Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Immune restoration following hematopoietic stem cell transplantation: an evolving target

Summary:

Hematopoietic stem cell transplantation (HSCT) is the definitive cure for many malignant and nonmalignant diseases. However, delays in immune reconstitution (IR) following HSCT significantly limit the success of transplantation and increase the risk for infection and disease relapse in the transplant recipient. Therefore, ways to measure and to manipulate immune recovery following HSCT are emerging and their success depends directly upon an enhanced understanding for the underlying mechanisms responsible for reconstituted immunity and hematopoiesis. Recent discoveries in the activation, function, and regulation of dendritic cell (DC), natural killer (NK) cell, and T-lymphocyte subtypes have been critical in developing immunotherapies used to prevent graft-versus-host disease and to enhance graft-versus-leukemia. For example, regulatory T cells that induce tolerance and NK receptor–tumor ligand disparities that result in tumor lysis are being used to minimize GVHD and tumor burden, respectively. Furthermore, expansion and modulation of immune effector cells are being used to augment hematopoietic and immune recovery and to decrease transplant-related toxicity in the transplant recipient. Specifically, DC expansion and incorporation into antitumor and anti-microbial vaccines is fast approaching application into clinical trials. This paper will review our current understanding for IR following HSCT and the novel ways in which to restore immune function and decrease transplant-related toxicity in the transplant recipient.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Delves PJ, Roitt IM . The immune system. First of two parts. N Engl J Med 2000; 343: 37–49.

    CAS  PubMed  Google Scholar 

  2. Delves PJ, Roitt IM . The immune system. Second of two parts. N Engl J Med 2000; 343: 108–117.

    CAS  PubMed  Google Scholar 

  3. Majka M, Janowska-Wieczorek A, Ratajczak J et al. Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood 2001; 97: 3075–3085.

    CAS  PubMed  Google Scholar 

  4. Adams GB, Chabner KT, Foxall RB et al. Heterologous cells cooperate to augment stem cell migration, homing, and engraftment. Blood 2003; 101: 45–51.

    CAS  PubMed  Google Scholar 

  5. Attar EC, Scadden DT . Regulation of hematopoietic stem cell growth. Leukemia 2004; 18: 1760–1768.

    CAS  PubMed  Google Scholar 

  6. Graf T . Differentiation plasticity of hematopoietic cells. Blood 2002; 99: 3089–3101.

    CAS  PubMed  Google Scholar 

  7. Cooper MA, Fehniger TA, Caligiuri MA . The biology of human natural killer-cell subsets. Trends Immunol 2001; 22: 633–640.

    CAS  PubMed  Google Scholar 

  8. Banchereau J, Briere F, Caux C et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18: 767–811.

    CAS  PubMed  Google Scholar 

  9. Janeway Jr CA, Medzhitov R . Innate immune recognition. Annu Rev Immunol 2002; 20: 197–216.

    CAS  PubMed  Google Scholar 

  10. Takeda K, Akira S . Toll-like receptors in innate immunity. Int Immunol 2005; 17: 1–14.

    CAS  PubMed  Google Scholar 

  11. Athman R, Philpott D . Innate immunity via Toll-like receptors and Nod proteins. Curr Opin Microbiol 2004; 7: 25–32.

    CAS  PubMed  Google Scholar 

  12. Iwasaki A, Medzhitov R . Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004; 5: 987–995.

    CAS  PubMed  Google Scholar 

  13. Akira S, Takeda K . Toll-like receptor signalling. Nat Rev Immunol 2004; 4: 499–511.

    CAS  PubMed  Google Scholar 

  14. Guermonprez P, Valladeau J, Zitvogel L et al. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 2002; 20: 621–667.

    CAS  PubMed  Google Scholar 

  15. Pulendran B, Smith JL, Caspary G et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci USA 1999; 96: 1036–1041.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Colonna M, Trinchieri G, Liu YJ . Plasmacytoid dendritic cells in immunity. Nat Immunol 2004; 5: 1219–1226.

    CAS  PubMed  Google Scholar 

  17. O'Keeffe M, Hochrein H, Vremec D et al. Effects of administration of progenipoietin 1, Flt-3 ligand, granulocyte colony-stimulating factor, and pegylated granulocyte–macrophage colony-stimulating factor on dendritic cell subsets in mice. Blood 2002; 99: 2122–2130.

    CAS  PubMed  Google Scholar 

  18. Gilliet M, Boonstra A, Paturel C et al. The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. J Exp Med 2002; 195: 953–958.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hoebe K, Janssen E, Beutler B . The interface between innate and adaptive immunity. Nat Immunol 2004; 5: 971–974.

    CAS  PubMed  Google Scholar 

  20. Okamura H, Kashiwamura S, Tsutsui H et al. Regulation of interferon-gamma production by IL-12 and IL-18. Curr Opin Immunol 1998; 10: 259–264.

    CAS  PubMed  Google Scholar 

  21. Takeuchi O, Hoshino K, Kawai T et al. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 1999; 11: 443–451.

    CAS  PubMed  Google Scholar 

  22. Boehm U, Klamp T, Groot M, Howard JC . Cellular responses to interferon-gamma. Annu Rev Immunol 1997; 15: 749–795.

    CAS  PubMed  Google Scholar 

  23. Ikeda H, Chamoto K, Tsuji T et al. The critical role of type-1 innate and acquired immunity in tumor immunotherapy. Cancer Sci 2004; 95: 697–703.

    CAS  PubMed  Google Scholar 

  24. Soloski MJ . Recognition of tumor cells by the innate immune system. Curr Opin Immunol 2001; 13: 154–162.

    CAS  PubMed  Google Scholar 

  25. Luznik L, Fuchs EJ . Donor lymphocyte infusions to treat hematologic malignancies in relapse after allogeneic blood or marrow transplantation. Cancer Control 2002; 9: 123–137.

    PubMed  Google Scholar 

  26. Parham P . Immunogenetics of killer-cell immunoglobulin-like receptors. Tissue Antigens 2003; 62: 194–200.

    CAS  PubMed  Google Scholar 

  27. Raulet DH . Interplay of natural killer cells and their receptors with the adaptive immune response. Nat Immunol 2004; 5: 996–1002.

    CAS  PubMed  Google Scholar 

  28. Kamradt T, Mitchison NA . Tolerance and autoimmunity. N Engl J Med 2001; 344: 655–664.

    CAS  PubMed  Google Scholar 

  29. Jonuleit H, Adema G, Schmitt E . Immune regulation by regulatory T cells: implications for transplantation. Transplant Immunol 2003; 11: 267–276.

    CAS  Google Scholar 

  30. Imamura M, Tanaka J . Immunoregulatory cells for transplantation tolerance and graft-versus-leukemia effect. Int J Hematol 2003; 78: 188–194.

    CAS  PubMed  Google Scholar 

  31. Lindquist RL, Shakhar G, Dudziak D et al. Visualizing dendritic cell networks in vivo. Nat Immunol 2004; 5: 1243–1250.

    CAS  PubMed  Google Scholar 

  32. Anderson SA, Glod J, Arbab AS et al. Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood 2005; 105: 420–425.

    CAS  PubMed  Google Scholar 

  33. Azuma E, Hirayama M, Yamamoto H, Komada Y . The role of donor age in naive T-cell recovery following allogeneic hematopoietic stem cell transplantation: the younger the better. Leukemia Lymphoma 2002; 43: 735–739.

    PubMed  Google Scholar 

  34. Klein AK, Patel DD, Gooding ME et al. T-cell recovery in adults and children following umbilical cord blood transplantation. Biol Blood Marrow Transplant 2001; 7: 454–466.

    CAS  PubMed  Google Scholar 

  35. Mackall CL, Fleisher TA, Brown MR et al. Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N Engl J Med 1995; 332: 143–149.

