76, 1086–1092 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. van den Berg, R. et al. Agreement between clinical practice and trained central reading in reading of sacroiliac joints on plain pelvic radiographs. Results from the DESIR cohort. Arthritis Rheumatol. 66, 2403–2411 (2014).

    Google Scholar 

  8. Christiansen, A. A. et al. Limited reliability of radiographic assessment of sacroiliac joints in patients with suspected early spondyloarthritis. J. Rheumatol. 44, 70–77 (2017).

    Article  PubMed  Google Scholar 

  9. Jaremko, J. L. et al. Diagnostic utility of magnetic resonance imaging and radiography in juvenile spondyloarthritis: evaluation of the sacroiliac joints in controls and affected subjects. J. Rheumatol. 41, 963–970 (2014).

    Article  PubMed  Google Scholar 

  10. Weiss, P. et al. Radiographs in screening for sacroiliitis in children: what is the value? Arthritis Res. Ther. 20, 141 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Diekhoff, T. et al. Comparison of MRI with radiography for detecting structural lesions of the sacroiliac joint using CT as standard of reference: results from the SIMACT study. Ann. Rheum. Dis. 76, 1502–1508 (2017).

    Article  PubMed  Google Scholar 

  12. Mandl, P. et al. EULAR recommendations for the use of imaging in the diagnosis and management of spondyloarthritis in clinical practice. Ann. Rheum. Dis. 74, 1327–1339 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Sudoł-Szopińska, I. et al. Recommendations of the ESSR Arthritis Subcommittee for the use of magnetic resonance imaging in musculoskeletal rheumatic diseases. Semin. Musculoskelet. Radiol. 19, 396–411 (2015).

    Article  PubMed  Google Scholar 

  14. Maksymowych, W. P. et al. Suppression of inflammation and effects on new bone formation in ankylosing spondylitis: evidence for a window of opportunity in disease modification. Ann. Rheum. Dis. 72, 23–28 (2013).

    Article  PubMed  Google Scholar 

  15. Park, J. W. et al. Impact of tumor necrosis factor inhibitor versus nonsteroidal antiinflammatory drug treatment on radiographic progression in early ankylosing spondylitis: its relationship to inflammation control during treatment. Arthritis Rheumatol. 71, 82–90 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Devauchelle-Pensec, V. et al. Computed tomography scanning facilitates the diagnosis of sacroiliitis in patients with suspected spondylarthritis. Arthritis Rheum. 64, 1412–1419 (2012).

    Article  PubMed  Google Scholar 

  17. Niemann, T., Kollmann, T. & Bongartz, G. Diagnostic performance of low-dose CT for the detection of urolithiasis: a meta-analysis. Am. J. Radiol. 191, 396–401 (2008).

    Google Scholar 

  18. Christe, A. et al. CT screening and follow-up of lung nodules: effects of tube, current-time setting, and nodule size and density on detectability and of tube current-time setting on apparent size. AJR Am. J. Roentgenol. 197, 623–630 (2011).

    Article  PubMed  Google Scholar 

  19. Chahal, B. S. et al. Radiation exposure to the sacroiliac joint from low-dose CT compared with radiography. Am. J. Radiol. 211, 1058–1062 (2018).

    Google Scholar 

  20. Martin, C. J. Effective dose: how should it be applied to medical exposures? Br. J. Radiol. 80, 639–647 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. United States Environmental Protection Agency. Radiation sources and doses. EPA https://www.epa.gov/radiation/radiation-sources-and-doses (2019).

  22. Jurik, A. G. et al. Effective radiation dose from semicoronal CT of the sacroiliac joints in comparison with axial CT and conventional radiography. Eur. Radiol. 12, 2820–2825 (2002).

    PubMed  Google Scholar 

  23. Li, S. G., Liu, X., Zhou, H. & Zhang, Q. Interrater reliability and radiation dosage of oblique coronal computed tomography. Br. J. Radiol. 91, 20150700 (2018).