    CAS  PubMed  Google Scholar 

  36. Small TN, Avigan D, Dupont B et al. Immune reconstitution following T-cell depleted bone marrow transplantation: effect of age and posttransplant graft rejection prophylaxis. Biol Blood Marrow Transplant 1997; 3: 65–75.

    CAS  PubMed  Google Scholar 

  37. Beelen DW, Ottinger HD, Elmaagacli A et al. Transplantation of filgrastim-mobilized peripheral blood stem cells from HLA-identical sibling or alternative family donors in patients with hematologic malignancies: a prospective comparison on clinical outcome, immune reconstitution, and hematopoietic chimerism. Blood 1997; 90: 4725–4735.

    CAS  PubMed  Google Scholar 

  38. Small TN, Papadopoulos EB, Boulad F et al. Comparison of immune reconstitution after unrelated and related T-cell-depleted bone marrow transplantation: effect of patient age and donor leukocyte infusions. Blood 1999; 93: 467–480.

    CAS  PubMed  Google Scholar 

  39. Auletta JJ, Fisher VL . Immune reconstitution in pediatric stem-cell transplantation. Front Biosci 2001; 6: G23–32.

    CAS  PubMed  Google Scholar 

  40. Handgretinger R, Lang P, Schumm M et al. Immunological aspects of haploidentical stem cell transplantation in children. Ann NY Acad Sci 2001; 938: 340–357 ; discussion 357–348.

    CAS  PubMed  Google Scholar 

  41. Thomson BG, Robertson KA, Gowan D et al. Analysis of engraftment, graft-versus-host disease, and immune recovery following unrelated donor cord blood transplantation. Blood 2000; 96: 2703–2711.

    CAS  PubMed  Google Scholar 

  42. Shenoy S, Mohanakumar T, Todd G et al. Immune reconstitution following allogeneic peripheral blood stem cell transplants. Bone Marrow Transplant 1999; 23: 335–346.

    CAS  PubMed  Google Scholar 

  43. Avigan D, Wu Z, Joyce R et al. Immune reconstitution following high-dose chemotherapy with stem cell rescue in patients with advanced breast cancer. Bone Marrow Transplant 2000; 26: 169–176.

    CAS  PubMed  Google Scholar 

  44. Moretta A, Bottino C, Vitale M et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 2001; 19: 197–223.

    CAS  PubMed  Google Scholar 

  45. Lanier LL . On guard – activating NK cell receptors. Nat Immunol 2001; 2: 23–27.

    CAS  PubMed  Google Scholar 

  46. Shilling HG, McQueen KL, Cheng NW et al. Reconstitution of NK cell receptor repertoire following HLA-matched hematopoietic cell transplantation. Blood 2003; 101: 3730–3740.

    CAS  PubMed  Google Scholar 

  47. Lum LG . The kinetics of immune reconstitution after human marrow transplantation. Blood 1987; 69: 369–380.

    CAS  PubMed  Google Scholar 

  48. Ojielo CI, Cooke K, Mancuso P et al. Defective phagocytosis and clearance of Pseudomonas aeruginosa in the lung following bone marrow transplantation. J Immunol 2003; 171: 4416–4424.

    CAS  PubMed  Google Scholar 

  49. Zimmerli W, Zarth A, Gratwohl A, Speck B . Neutrophil function and pyogenic infections in bone marrow transplant recipients. Blood 1991; 77: 393–399.

    CAS  PubMed  Google Scholar 

  50. Auffermann-Gretzinger S, Lossos IS, Vayntrub TA et al. Rapid establishment of dendritic cell chimerism in allogeneic hematopoietic cell transplant recipients. Blood 2002; 99: 1442–1448.

    CAS  PubMed  Google Scholar 

  51. Mohty M, Gaugler B, Faucher C et al. Recovery of lymphocyte and dendritic cell subsets following reduced intensity allogeneic bone marrow transplantation. Hematology 2002; 7: 157–164.

    CAS  PubMed  Google Scholar 

  52. Damiani D, Stocchi R, Masolini P et al. Dendritic cell recovery after autologous stem cell transplantation. Bone Marrow Transplant 2002; 30: 261–266.

    CAS  PubMed  Google Scholar 

  53. Auletta JJ, Devecchio JL, Ferrara JL, Heinzel FP . Distinct phases in recovery of reconstituted innate cellular-mediated immunity after murine syngeneic bone marrow transplantation. Biol Blood Marrow Transplant 2004; 10: 834–847.

    PubMed  Google Scholar 

  54. Damiani D, Stocchi R, Masolini P et al. CD34+-selected versus unmanipulated autologous stem cell transplantation in multiple myeloma: impact on dendritic and immune recovery and on complications due to infection. Ann Oncol 2003; 14: 475–480.

    CAS  PubMed  Google Scholar 

  55. Reddy V, Iturraspe JA, Tzolas AC et al. Low dendritic cell count after allogeneic hematopoietic stem cell transplantation predicts relapse, death, and acute graft-versus-host disease. Blood 2004; 103: 4330–4335.

    CAS  PubMed  Google Scholar 

  56. Seder RA, Gazzinelli RT . Cytokines are critical in linking the innate and adaptive immune responses to bacterial, fungal, and parasitic infection. Adv Intern Med 1999; 44: 353–388.

    CAS  PubMed  Google Scholar 

  57. Fearon DT, Locksley RM . The instructive role of innate immunity in the acquired immune response. Science 1996; 272: 50–53.

    CAS  PubMed  Google Scholar 

  58. Gerosa F, Gobbi A, Zorzi P et al. The reciprocal interaction of NK cells with plasmacytoid or myeloid dendritic cells profoundly affects innate resistance functions. J Immunol 2005; 174: 727–734.

    CAS  PubMed  Google Scholar 

  59. Munz C, Dao T, Ferlazzo G et al. Mature myeloid dendritic cell subsets have distinct roles for activation and viability of circulating human natural killer cells. Blood 2005; 105: 266–273.

    PubMed  Google Scholar 

  60. Borg C, Jalil A, Laderach D et al. NK cell activation by dendritic cells (DCs) requires the formation of a synapse leading to IL-12 polarization in DCs. Blood 2004; 104: 3267–3275.

    CAS  PubMed  Google Scholar 

  61. Abbas AK, Sharpe AH . Dendritic cells giveth and taketh away. Nat Immunol 2005; 6: 227–228.

    CAS  PubMed  Google Scholar 

  62. Storek J, Ferrara S, Ku N et al. B cell reconstitution after human bone marrow transplantation: recapitulation of ontogeny? Bone Marrow Transplant 1993; 12: 387–398.

    CAS  PubMed  Google Scholar 

  63. Storek J, Wells D, Dawson MA et al. Factors influencing B lymphopoiesis after allogeneic hematopoietic cell transplantation. Blood 2001; 98: 489–491.

    CAS  PubMed  Google Scholar 

  64. Storek J, Saxon A . Reconstitution of B cell immunity following bone marrow transplantation. Bone Marrow Transplant 1992; 9: 395–408.

    CAS  PubMed  Google Scholar 

  65. Parkman R, Weinberg KI . Immunological reconstitution following bone marrow transplantation. Immunol Rev 1997; 157: 73–78.

    CAS  PubMed  Google Scholar 

  66. Avigan D, Pirofski LA, Lazarus HM . Vaccination against infectious disease following hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2001; 7: 171–183.

    CAS  PubMed  Google Scholar 

  67. van Burik JA, Weisdorf DJ . Infections in recipients of blood and marrow transplantation. Hematol Oncol Clin N Am 1999; 13: 1065–1089, viii.

    CAS  Google Scholar 

  68. Storek J, Dawson MA, Lim LC et al. Efficacy of donor vaccination before hematopoietic cell transplantation and recipient vaccination both before and early after transplantation. Bone Marrow Transplant 2004; 33: 337–346.