    Article  PubMed  Google Scholar 

  24. de Koning, A. et al. Low-dose CT detects more progression of bone formation in comparison to conventional radiography in patients with ankylosing spondylitis: results from the SIAS cohort. Ann. Rheum. Dis. 77, 293–299 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Ez-Zaitouni, Z. et al. Imaging of the sacroiliac joints is important for diagnosing early axial spondyloarthritis but not all-decisive. Rheumatology 57, 1173–1179 (2018).

    Article  Google Scholar 

  26. Rudwaleit, M. et al. The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part II): validation and final selection. Ann. Rheum. Dis. 68, 777–783 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Greese, J. et al. Detection of sacroiliitis by short-tau inversion recovery and T2-weighted turbo spin echo sequences: results from the SIMACT Study. J. Rheumatol. 46, 376–383 (2019).

    Article  PubMed  Google Scholar 

  28. Weber, U. et al. The diagnostic utility of magnetic resonance imaging in spondylarthritis: an international multicenter evaluation of one hundred eighty-seven subjects. Arthritis Rheum. 62, 3048–3058 (2010).

    Article  PubMed  Google Scholar 

  29. Rudwaleit, M. et al. How to diagnose axial spondyloarthritis early. Ann. Rheum. Dis. 63, 535–543 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. De Hooge, M. et al. Magnetic resonance imaging of the sacroiliac joints in the early detection of spondyloarthritis: no added value of gadolinium compared with short tau inversion recovery sequence. Rheumatology 52, 1220–1224 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Weiss, P. F., Xiao, R., Biko, D. M., Johnson, A. M. & Chauvin, N. A. Detection of inflammatory sacroiliitis in children with magnetic resonance imaging is gadolinium contrast enhancement necessary? Arthritis Rheumatol. 67, 2250–2256 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maksymowych, W. P. et al. Spondyloarthritis Research Consortium of Canada magnetic resonance imaging index for assessment of sacroiliac joint inflammation in ankylosing spondylitis. Arthritis. Care Res. 53, 703–709 (2005).

    Article  Google Scholar 

  33. Maksymowych, W. P., Wichuk, S., Chiowchanwisawakit, P., Lambert, R. G. & Pedersen, S. J. Development and preliminary validation of the Spondyloarthritis Research Consortium of Canada magnetic resonance imaging sacroiliac joint structural score. J. Rheumatol. 42, 79–86 (2015).

    Article  PubMed  Google Scholar 

  34. Maksymowych, W. P. et al. MRI lesions in the sacroiliac joints of patients with spondyloarthritis: update of definitions and validation by the ASAS MRI working group. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2019-215589 (2019).

  35. Ciurea, A. et al. Tumor necrosis factor α inhibition in radiographic and nonradiographic axial spondyloarthritis: results from a large observational cohort. Arthritis Rheum. 65, 3096–3106 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Rudwaleit, M. et al. Defining active sacroiliitis on magnetic resonance imaging (MRI) for classification of axial spondyloarthritis: a consensual approach by the ASAS/OMERACT MRI group. Ann. Rheum. Dis. 68, 1520–1527 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. van den Berg, R. et al. Classification of axial SpA based on positive imaging (radiographs and/or MRI of the sacroiliac joints) by local rheumatologists or radiologists versus central trained readers in the DESIR cohort. Ann. Rheum. Dis. 74, 2016–2021 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Bakker, P. A. C. et al. Is it useful to repeat magnetic resonance imaging of the sacroiliac joints after three months or one year in the diagnosis of patients with chronic back pain and suspected axial spondyloarthritis? Arthritis Rheumatol. 71, 382–391 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Weber, U. et al. Frequency and anatomic distribution of magnetic resonance imaging features in the sacroiliac joints of young athletes: exploring “background noise” toward a data-driven definition of sacroiliitis in early spondyloarthritis. Arthritis Rheumatol. 70, 736–745 (2018).