    CAS  PubMed  Google Scholar 

  69. Wolff SN, Fay JW, Herzig RH et al. High-dose weekly intravenous immunoglobulin to prevent infections in patients undergoing autologous bone marrow transplantation or severe myelosuppressive therapy. A study of the American Bone Marrow Transplant Group. Ann Intern Med 1993; 118: 937–942.

    CAS  PubMed  Google Scholar 

  70. Cordonnier C, Chevret S, Legrand M et al. Should immunoglobulin therapy be used in allogeneic stem-cell transplantation? A randomized, double-blind, dose effect, placebo-controlled, multicenter trial. Ann Intern Med 2003; 139: 8–18.

    CAS  PubMed  Google Scholar 

  71. Kansu E . The pathophysiology of chronic graft-versus-host disease. Int J Hematol 2004; 79: 209–215.

    PubMed  Google Scholar 

  72. Lee SJ, Vogelsang G, Flowers ME . Chronic graft-versus-host disease. Biol Blood Marrow Transplant 2003; 9: 215–233.

    CAS  PubMed  Google Scholar 

  73. Ratanatharathorn V, Ayash L, Reynolds C et al. Treatment of chronic graft-versus-host disease with anti-CD20 chimeric monoclonal antibody. Biol Blood Marrow Transplant 2003; 9: 505–511.

    CAS  PubMed  Google Scholar 

  74. Mackall CL, Bare CV, Granger LA et al. Thymic-independent T cell regeneration occurs via antigen-driven expansion of peripheral T cells resulting in a repertoire that is limited in diversity and prone to skewing. J Immunol 1996; 156: 4609–4616.

    CAS  PubMed  Google Scholar 

  75. Weinberg K, Blazar BR, Wagner JE et al. Factors affecting thymic function after allogeneic hematopoietic stem cell transplantation. Blood 2001; 97: 1458–1466.

    CAS  PubMed  Google Scholar 

  76. Mackall CL, Stein D, Fleisher TA et al. Prolonged CD4 depletion after sequential autologous peripheral blood progenitor cell infusions in children and young adults. Blood 2000; 96: 754–762.

    CAS  PubMed  Google Scholar 

  77. Storek J, Dawson MA, Storer B et al. Immune reconstitution after allogeneic marrow transplantation compared with blood stem cell transplantation. Blood 2001; 97: 3380–3389.

    CAS  PubMed  Google Scholar 

  78. Talmadge JE, Reed E, Ino K et al. Rapid immunologic reconstitution following transplantation with mobilized peripheral blood stem cells as compared to bone marrow. Bone Marrow Transplant 1997; 19: 161–172.

    CAS  PubMed  Google Scholar 

  79. Roberts MM, To LB, Gillis D et al. Immune reconstitution following peripheral blood stem cell transplantation, autologous bone marrow transplantation and allogeneic bone marrow transplantation. Bone Marrow Transplant 1993; 12: 469–475.

    CAS  PubMed  Google Scholar 

  80. Ottinger HD, Beelen DW, Scheulen B et al. Improved immune reconstitution after allotransplantation of peripheral blood stem cells instead of bone marrow. Blood 1996; 88: 2775–2779.

    CAS  PubMed  Google Scholar 

  81. To LB, Roberts MM, Haylock DN et al. Comparison of haematological recovery times and supportive care requirements of autologous recovery phase peripheral blood stem cell transplants, autologous bone marrow transplants and allogeneic bone marrow transplants. Bone Marrow Transplant 1992; 9: 277–284.

    CAS  PubMed  Google Scholar 

  82. Talvensaari K, Clave E, Douay C et al. A broad T-cell repertoire diversity and an efficient thymic function indicate a favorable long-term immune reconstitution after cord blood stem cell transplantation. Blood 2002; 99: 1458–1464.

    CAS  PubMed  Google Scholar 

  83. Hamza NS, Lisgaris M, Yadavalli G et al. Kinetics of myeloid and lymphocyte recovery and infectious complications after unrelated umbilical cord blood versus HLA-matched unrelated donor allogeneic transplantation in adults. Br J Haematol 2004; 124: 488–498.

    PubMed  Google Scholar 

  84. Korbling M, Huh YO, Durett A et al. Allogeneic blood stem cell transplantation: peripheralization and yield of donor-derived primitive hematopoietic progenitor cells (CD34+ Thy-1dim) and lymphoid subsets, and possible predictors of engraftment and graft-versus-host disease. Blood 1995; 86: 2842–2848.

    CAS  PubMed  Google Scholar 

  85. Weaver CH, Longin K, Buckner CD, Bensinger W . Lymphocyte content in peripheral blood mononuclear cells collected after the administration of recombinant human granulocyte colony-stimulating factor. Bone Marrow Transplant 1994; 13: 411–415.

    CAS  PubMed  Google Scholar 

  86. Tayebi H, Lapierre V, Saas P et al. Enhanced activation of B cells in a granulocyte colony-stimulating factor-mobilized peripheral blood stem cell graft. Br J Haematol 2001; 114: 698–700.

    CAS  PubMed  Google Scholar 

  87. Ino K, Singh RK, Talmadge JE . Monocytes from mobilized stem cells inhibit T cell function. J Leukocyte Biol 1997; 61: 583–591.

    CAS  PubMed  Google Scholar 

  88. Ageitos AG, Varney ML, Bierman PJ et al. Comparison of monocyte-dependent T cell inhibitory activity in GM-CSF vs G-CSF mobilized PSC products. Bone Marrow Transplant 1999; 23: 63–69.

    CAS  PubMed  Google Scholar 

  89. Mielcarek M, Graf L, Johnson G, Torok-Storb B . Production of interleukin-10 by granulocyte colony-stimulating factor-mobilized blood products: a mechanism for monocyte-mediated suppression of T-cell proliferation. Blood 1998; 92: 215–222.

    CAS  PubMed  Google Scholar 

  90. Pan L, Delmonte Jr J, Jalonen CK, Ferrara JL . Pretreatment of donor mice with granulocyte colony-stimulating factor polarizes donor T lymphocytes toward type-2 cytokine production and reduces severity of experimental graft-versus-host disease. Blood 1995; 86: 4422–4429.

    CAS  PubMed  Google Scholar 

  91. Ferrara JL, Cooke KR, Teshima T . The pathophysiology of acute graft-versus-host disease. Int J Hematol 2003; 78: 181–187.

    CAS  PubMed  Google Scholar 

  92. MacDonald KP, Rowe V, Filippich C et al. Chronic graft-versus-host disease after granulocyte colony-stimulating factor-mobilized allogeneic stem cell transplantation: the role of donor T-cell dose and differentiation. Biol Blood Marrow Transplant 2004; 10: 373–385.

    CAS  PubMed  Google Scholar 

  93. Fagnoni FF, Oliviero B, Giorgiani G et al. Reconstitution dynamics of plasmacytoid and myeloid dendritic cell precursors after allogeneic myeloablative hematopoietic stem cell transplantation. Blood 2004; 104: 281–289.

    CAS  PubMed  Google Scholar 

  94. Spellberg B, Edwards Jr JE . Type 1/Type 2 immunity in infectious diseases. Clin Infect Dis 2001; 32: 76–102.

    CAS  PubMed  Google Scholar 

  95. McKenna HJ, Stocking KL, Miller RE et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 2000; 95: 3489–3497.

    CAS  PubMed  Google Scholar 

  96. Chklovskaia E, Nowbakht P, Nissen C et al. Reconstitution of dendritic and natural killer-cell subsets after allogeneic stem cell transplantation: effects of endogenous flt3 ligand. Blood 2004; 103: 3860–3868.