    Article  PubMed  Google Scholar 

  40. De Winter, J. et al. Magnetic resonance imaging of the sacroiliac joints indicating sacroiliitis according to the Assessment of SpondyloArthritis international Society definition in healthy individuals, runners, and women with postpartum back pain. Arthritis Rheumatol. 70, 1042–1048 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Weber, U. et al. Candidate lesion-based criteria for defining a positive sacroiliac joint MRI in two cohorts of patients with axial spondyloarthritis. Ann. Rheum. Dis. 74, 1976–1982 (2015).

    Article  PubMed  Google Scholar 

  42. Gong, Y. et al. Ten years’ experience with needle biopsy in the early diagnosis of sacroiliitis. Arthritis Rheum. 64, 1399–1406 (2012).

    Article  PubMed  Google Scholar 

  43. Varkas, G. et al. Effect of mechanical stress on magnetic resonance imaging of the sacroiliac joints: assessment of military recruits by magnetic resonance imaging study. Rheumatology 57, 508–513 (2018).

    Article  PubMed  Google Scholar 

  44. Arnbak, B. et al. Associations between spondyloarthritis features and magnetic resonance imaging findings: a cross-sectional analysis of 1,020 patients with persistent low back pain. Arthritis Rheumatol. 68, 892–900 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Eshed, I. et al. Peripartum changes of the sacroiliac joints on MRI: increasing mechanical load correlating with signs of edema and inflammation kindling spondyloarthropathy in the genetically prone. Clin. Rheumatol. 34, 1419–1426 (2015).

    Article  PubMed  Google Scholar 

  46. Ling, M. A. et al. Osteitis condensans ilii may demonstrate bone marrow edema on sacroiliac joint magnetic resonance imaging. Int. J. Rheum. Dis. 21, 299–307 (2018).

    Article  Google Scholar 

  47. Weber, U. et al. Fat infiltration on magnetic resonance imaging of the sacroiliac joints has limited diagnostic utility in nonradiographic axial spondyloarthritis. J. Rheumatol. 41, 75–83 (2014).

    Article  PubMed  Google Scholar 

  48. de Hooge, M. et al. Patients with chronic back pain of short duration from the SPACE cohort: which MRI structural lesions in the sacroiliac joints and inflammatory and structural lesions in the spine are most specific for axial spondyloarthritis? Ann. Rheum. Dis. 75, 1308–1314 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Weber, U. et al. Assessment of structural lesions in sacroiliac joints enhances diagnostic utility of magnetic resonance imaging in early spondylarthritis. Arthritis Care Res. 62, 1763–1771 (2010).

    Article  Google Scholar 

  50. Maksymowych, W. P. et al. MRI evidence of structural changes in the sacroiliac joints of patients with nonradiographic axial spondyloarthritis even in the absence of MRI inflammation. Arthritis Res. Ther. 19, 126 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maksymowych, W. P. et al. Fat metaplasia and backfill are key intermediaries in the development of sacroiliac joint ankylosis in patients with ankylosing spondylitis. Arthritis Rheumatol. 66, 2958–2967 (2014).

    Article  PubMed  Google Scholar 

  52. Pedersen, S. J., Wichuk, S., Chiowchanwisawakit, P., Lambert, R. G. & Maksymowych, W. P. Tumor necrosis factor inhibitor therapy but not standard therapy is associated with resolution of erosion in the sacroiliac joints of patients with axial spondyloarthritis. Arthritis Res. Ther. 16, R100 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Maksymowych, W. P. et al. Modification of structural lesions on magnetic resonance imaging of the sacroiliac joints by etanercept in the EMBARK trial: a 12-week randomised placebo-controlled trial in patients with non-radiographic axial spondyloarthritis. Ann. Rheum. Dis. 77, 78–84 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Laloo, F. et al. MR signal in the sacroiliac joint space in spondyloarthritis: a new sign. Eur. Radiol. 27, 2024–2030 (2017).