    CAS  PubMed  Google Scholar 

  97. Mueller YM, Cramer DE, Huang Y et al. Hematopoietic stem cells from the marrow of mice treated with Flt3 ligand are significantly expanded but exhibit reduced engraftment potential. Transplantation 2002; 73: 1177–1185.

    CAS  PubMed  Google Scholar 

  98. Machatschek J, Duda J, Matthay K et al. Immune reconstitution, infectious complications and post transplant supportive care measures after autologous blood and marrow transplantation in children. Bone Marrow Transplant 2003; 32: 687–693.

    CAS  PubMed  Google Scholar 

  99. Kamani N, Kattamis A, Carroll A et al. Immune reconstitution after autologous purged bone marrow transplantation in children. J Pediatr Hematol Oncol 2000; 22: 13–19.

    CAS  PubMed  Google Scholar 

  100. Ratajczak MZ, Ratajczak J, Kuczynski W et al. In vitro sensitivity of human hematopoietic progenitor cells to 4-hydroperoxycyclophosphamide. Exp Hematol 1993; 21: 1663–1667.

    CAS  PubMed  Google Scholar 

  101. Rutella S, Pierelli L, Sica S et al. Transplantation of autologous peripheral blood progenitor cells: impact of CD34-cell selection on immunological reconstitution. Leukemia Lymphoma 2001; 42: 1207–1220.

    CAS  PubMed  Google Scholar 

  102. Crippa F, Holmberg L, Carter RA et al. Infectious complications after autologous CD34-selected peripheral blood stem cell transplantation. Biol Blood Marrow Transplant 2002; 8: 281–289.

    PubMed  Google Scholar 

  103. Peggs KS, Verfuerth S, Pizzey A et al. Reconstitution of T-cell repertoire after autologous stem cell transplantation: influence of CD34 selection and cytomegalovirus infection. Biol Blood Marrow Transplant 2003; 9: 198–205.

    CAS  PubMed  Google Scholar 

  104. Urbano-Ispizua A, Carreras E, Marin P et al. Allogeneic transplantation of CD34(+) selected cells from peripheral blood from human leukocyte antigen-identical siblings: detrimental effect of a high number of donor CD34(+) cells? Blood 2001; 98: 2352–2357.

    CAS  PubMed  Google Scholar 

  105. Drobyski WR . Evolving strategies to address adverse transplant outcomes associated with T cell depletion. J Hematother Stem Cell Res 2000; 9: 327–337.

    CAS  PubMed  Google Scholar 

  106. Eyrich M, Leiler C, Lang P et al. A prospective comparison of immune reconstitution in pediatric recipients of positively selected CD34+ peripheral blood stem cells from unrelated donors vs recipients of unmanipulated bone marrow from related donors. Bone Marrow Transplant 2003; 32: 379–390.

    CAS  PubMed  Google Scholar 

  107. Eyrich M, Leiler C, Croner T et al. Impaired T-cell activation and cytokine productivity after transplantation of positively selected CD34+ allogeneic hematopoietic stem cells. Hematol J 2004; 5: 329–340.

    CAS  PubMed  Google Scholar 

  108. Elfenbein GJ, Sackstein R . Primed marrow for autologous and allogeneic transplantation: a review comparing primed marrow to mobilized blood and steady-state marrow. Exp Hematol 2004; 32: 327–339.

    CAS  PubMed  Google Scholar 

  109. Banfi A, Bianchi G, Galotto M et al. Bone marrow stromal damage after chemo/radiotherapy: occurrence, consequences and possibilities of treatment. Leukemia Lymphoma 2001; 42: 863–870.

    CAS  PubMed  Google Scholar 

  110. Porrata LF, Gertz MA, Inwards DJ et al. Early lymphocyte recovery predicts superior survival after autologous hematopoietic stem cell transplantation in multiple myeloma or non-Hodgkin lymphoma. Blood 2001; 98: 579–585.

    CAS  PubMed  Google Scholar 

  111. Porrata LF, Litzow MR, Markovic SN . Immune reconstitution after autologous hematopoietic stem cell transplantation. Mayo Clin Proc 2001; 76: 407–412.

    CAS  PubMed  Google Scholar 

  112. Kalwak K, Gorczynska E, Toporski J et al. Immune reconstitution after haematopoietic cell transplantation in children: immunophenotype analysis with regard to factors affecting the speed of recovery. Br J Haematol 2002; 118: 74–89.

    CAS  PubMed  Google Scholar 

  113. Chen T, Guo J, Yang M et al. Cyclosporin A impairs dendritic cell migration by regulating chemokine receptor expression and inhibiting cyclooxygenase-2 expression. Blood 2004; 103: 413–421.

    CAS  PubMed  Google Scholar 

  114. Rowe JM, Lazarus HM . Genetically haploidentical stem cell transplantation for acute leukemia. Bone Marrow Transplant 2001; 27: 669–676.

    CAS  PubMed  Google Scholar 

  115. Georges GE, Storb R . Review of ‘minitransplantation’: nonmyeloablative allogeneic hematopoietic stem cell transplantation. Int J Hematol 2003; 77: 3–14.

    PubMed  Google Scholar 

  116. Diaconescu R, Flowers CR, Storer B et al. Morbidity and mortality with nonmyeloablative compared with myeloablative conditioning before hematopoietic cell transplantation from HLA-matched related donors. Blood 2004; 104: 1550–1558.

    CAS  PubMed  Google Scholar 

  117. Maris M, Boeckh M, Storer B et al. Immunologic recovery after hematopoietic cell transplantation with nonmyeloablative conditioning. Exp Hematol 2003; 31: 941–952.

    CAS  PubMed  Google Scholar 

  118. Saito T, Kanda Y, Nakai K et al. Immune reconstitution following reduced-intensity transplantation with cladribine, busulfan, and antithymocyte globulin: serial comparison with conventional myeloablative transplantation. Bone Marrow Transplant 2003; 32: 601–608.

    CAS  PubMed  Google Scholar 

  119. Friedman TM, Varadi G, Hopely DD et al. Nonmyeloablative conditioning allows for more rapid T-cell repertoire reconstitution following allogeneic matched unrelated bone marrow transplantation compared to myeloablative approaches. Biol Blood Marrow Transplant 2001; 7: 656–664.

    CAS  PubMed  Google Scholar 

  120. Fukuda T, Boeckh M, Carter RA et al. Risks and outcomes of invasive fungal infections in recipients of allogeneic hematopoietic stem cell transplants after nonmyeloablative conditioning. Blood 2003; 102: 827–833.

    CAS  PubMed  Google Scholar 

  121. Junghanss C, Marr KA, Carter RA et al. Incidence and outcome of bacterial and fungal infections following nonmyeloablative compared with myeloablative allogeneic hematopoietic stem cell transplantation: a matched control study. Biol Blood Marrow Transplant 2002; 8: 512–520.

    PubMed  Google Scholar 

  122. Chakrabarti S, Mackinnon S, Chopra R et al. High incidence of cytomegalovirus infection after nonmyeloablative stem cell transplantation: potential role of Campath-1H in delaying immune reconstitution. Blood 2002; 99: 4357–4363.

    CAS  PubMed  Google Scholar 

  123. Lamb Jr LS, Gee AP, Henslee-Downey PJ et al. Phenotypic and functional reconstitution of peripheral blood lymphocytes following T cell-depleted bone marrow transplantation from partially mismatched related donors. Bone Marrow Transplant 1998; 21: 461–471.

    PubMed  Google Scholar 

  124. Hakim FT, Cepeda R, Kaimei S et al. Constraints on CD4 recovery postchemotherapy in adults: thymic insufficiency and apoptotic decline of expanded peripheral CD4 cells. Blood 1997; 90: 3789–3798.

    CAS  PubMed  Google Scholar 

  125. Lin MT, Tseng LH, Frangoul H et al. Increased apoptosis of peripheral blood T cells following allogeneic hematopoietic cell transplantation. Blood 2000; 95: 3832–3839.

    CAS  PubMed  Google Scholar 

  126. Zeller JC, Panoskaltsis-Mortari A, Murphy WJ et al. Induction of CD4+ T cell alloantigen-specific hyporesponsiveness by IL-10 and TGF-beta. J Immunol 1999; 163: 3684–3691.

    CAS  PubMed  Google Scholar 

  127. Perry GA, Jackson JD, Talmadge JE . Effects of a multidrug chemotherapy regimen on the thymus. Thymus 1994; 23: 39–51.

    CAS  PubMed  Google Scholar 

  128. Dumont-Girard F, Roux E, van Lier RA et al. Reconstitution of the T-cell compartment after bone marrow transplantation: restoration of the repertoire by thymic emigrants. Blood 1998; 92: 4464–4471.

    CAS  PubMed  Google Scholar 

  129. Douek DC, Vescio RA, Betts MR et al. Assessment of thymic output in adults after haematopoietic stem-cell transplantation and prediction of T-cell reconstitution. Lancet 2000; 355: 1875–1881.

    CAS  PubMed  Google Scholar 

  130. Tanaka J, Mielcarek M, Torok-Storb B . Impaired induction of the CD28-responsive complex in granulocyte colony-stimulating factor mobilized CD4 T cells. Blood 1998; 91: 347–352.

    CAS  PubMed  Google Scholar 

  131. Singh RK, Varney ML, Buyukberber S et al. Fas–FasL-mediated CD4+ T-cell apoptosis following stem cell transplantation. Cancer Res 1999; 59: 3107–3111.

    CAS  PubMed  Google Scholar 

  132. Talmadge JE, Singh R, Ino K et al. Mechanisms of immune dysfunction in stem cell transplantation. Int J Immunopharmacol 2000; 22: 1041–1056.

    CAS  PubMed  Google Scholar 

  133. Cayeux S, Meuer S, Pezzutto A et al. T-cell ontogeny after autologous bone marrow transplantation: failure to synthesize interleukin-2 (IL-2) and lack of CD2- and CD3-mediated proliferation by both CD4- and CD8+ cells even in the presence of exogeneous IL-2. Blood 1989; 74: 2270–2277.

    CAS  PubMed  Google Scholar 

  134. Jin NR, Lum LG, Buren EV et al. Signal transduction by B and T cells early after bone marrow transplantation: B cell calcium flux responses are intact whereas lack of CD4 cells accounts for impaired T cell responses. Bone Marrow Transplant 1995; 16: 103–109.

    CAS  PubMed  Google Scholar 

  135. Kuppner MC, Scharner A, Milani V et al. Ifosfamide impairs the allostimulatory capacity of human dendritic cells by intracellular glutathione depletion. Blood 2003; 102: 3668–3674.

    CAS  PubMed  Google Scholar 

  136. Gabrilovich D . Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 2004; 4: 941–952.

    CAS  PubMed  Google Scholar 

  137. Berd D, Sato T, Maguire Jr HC et al. Immunopharmacologic analysis of an autologous, hapten-modified human melanoma vaccine. J Clin Oncol 2004; 22: 403–415.

    CAS  PubMed  Google Scholar 

  138. Kearns GL, Abdel-Rahman SM, Alander SW et al. Developmental pharmacology – drug disposition, action, and therapy in infants and children. N Engl J Med 2003; 349: 1157–1167.

    CAS  PubMed  Google Scholar 

  139. Evans WE, McLeod HL . Pharmacogenomics – drug disposition, drug targets, and side effects. N Engl J Med 2003; 348: 538–549.

    CAS  PubMed  Google Scholar 

  140. Weinshilboum R . Inheritance and drug response. N Engl J Med 2003; 348: 529–537.

    PubMed  Google Scholar 

  141. Kallianpur AR . Genomic screening and complications of hematopoietic stem cell transplantation: has the time come? Bone Marrow Transplant 2005; 35: 1–16.

    CAS  PubMed  Google Scholar 

  142. Anderson Jr LD, Savary CA, Mullen CA . Immunization of allogeneic bone marrow transplant recipients with tumor cell vaccines enhances graft-versus-tumor activity without exacerbating graft-versus-host disease. Blood 2000; 95: 2426–2433.

    CAS  PubMed  Google Scholar 

  143. Fong L, Engleman EG . Dendritic cells in cancer immunotherapy. Annu Rev Immunol 2000; 18: 245–273.

    CAS  PubMed  Google Scholar 

  144. O'Neill DW, Adams S, Bhardwaj N . Manipulating dendritic cell biology for the active immunotherapy of cancer. Blood 2004; 104: 2235–2246.

    CAS  PubMed  Google Scholar 

  145. Velardi A, Ruggeri L, Moretta A et al. NK cells: a lesson from mismatched hematopoietic transplantation. Trends Immunol 2002; 23: 438–444.

    CAS  PubMed  Google Scholar 

  146. Margalit M, Ilan Y, Ohana M et al. Adoptive transfer of small numbers of DX5+ cells alleviates graft-versus-host disease in a murine model of semiallogeneic bone marrow transplantation: a potential role for NKT lymphocytes. Bone Marrow Transplant 2005; 35: 191–197.

    CAS  PubMed  Google Scholar 

  147. Kolb HJ, Schmid C, Barrett AJ, Schendel DJ . Graft-versus-leukemia reactions in allogeneic chimeras. Blood 2004; 103: 767–776.

    CAS  PubMed  Google Scholar 

  148. Milani V, Noessner E, Ghose S et al. Heat shock protein 70: role in antigen presentation and immune stimulation. Int J Hyperthermia 2002; 18: 563–575.

    CAS  PubMed  Google Scholar 

  149. Krieg AM . CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 2002; 20: 709–760.

    CAS  PubMed  Google Scholar 

  150. Weiner GJ, Liu HM, Wooldridge JE et al. Immunostimulatory oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in tumor antigen immunization. Proc Natl Acad Sci USA 1997; 94: 10833–10837.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Lonsdorf AS, Kuekrek H, Stern BV et al. Intratumor CpG-oligodeoxynucleotide injection induces protective antitumor T cell immunity. J Immunol 2003; 171: 3941–3946.

    CAS  PubMed  Google Scholar 

  152. Borrello I, Sotomayor EM, Rattis FM et al. Sustaining the graft-versus-tumor effect through posttransplant immunization with granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing tumor vaccines. Blood 2000; 95: 3011–3019.

    CAS  PubMed  Google Scholar 

  153. Arpinati M, Green CL, Heimfeld S et al. Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood 2000; 95: 2484–2490.

    CAS  PubMed  Google Scholar 

  154. Yu H, Fehniger TA, Fuchshuber P et al. Flt3 ligand promotes the generation of a distinct CD34(+) human natural killer cell progenitor that responds to interleukin-15. Blood 1998; 92: 3647–3657.

    CAS  PubMed  Google Scholar 

  155. Labeur MS, Roters B, Pers B et al. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. J Immunol 1999; 162: 168–175.

    CAS  PubMed  Google Scholar 

  156. Ohm JE, Shurin MR, Esche C et al. Effect of vascular endothelial growth factor and FLT3 ligand on dendritic cell generation in vivo. J Immunol 1999; 163: 3260–3268.

    CAS  PubMed  Google Scholar 

  157. Spitzer TR, McAfee S, Sackstein R et al. Intentional induction of mixed chimerism and achievement of antitumor responses after nonmyeloablative conditioning therapy and HLA-matched donor bone marrow transplantation for refractory hematologic malignancies. Biol Blood Marrow Transplant 2000; 6: 309–320.