    Article  PubMed  Google Scholar 

  55. Azmat, O., Lambert, R. G., Jibri, Z. & Maksymowych, W. P. Subchondral bone sclerosis on computed tomography – does it have any value in the diagnosis of inflammatory sacroiliitis or is it a non-specific finding? [abstract 684]. Arthritis Rheumatol. 68 (Suppl. 10), 899–901 (2016).

    Google Scholar 

  56. Hermann, K. G. et al. Descriptions of spinal MRI lesions and definition of a positive MRI of the spine in axial spondyloarthritis: a consensual approach by the ASAS/OMERACT MRI study group. Ann. Rheum. Dis. 71, 1278–1288 (2012).

    Article  PubMed  Google Scholar 

  57. Østergaard, M., Maksymowych, W. P., Pedersen, S. J., Chiowchanwisawakit, P. & Lambert, R. G. W. Structural lesions detected by magnetic resonance imaging in the spine of patients with spondyloarthritis – definitions, assessment system, and reference image set. J. Rheumatol. Suppl. 84, 18–34 (2009).

    Article  Google Scholar 

  58. Weber, U. et al. Does spinal MRI add incremental diagnostic value to MRI of the sacroiliac joints alone in patients with non-radiographic axial spondyloarthritis? Ann. Rheum. Dis. 74, 985–992 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Weber, U. et al. Diagnostic utility of candidate definitions for a positive MRI of the spine in patients with axial spondyloarthritis. Arthritis Rheumatol. 67, 924–933 (2015).

    Article  PubMed  Google Scholar 

  60. Ez-Zaitouni, Z. et al. The yield of a positive MRI of the spine as imaging criterion in the ASAS classification criteria for axial spondyloarthritis: results from the SPACE and DESIR cohorts. Ann. Rheum. Dis. 76, 1731–1736 (2017).

    Article  PubMed  Google Scholar 

  61. de Bruin, F. et al. Prevalence of degenerative changes and overlap with spondyloarthritis-associated lesions in the spine of patients from the DESIR cohort. RMD Open. 4, e000657 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Weber, U. et al. Sensitivity and specificity of spinal inflammatory lesions assessed by whole-body magnetic resonance imaging in patients with ankylosing spondylitis or recent-onset inflammatory back pain. Arthritis Rheum. 61, 900–908 (2009).

    Article  Google Scholar 

  63. Rennie, W. J. et al. Magnetic resonance imaging assessment of spinal inflammation in ankylosing spondylitis: standard clinical protocols may omit inflammatory lesions in thoracic vertebrae. Arthritis Rheum. 61, 1187–1193 (2009).

    Article  Google Scholar 

  64. Blachier, M. et al. Does the site of magnetic resonance imaging abnormalities match the site of recent-onset inflammatory backpain? The DESIR cohort. Ann. Rheum. Dis. 72, 979–985 (2013).

    Article  PubMed  Google Scholar 

  65. de Hooge, M. et al. Is the site of back pain related to the location of magnetic resonance imaging lesions in patients with chronic back pain? Results from the Spondyloarthritis Caught Early Cohort. Arthritis Care Res. 69, 717–723 (2017).

    Article  CAS  Google Scholar 

  66. Sepriano, A. et al. Performance of the ASAS classification criteria for axial and peripheral spondyloarthritis: a systematic literature review and meta-analysis. Ann. Rheum. Dis. 76, 886–890 (2017).

    Article  PubMed  Google Scholar 

  67. Sepriano, A. et al. Predictive validity of the ASAS classification criteria for axial and peripheral spondyloarthritis after follow-up in the ASAS cohort: a final analysis. Ann. Rheum. Dis. 75, 1034–1042 (2016).

    Article  PubMed  Google Scholar 

  68. Ez-Zaitouni, Z. et al. The influence of discrepant imaging judgements on the classification of axial spondyloarthritis is limited: a replication in the SpondyloArthritis Caught Early (SPACE) cohort. Ann. Rheum. Dis. 77, e1 (2018).

    Article  PubMed  Google Scholar 

  69. Bakker, P. A. Can we use structural lesions seen on MRI of the sacroiliac joints reliably for the classification of patients according to the ASAS axial spondyloarthritis criteria? Data from the DESIR cohort. Ann. Rheum. Dis. 76, 392–398 (2017).

    Article  PubMed  Google Scholar 

  70. Bakker, P. A. et al. Impact of replacing radiographic sacroiliitis by magnetic resonance imaging structural lesions on the classification of patients with axial spondyloarthritis. Rheumatology 57, 1186–1193 (2018).

    Article  PubMed  Google Scholar 

  71. Molnar, C. et al. TNF blockers inhibit spinal radiographic progression in ankylosing spondylitis by reducing disease activity: results from the Swiss Clinical Quality Management cohort. Ann. Rheum. Dis. 77, 63–69 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Ramiro, S. et al. Evolution of radiographic damage in ankylosing spondylitis: a 12-year prospective follow-up of the OASIS study. Ann. Rheum. Dis. 74, 52–59 (2015).

    Article  PubMed  Google Scholar 

  73. Ramiro, S. et al. Spinal radiographic progression in early axial spondyloarthritis: five-year results from the DESIR cohort. Arthritis Care Res. https://doi.org/10.1002/acr.23796 (2018).

  74. Sieper, J. et al. Efficacy and safety of adalimumab in patients with non-radiographic axial spondyloarthritis: results of a randomised placebo-controlled trial (ABILITY-1). Ann. Rheum. Dis. 72, 815–822 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Dougados, M. et al. Symptomatic efficacy of etanercept and its effects on objective signs of inflammation in early nonradiographic axial spondyloarthritis: a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol. 66, 2091–2102 (2014).

    CAS  Google Scholar 

  76. Sieper, J. et al. A randomized, double-blind, placebo-controlled, sixteen-week study of subcutaneous golimumab in patients with active nonradiographic axial spondyloarthritis. Arthritis Rheumatol. 67, 2702–2712 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Molto, A., Paternotte, S., Claudepierre, P., Breban, M. & Dougados, M. Effectiveness of tumor necrosis factor α blockers in early axial spondyloarthritis: data from the DESIR cohort. Arthritis Rheumatol. 66, 1734–1744 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Baraliakos, X. et al. Non-radiographic axial spondyloarthritis patients without initial evidence of inflammation may develop objective inflammation over time. Rheumatology 56, 1162–1166 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sengupta, R. et al. Short-term repeat magnetic resonance imaging scans in suspected early axial spondyloarthritis are clinically relevant only in HLA-B27-positive male subjects. J. Rheumatol. 45, 202–205 (2018).

    Article  PubMed  Google Scholar 

  80. Bennett, A. N. et al. Severity of baseline magnetic resonance imaging – evident sacroiliitis and HLA–B27 status in early inflammatory back pain predict radiographically evident ankylosing spondylitis at eight years. Arthritis Rheum. 58, 3413–3418 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Poddubnyy, D. et al. Rates and predictors of radiographic sacroiliitis progression over 2 years in patients with axial spondyloarthritis. Ann. Rheum. Dis. 70, 1369–1374 (2011).

    Article  PubMed  Google Scholar 

  82. Sepriano, A. et al. Is active sacroiliitis on MRI associated with radiographic damage in axial spondyloarthritis? Real-life data from the ASAS and DESIR cohorts. Rheumatology 58, 798–802 (2019).