    CAS  PubMed  Google Scholar 

  158. Sykes M, Preffer F, McAfee S et al. Mixed lymphohaemopoietic chimerism and graft-versus-lymphoma effects after non-myeloablative therapy and HLA-mismatched bone-marrow transplantation. Lancet 1999; 353: 1755–1759.

    CAS  PubMed  Google Scholar 

  159. Mapara MY, Kim YM, Wang SP et al. Donor lymphocyte infusions mediate superior graft-versus-leukemia effects in mixed compared to fully allogeneic chimeras: a critical role for host antigen-presenting cells. Blood 2002; 100: 1903–1909.

    CAS  PubMed  Google Scholar 

  160. Slavin S, Naparstek E, Nagler A et al. Allogeneic cell therapy with donor peripheral blood cells and recombinant human interleukin-2 to treat leukemia relapse after allogeneic bone marrow transplantation. Blood 1996; 87: 2195–2204.

    CAS  PubMed  Google Scholar 

  161. Nadal E, Fowler A, Kanfer E et al. Adjuvant interleukin-2 therapy for patients refractory to donor lymphocyte infusions. Exp Hematol 2004; 32: 218–223.

    CAS  PubMed  Google Scholar 

  162. Laport GG, Levine BL, Stadtmauer EA et al. Adoptive transfer of costimulated T cells induces lymphocytosis in patients with relapsed/refractory non-Hodgkin lymphoma following CD34+-selected hematopoietic cell transplantation. Blood 2003; 102: 2004–2013.

    CAS  PubMed  Google Scholar 

  163. Papanicolaou GA, Latouche JB, Tan C et al. Rapid expansion of cytomegalovirus-specific cytotoxic T lymphocytes by artificial antigen-presenting cells expressing a single HLA allele. Blood 2003; 102: 2498–2505.

    CAS  PubMed  Google Scholar 

  164. Szmania S, Galloway A, Bruorton M et al. Isolation and expansion of cytomegalovirus-specific cytotoxic T lymphocytes to clinical scale from a single blood draw using dendritic cells and HLA-tetramers. Blood 2001; 98: 505–512.

    CAS  PubMed  Google Scholar 

  165. Li CR, Greenberg PD, Gilbert MJ et al. Recovery of HLA-restricted cytomegalovirus (CMV)-specific T-cell responses after allogeneic bone marrow transplant: correlation with CMV disease and effect of ganciclovir prophylaxis. Blood 1994; 83: 1971–1979.

    CAS  PubMed  Google Scholar 

  166. Savoldo B, Heslop HE, Rooney CM . The use of cytotoxic t cells for the prevention and treatment of Epstein–Barr virus induced lymphoma in transplant recipients. Leukemia Lymphoma 2000; 39: 455–464.

    CAS  PubMed  Google Scholar 

  167. Gottschalk S, Heslop H, Rooney C . Adoptive immunotherapy for EBV-associated malignancies. Leukemia Lymphoma 2005; 46: 1–10.

    CAS  PubMed  Google Scholar 

  168. Bozza S, Perruccio K, Montagnoli C et al. A dendritic cell vaccine against invasive aspergillosis in allogeneic hematopoietic transplantation. Blood 2003; 102: 3807–3814.

    CAS  PubMed  Google Scholar 

  169. Ramadan G, Konings S, Kurup VP, Keever-Taylor CA . Generation of Aspergillus- and CMV-specific T-cell responses using autologous fast DC. Cytotherapy 2004; 6: 223–234.

    CAS  PubMed  Google Scholar 

  170. Sili U, Huls MH, Davis AR et al. Large-scale expansion of dendritic cell-primed polyclonal human cytotoxic T-lymphocyte lines using lymphoblastoid cell lines for adoptive immunotherapy. J Immunother 2003; 26: 241–256.

    PubMed  Google Scholar 

  171. Klingemann HG, Martinson J . Ex vivo expansion of natural killer cells for clinical applications. Cytotherapy 2004; 6: 15–22.

    PubMed  Google Scholar 

  172. Peng BG, Liang LJ, He Q et al. Expansion and activation of natural killer cells from PBMC for immunotherapy of hepatocellular carcinoma. World J Gastroenterol 2004; 10: 2119–2123.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Ruggeri L, Capanni M, Urbani E et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295: 2097–2100.

    CAS  PubMed  Google Scholar 

  174. Farag SS, Fehniger TA, Ruggeri L et al. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood 2002; 100: 1935–1947.

    CAS  PubMed  Google Scholar 

  175. Song SY, Kim HS . Strategies to improve dendritic cell-based immunotherapy against cancer. Yonsei Med J 2004; 45 (Suppl.): 48–52.

    PubMed  Google Scholar 

  176. Ghayur T, Seemayer TA, Lapp WS . Kinetics of natural killer cell cytotoxicity during the graft-versus-host reaction. Relationship between natural killer cell activity, T and B cell activity, and development of histopathological alterations. Transplantation 1987; 44: 254–260.

    CAS  PubMed  Google Scholar 

  177. Davies SM, Ruggieri L, DeFor T et al. Evaluation of KIR ligand incompatibility in mismatched unrelated donor hematopoietic transplants. Killer immunoglobulin-like receptor. Blood 2002; 100: 3825–3827.

    CAS  PubMed  Google Scholar 

  178. Hanash AM, Levy RB . Donor CD4+CD25+ T cells promote engraftment and tolerance following MHC mismatched hematopoietic cell transplantation. Blood 2005; 105: 1828–1836.

    CAS  PubMed  Google Scholar 

  179. Hoffmann P, Eder R, Kunz-Schughart LA et al. Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood 2004; 104: 895–903.

    CAS  PubMed  Google Scholar 

  180. Vigouroux S, Yvon E, Biagi E, Brenner MK . Antigen-induced regulatory T cells. Blood 2004; 104: 26–33.

    CAS  PubMed  Google Scholar 

  181. Clark FJ, Gregg R, Piper K et al. Chronic graft-versus-host disease is associated with increased numbers of peripheral blood CD4+CD25high regulatory T cells. Blood 2004; 103: 2410–2416.

    CAS  PubMed  Google Scholar 

  182. Coulombel L . Identification of hematopoietic stem/progenitor cells: strength and drawbacks of functional assays. Oncogene 2004; 23: 7210–7222.

    CAS  PubMed  Google Scholar 

  183. BitMansour A, Burns SM, Traver D et al. Myeloid progenitors protect against invasive aspergillosis and Pseudomonas aeruginosa infection following hematopoietic stem cell transplantation. Blood 2002; 100: 4660–4667.

    CAS  PubMed  Google Scholar 

  184. Billiau AD, Fevery S, Rutgeerts O et al. Transient expansion of Mac1+Ly6-G+Ly6-C+ early myeloid cells with suppressor activity in spleens of murine radiation marrow chimeras: possible implications for the graft-versus-host and graft-versus-leukemia reactivity of donor lymphocyte infusions. Blood 2003; 102: 740–748.

    CAS  PubMed  Google Scholar 

  185. Arber C, BitMansour A, Sparer TE et al. Common lymphoid progenitors rapidly engraft and protect against lethal murine cytomegalovirus infection after hematopoietic stem cell transplantation. Blood 2003; 102: 421–428.

    CAS  PubMed  Google Scholar 

  186. Deans RJ, Moseley AB . Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 2000; 28: 875–884.

    CAS  PubMed  Google Scholar 

  187. Peled A, Petit I, Kollet O et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 1999; 283: 845–848.

    CAS  PubMed  Google Scholar 

  188. Maitra B, Szekely E, Gjini K et al. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant 2004; 33: 597–604.

    CAS  PubMed  Google Scholar 

  189. Aggarwal S, Pittenger MF . Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

    CAS  PubMed  Google Scholar 

  190. Majumdar MK, Thiede MA, Mosca JD et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 1998; 176: 57–66.

    CAS  PubMed  Google Scholar 

  191. Zipori D . Mesenchymal stem cells: harnessing cell plasticity to tissue and organ repair. Blood Cells Mol Dis 2004; 33: 211–215.