    Article  PubMed  Google Scholar 

  83. Machado, P. M. et al. MRI vertebral corner inflammation followed by fat deposition is the strongest contributor to the development of new bone at the same vertebral corner: a multilevel longitudinal analysis in patients with ankylosing spondylitis. Ann. Rheum. Dis. 75, 1486–1493 (2016).

    Article  PubMed  Google Scholar 

  84. Baraliakos, X. et al. Which spinal lesions are associated with new bone formation in patients with ankylosing spondylitis treated with anti-TNF agents? A long-term observational study using MRI and conventional radiography. Ann. Rheum. Dis. 73, 1819–1825 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Maksymowych, W. P. et al. Fat metaplasia on MRI of the sacroiliac joints increases the propensity for disease progression in the spine of patients with spondyloarthritis. RMD Open 3, e000399 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dougados, M. et al. Rate and predisposing factors for sacroiliac joint radiographic progression after a two-year follow-up period in recent-onset spondyloarthritis. Arthritis Rheumatol. 68, 1904–1913 (2016).

    CAS  Google Scholar 

  87. Sepriano, A. et al. Five-year follow-up of radiographic sacroiliitis: progression as well as improvement? Ann. Rheum. Dis. 75, 1262–1263 (2016).

    Article  PubMed  Google Scholar 

  88. Sepriano, A. et al. Percentage of progressors in imaging: can we ignore regressors? RMD Open 5, e000848 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Dougados, M. et al. Evaluation of the change in structural radiographic sacroiliac joint damage after 2 years of etanercept therapy (EMBARK trial) in comparison to a contemporary control cohort (DESIR cohort) in recent onset axial spondyloarthritis. Ann. Rheum. Dis. 77, 221–227 (2018).

    Article  PubMed  Google Scholar 

  90. Creemers, M. C. et al. Assessment of outcome in ankylosing spondylitis: an extended radiographic scoring system. Ann. Rheum. Dis. 64, 127–129 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. van der Heijde, D. et al. Modified stoke ankylosing spondylitis spinal score as an outcome measure to assess the impact of treatment on structural progression in ankylosing spondylitis. Rheumatology 58, 388–400 (2019).

    Article  PubMed  Google Scholar 

  92. Ramiro, S. et al. Which scoring method depicts spinal radiographic damage in early axial spondyloarthritis best? Five-year results from the DESIR cohort. Rheumatology 57, 1991–2000 (2018).

    Article  PubMed  Google Scholar 

  93. Maksymowych, W. P. et al. Development and validation of the spondyloarthritis radiography module for calibration of readers using the modified Stoke Ankylosing Spondylitis Spine Score. Arthritis Care Res. 66, 55–62 (2014).

    Article  Google Scholar 

  94. Baraliakos, X. et al. Inflammation in ankylosing spondylitis: a systematic description of the extent and frequency of acute spinal changes using magnetic resonance imaging. Ann. Rheum. Dis. 64, 730–734 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Maas, F. et al. Incorporating assessment of the cervical facet joints in the modified Stoke Ankylosing Spondylitis Spine Score is of additional value in the evaluation of spinal radiographic outcome in ankylosing spondylitis. Arthritis Res. Ther. 19, 77 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. De Bruin, F. et al. Development of the CT Syndesmophyte Score (CTSS) in patients with ankylosing spondylitis: data from the SIAS cohort. Ann. Rheum. Dis. 77, 371–377 (2018).

    Article  PubMed  Google Scholar 

  97. Maksymowych, W. P. et al. Development and validation of web-based training modules for systematic evaluation of active inflammatory lesions in the spine and sacroiliac joints in spondyloarthritis. J. Rheumatol. 36, 48–57 (2009).