    CAS  PubMed  Google Scholar 

  192. Le Blanc K, Rasmusson I, Sundberg B et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363: 1439–1441.

    PubMed  Google Scholar 

  193. Montagna D, Yvon E, Calcaterra V et al. Depletion of alloreactive T cells by a specific anti-interleukin-2 receptor p55 chain immunotoxin does not impair in vitro antileukemia and antiviral activity. Blood 1999; 93: 3550–3557.

    CAS  PubMed  Google Scholar 

  194. Przepiorka D, Kernan NA, Ippoliti C et al. Daclizumab, a humanized anti-interleukin-2 receptor alpha chain antibody, for treatment of acute graft-versus-host disease. Blood 2000; 95: 83–89.

    CAS  PubMed  Google Scholar 

  195. Ho VT, Zahrieh D, Hochberg E et al. Safety and efficacy of denileukin diftitox in patients with steroid-refractory acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Blood 2004; 104: 1224–1226.

    CAS  PubMed  Google Scholar 

  196. Alyea EP, Canning C, Neuberg D et al. CD8+ cell depletion of donor lymphocyte infusions using CD8 monoclonal antibody-coated high-density microparticles (CD8-HDM) after allogeneic hematopoietic stem cell transplantation: a pilot study. Bone Marrow Transplant 2004; 34: 123–128.

    CAS  PubMed  Google Scholar 

  197. Hsieh MH, Varadi G, Flomenberg N, Korngold R . Leucyl-leucine methyl ester-treated haploidentical donor lymphocyte infusions can mediate graft-versus-leukemia activity with minimal graft-versus-host disease risk. Biol Blood Marrow Transplant 2002; 8: 303–315.

    CAS  PubMed  Google Scholar 

  198. Rosenfeld CS, Thiele DL, Shadduck RK et al. Ex vivo purging of allogeneic marrow with L-leucyl-L-leucine methyl ester. A phase I study. Transplantation 1995; 60: 678–683.

    CAS  PubMed  Google Scholar 

  199. Ringhoffer M, Wiesneth M, Harsdorf S et al. CD34 cell selection of peripheral blood progenitor cells using the CliniMACS device for allogeneic transplantation: clinical results in 102 patients. Br J Haematol 2004; 126: 527–535.

    PubMed  Google Scholar 

  200. Bornhauser M, Platzbecker U, Theuser C et al. CD34+-enriched peripheral blood progenitor cells from unrelated donors for allografting of adult patients: high risk of graft failure, infection and relapse despite donor lymphocyte add-back. Br J Haematol 2002; 118: 1095–1103.

    PubMed  Google Scholar 

  201. Harris M . Monoclonal antibodies as therapeutic agents for cancer. Lancet Oncol 2004; 5: 292–302.

    CAS  PubMed  Google Scholar 

  202. Wasil T, Rai KR, Mehrotra B . The role of monoclonal antibodies in stem cell transplantation. Semin Oncol 2004; 31: 83–89.

    CAS  PubMed  Google Scholar 

  203. Kessinger A, Sharp JG . The whys and hows of hematopoietic progenitor and stem cell mobilization. Bone Marrow Transplant 2003; 31: 319–329.

    CAS  PubMed  Google Scholar 

  204. Chapoval AI, Tamada K, Chen L . In vitro growth inhibition of a broad spectrum of tumor cell lines by activated human dendritic cells. Blood 2000; 95: 2346–2351.

    CAS  PubMed  Google Scholar 

  205. Dale DC . Colony-stimulating factors for the management of neutropenia in cancer patients. Drugs 2002; 62 (Suppl. 1): 1–15.

    CAS  PubMed  Google Scholar 

  206. Joshi SS, Lynch JC, Pavletic SZ et al. Decreased immune functions of blood cells following mobilization with granulocyte colony-stimulating factor: association with donor characteristics. Blood 2001; 98: 1963–1970.

    CAS  PubMed  Google Scholar 

  207. Shurin MR, Esche C, Lotze MT . FLT3: receptor and ligand. Biology and potential clinical application. Cytokine Growth Factor Rev 1998; 9: 37–48.

    CAS  PubMed  Google Scholar 

  208. Maraskovsky E, Daro E, Roux E et al. In vivo generation of human dendritic cell subsets by Flt3 ligand. Blood 2000; 96: 878–884.

    CAS  PubMed  Google Scholar 

  209. Blazar BR, McKenna HJ, Panoskaltsis-Mortari A, Taylor PA . Flt3 ligand (FL) treatment of murine donors does not modify graft-versus-host disease (GVHD) but FL treatment of recipients post-bone marrow transplantation accelerates GVHD lethality. Biol Blood Marrow Transplant 2001; 7: 197–207.

    CAS  PubMed  Google Scholar 

  210. Teshima T, Reddy P, Lowler KP et al. Flt3 ligand therapy for recipients of allogeneic bone marrow transplants expands host CD8 alpha(+) dendritic cells and reduces experimental acute graft-versus-host disease. Blood 2002; 99: 1825–1832.

    CAS  PubMed  Google Scholar 

  211. Schwertschlag US, Trepicchio WL, Dykstra KH et al. Hematopoietic, immunomodulatory and epithelial effects of interleukin-11. Leukemia 1999; 13: 1307–1315.

    CAS  PubMed  Google Scholar 

  212. Hill GR, Cooke KR, Teshima T et al. Interleukin-11 promotes T cell polarization and prevents acute graft-versus-host disease after allogeneic bone marrow transplantation. J Clin Invest 1998; 102: 115–123.

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Antin JH, Lee SJ, Neuberg D et al. A phase I/II double-blind, placebo-controlled study of recombinant human interleukin-11 for mucositis and acute GVHD prevention in allogeneic stem cell transplantation. Bone Marrow Transplant 2002; 29: 373–377.

    CAS  PubMed  Google Scholar 

  214. Alpdogan O, Muriglan SJ, Kappel BJ et al. Insulin-like growth factor-I enhances lymphoid and myeloid reconstitution after allogeneic bone marrow transplantation. Transplantation 2003; 75: 1977–1983.

    CAS  PubMed  Google Scholar 

  215. Trinchieri G . Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003; 3: 133–146.

    CAS  PubMed  Google Scholar 

  216. Fehniger TA, Caligiuri MA . Interleukin 15: biology and relevance to human disease. Blood 2001; 97: 14–32.

    CAS  PubMed  Google Scholar 

  217. Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H . Interleukin-18 regulates both Th1 and Th2 responses. Annu Rev Immunol 2001; 19: 423–474.

    CAS  PubMed  Google Scholar 

  218. Chen W, Chan AS, Dawson AJ et al. FLT3 ligand administration after hematopoietic cell transplantation increases circulating dendritic cell precursors that can be activated by CpG oligodeoxynucleotides to enhance T-cell and natural killer cell function. Biol Blood Marrow Transplant 2005; 11: 23–34.

    CAS  PubMed  Google Scholar 

  219. Gri G, Chiodoni C, Gallo E et al. Antitumor effect of interleukin (IL)-12 in the absence of endogenous IFN-gamma: a role for intrinsic tumor immunogenicity and IL-15. Cancer Res 2002; 62: 4390–4397.

    CAS  PubMed  Google Scholar 

  220. Klebanoff CA, Finkelstein SE, Surman DR et al. IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc Natl Acad Sci USA 2004; 101: 1969–1974.

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Coughlin CM, Salhany KE, Wysocka M et al. Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis. J Clin Invest 1998; 101: 1441–1452.

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Peron JM, Esche C, Subbotin VM et al. FLT3-ligand administration inhibits liver metastases: role of NK cells. J Immunol 1998; 161: 6164–6170.

    CAS  PubMed  Google Scholar 

  223. Alpdogan O, Eng JM, Muriglan SJ et al. Interleukin-15 enhances immune reconstitution after allogeneic bone marrow transplantation. Blood 2005; 105: 865–873.

    CAS  PubMed  Google Scholar 

  224. Rutella S, Bonanno G, Pierelli L et al. Enhanced susceptibility to apoptosis in T cells recovering after autologous peripheral blood progenitor cell transplantation: reversal by interleukin-15. Cytokines Cell Mol Ther 2000; 6: 189–198.

    CAS  PubMed  Google Scholar 

  225. Min CK, Maeda Y, Lowler K et al. Paradoxical effects of interleukin-18 on the severity of acute graft-versus-host disease mediated by CD4+ and CD8+ T-cell subsets after experimental allogeneic bone marrow transplantation. Blood 2004; 104: 3393–3399.

    CAS  PubMed  Google Scholar 

  226. Carson WE, Dierksheide JE, Jabbour S et al. Coadministration of interleukin-18 and interleukin-12 induces a fatal inflammatory response in mice: critical role of natural killer cell interferon-gamma production and STAT-mediated signal transduction. Blood 2000; 96: 1465–1473.

    CAS  PubMed  Google Scholar 

  227. Nakamura S, Otani T, Ijiri Y et al. IFN-gamma-dependent and -independent mechanisms in adverse effects caused by concomitant administration of IL-18 and IL-12. J Immunol 2000; 164: 3330–3336.

    CAS  PubMed  Google Scholar 

  228. Nakamura H, Komatsu K, Ayaki M et al. Serum levels of soluble IL-2 receptor, IL-12, IL-18, and IFN-gamma in patients with acute graft-versus-host disease after allogeneic bone marrow transplantation. J Allergy Clin Immunol 2000; 106: S45–50.

    CAS  PubMed  Google Scholar 

  229. Papamichail M, Perez SA, Gritzapis AD, Baxevanis CN . Natural killer lymphocytes: biology, development, and function. Cancer Immunol Immunother 2004; 53: 176–186.

    PubMed  Google Scholar 

  230. Fry TJ, Mackall CL . Interleukin-7: from bench to clinic. Blood 2002; 99: 3892–3904.

    CAS  PubMed  Google Scholar 

  231. Porrata LF, Inwards DJ, Lacy MQ, Markovic SN . Immunomodulation of early engrafted natural killer cells with interleukin-2 and interferon-alpha in autologous stem cell transplantation. Bone Marrow Transplant 2001; 28: 673–680.

    CAS  PubMed  Google Scholar 

  232. Perruccio K, Bozza S, Montagnoli C et al. Prospects for dendritic cell vaccination against fungal infections in hematopoietic transplantation. Blood Cells Mol Dis 2004; 33: 248–255.

    CAS  PubMed  Google Scholar 

  233. Sparwasser T, Hultner L, Koch ES et al. Immunostimulatory CpG-oligodeoxynucleotides cause extramedullary murine hemopoiesis. J Immunol 1999; 162: 2368–2374.

    CAS  PubMed  Google Scholar 

  234. Klinman DM . Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol 2004; 4: 249–258.

    CAS  PubMed  Google Scholar 

  235. Ulevitch RJ . Therapeutics targeting the innate immune system. Nat Rev Immunol 2004; 4: 512–520.

    CAS  PubMed  Google Scholar 

  236. Hayashi F, Means TK, Luster AD . Toll-like receptors stimulate human neutrophil function. Blood 2003; 102: 2660–2669.

    CAS  PubMed  Google Scholar 

  237. Sabroe I, Prince LR, Jones EC et al. Selective roles for Toll-like receptor (TLR)2 and TLR4 in the regulation of neutrophil activation and life span. J Immunol 2003; 170: 5268–5275.

    CAS  PubMed  Google Scholar 

  238. Park Y, Lee SW, Sung YC . Cutting edge: CpG DNA inhibits dendritic cell apoptosis by up-regulating cellular inhibitor of apoptosis proteins through the phosphatidylinositide-3′-OH kinase pathway. J Immunol 2002; 168: 5–8.

    CAS  PubMed  Google Scholar 

  239. Hartmann G, Weiner GJ, Krieg AM . CpG DNA: a potent signal for growth, activation, and maturation of human dendritic cells. Proc Natl Acad Sci USA 1999; 96: 9305–9310.

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Bernasconi NL, Onai N, Lanzavecchia A . A role for Toll-like receptors in acquired immunity: up-regulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood 2003; 101: 4500–4504.

    CAS  PubMed  Google Scholar 

  241. Poeck H, Wagner M, Battiany J et al. Plasmacytoid dendritic cells, antigen, and CpG-C license human B cells for plasma cell differentiation and immunoglobulin production in the absence of T-cell help. Blood 2004; 103: 3058–3064.

    CAS  PubMed  Google Scholar 

  242. Fujiwara H, Arima N, Akasaki Y et al. Interferon-alpha therapy following autologous peripheral blood stem cell transplantation for adult T cell leukemia/lymphoma. Acta Haematol 2002; 107: 213–219.

    CAS  PubMed  Google Scholar 

  243. Toren A, Nagler A, Rozenfeld-Granot G et al. Amplification of immunological functions by subcutaneous injection of intermediate-high dose interleukin-2 for 2 years after autologous stem cell transplantation in children with stage IV neuroblastoma. Transplantation 2000; 70: 1100–1104.

    CAS  PubMed  Google Scholar 

  244. Vlk V, Eckschlager T, Kavan P et al. Clinical ineffectiveness of IL-2 and/or IFN alpha administration after autologous PBSC transplantation in pediatric oncological patients. Pediatr Hematol Oncol 2000; 17: 31–44.

    CAS  PubMed  Google Scholar 

  245. Sinha ML, Fry TJ, Fowler DH et al. Interleukin 7 worsens graft-versus-host disease. Blood 2002; 100: 2642–2649.

    CAS  PubMed  Google Scholar 

  246. Bruner RJ, Farag SS . Monoclonal antibodies for the prevention and treatment of graft-versus-host disease. Semin Oncol 2003; 30: 509–519.

    CAS  PubMed  Google Scholar 

  247. Devetten MP, Vose JM . Graft-versus-host disease: how to translate new insights into new therapeutic strategies. Biol Blood Marrow Transplant 2004; 10: 815–825.

    PubMed  Google Scholar 

  248. Wan T, Zhou X, Chen G et al. Novel heat shock protein Hsp70L1 activates dendritic cells and acts as a Th1 polarizing adjuvant. Blood 2004; 103: 1747–1754.

    CAS  PubMed  Google Scholar 

  249. Guinan EC, Boussiotis VA, Neuberg D et al. Transplantation of anergic histoincompatible bone marrow allografts. N Engl J Med 1999; 340: 1704–1714.

    CAS  PubMed  Google Scholar 

  250. Storb R, Yu C, Zaucha JM et al. Stable mixed hematopoietic chimerism in dogs given donor antigen, CTLA4Ig, and 100 cGy total body irradiation before and pharmacologic immunosuppression after marrow transplant. Blood 1999; 94: 2523–2529.

    CAS  PubMed  Google Scholar 

  251. Blazar BR, Taylor PA, Noelle RJ, Vallera DA . CD4(+) T cells tolerized ex vivo to host alloantigen by anti-CD40 ligand (CD40L:CD154) antibody lose their graft-versus-host disease lethality capacity but retain nominal antigen responses. J Clin Invest 1998; 102: 473–482.

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Taylor PA, Friedman TM, Korngold R et al. Tolerance induction