    Google Scholar 

  98. Deodhar, A. et al. A fifty-two-week randomized placebo-controlled trial of certolizumab pegol in non-radiographic axial spondyloarthritis. Arthritis Rheumatol. 71, 1101–1111 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Weiss, P. et al. Feasibility and reliability of the spondyloarthritis research consortium of canada sacroiliac joint inflammation score in children. Arthritis Res. Ther. 20, 56 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Van der Heijde, D. et al. Efficacy and safety of filgotinib, a selective Janus kinase 1 inhibitor, in patients with active ankylosing spondylitis (TORTUGA): results from a randomised, placebo-controlled, phase 2 trial. Lancet 392, 2378–2387 (2018).

    Article  PubMed  Google Scholar 

  101. Van der Heijde, D. et al. Ixekizumab, an interleukin-17A antagonist in the treatment of ankylosing spondylitis or radiographic axial spondyloarthritis in patients previously untreated with biological disease-modifying anti-rheumatic drugs (COAST-V): 16 week results of a phase 3 randomised, double-blind, active-controlled and placebo-controlled trial. Lancet 392, 2441–2451 (2018).

    Article  PubMed  Google Scholar 

  102. Van der Heijde, D. et al. Limited radiographic progression and sustained reductions in MRI inflammation in patients with axial spondyloarthritis: 4-year imaging outcomes from the RAPID-axSpA phase III randomised trial. Ann. Rheum. Dis. 77, 699–705 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Van der Heijde, D. et al. Tofacitinib in patients with ankylosing spondylitis: a phase II, 16-week, randomised, placebo-controlled, dose-ranging study. Ann. Rheum. Dis. 76, 1430–1437 (2017).

    Google Scholar 

  104. Panwar, J. et al. Spondyloarthritis Research Consortium of Canada scoring system for sacroiliitis in juvenile spondyloarthritis/enthesitis-related arthritis: a reliability, validity, and responsiveness study. J. Rheumatol. 46, 636–644 (2019).

    Article  PubMed  Google Scholar 

  105. Maksymowych, W. P. Clinical and MRI responses to etanercept in early non-radiographic axial spondyloarthritis: 48-week results from the EMBARK study. Ann. Rheum. Dis. 75, 1328–1335 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Maksymowych, M. et al. Validation of online calibration modules for the Spondyloarthritis Research Consortium of Canada MRI scores based on real-time experiential learning [abstract 586]. Arthritis Rheumatol. 69 (Suppl. 10), 833–834 (2017).

    Google Scholar 

  107. Weiss, P. et al. Feasibility and reliability of the spondyloarthritis research consortium of canada sacroiliac joint structural score in children. J. Rheumatol. 45, 1411–1417 (2018).

    Article  PubMed  Google Scholar 

  108. Maksymowych, W. P. et al. Validation of the Spondyloarthritis Research Consortium of Canada magnetic resonance imaging spinal inflammation index: is it necessary to score the entire spine? Arthritis Care Res. 57, 501–507 (2007).

    Article  Google Scholar 

  109. Maksymowych, W. P. et al. Low-dose Infliximab (3 mg/kg) significantly reduces spinal inflammation on magnetic resonance imaging in patients with ankylosing spondylitis: a randomized placebo-controlled study. J. Rheumatol. 37, 1728–1734 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Krabbe, S. et al. Inflammatory and structural changes in vertebral bodies and posterior elements of the spine in axial spondyloarthritis: construct validity, responsiveness and discriminatory ability of the anatomy-based CANDEN scoring system in a randomised placebo-controlled trial. RMD Open 4, e000624 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Gezmis, E. et al. Diagnosis of early sacroiliitis in seronegative spondyloarthropathies by DWI and correlation of clinical and laboratory findings with ADC values. Eur. J. Radiol. 82, 2316–2321 (2013).

    Article  PubMed  Google Scholar 

  112. Vendhan, K. et al. A diffusion-based quantification technique for assessment of sacroiliitis in adolescents with enthesitis-related arthritis. Br. J. Radiol. 89, 20150775 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Beltran, L. S., Samim, M., Gyftopoulos, S., Bruno, M. T. & Petchprapa, C. N. Does the addition of DWI to fluid-sensitive conventional MRI of the sacroiliac joints improve the diagnosis of sacroiliitis? AJR Am. J. Roentgenol. 210, 1309–1316 (2018).

    Article  PubMed  Google Scholar 

  114. Boy, F. N. et al. The role of multi-parametric MR imaging in the detection of early inflammatory sacroiliitis according to ASAS criteria. Eur. J. Radiol. 83, 989–996 (2014).

    Article  PubMed  Google Scholar 

  115. Bray, T. J. et al. Diffusion-weighted imaging is a sensitive biomarker of response to biologic therapy in enthesitis-related arthritis. Rheumatology 56, 399–407 (2017).

    Article  Google Scholar 

  116. Diekhoff, T. et al. Improved detection of erosions in the sacroiliac joints on MRI with volumetric interpolated breath-hold examination (VIBE): results from the SIMACT study. Ann. Rheum. Dis. 77, 1585–1589 (2018).

    Article  PubMed  Google Scholar 

  117. Idolazzi, L. et al. 18F-fluoride PET/CT for detection of axial involvement in ankylosing spondylitis: correlation with disease activity. Ann. Nucl. Med. 30, 430–434 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Lee, S. G. et al. Assessment of bone synthetic activity in inflammatory lesions and syndesmophytes in patients with ankylosing spondylitis: the potential role of 18F-fluoride positron emission tomography-magnetic resonance imaging. Clin. Exp. Rheumatol. 33, 90–97 (2015).

    PubMed  Google Scholar 

  119. Bruijnen, S. T. G. et al. Bone formation in ankylosing spondylitis during anti-tumour necrosis factor therapy imaged by 18F-fluoride positron emission tomography. Rheumatology 57, 631–638 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ouichka, R. et al. Performance of 18F-sodium fluoride positron emission tomography with computed tomography to assess inflammatory and structural sacroiliitis on magnetic resonance imaging in axial spondyloarthritis. Clin. Exp. Rheumatol. 37, 19–25 (2019).

    PubMed  Google Scholar 

  121. Park, E. K. et al. Baseline increased 18Ffluoride uptake lesions at vertebral corners on positron emission tomography predict new syndesmophyte development in ankylosing spondylitis: a 2-year longitudinal study. Rheumatol. Int. 37, 765–773 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Buchbender, C. et al. Hybrid 18F-labeled fluoride positron emission tomography/magnetic resonance (MR) imaging of the sacroiliac joints and the spine in patients with axial spondyloarthritis: a pilot study exploring the link of MR bone pathologies and increased osteoblastic activity. J. Rheumatol. 42, 1631–1637 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Raynal, M. et al. Performance of 18F-sodium fluoride positron emission tomography with computed tomography to assess inflammatory and structural sacroiliitis on magnetic resonance imaging and computed tomography, respectively, in axial spondyloarthritis. Arthritis Res. Ther. 21, 119 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Bruijnen, S. T. G. et al. Bone formation in ankylosing spondylitis during anti-tumour necrosis factor therapy imaged by 18F-fluoride positron emission tomography. Rheumatology 57, 631–638 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter P. Maksymowych.

Ethics declarations

Competing interests

W.P.M. is Chief Medical Officer of CaRE Arthritis and has received research and/or educational grants from Abbvie, Janssen, Novartis, Pfizer and UCB, and consulting fees and/or honoraria from Abbvie, Boehringer, Celgene, Galapagos, Janssen, Lilly, Novartis, Pfizer and UCB.

Additional information

Peer review information

Nature Reviews Rheumatology thanks A. Deodhar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CaRE Arthritis imaging portal: http://www.carearthritis.com/MRI.php

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksymowych, W.P. The role of imaging in the diagnosis and management of axial spondyloarthritis. Nat Rev Rheumatol 15, 657–672 (2019). https://doi.org/10.1038/s41584-019-0309-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-019-0309-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing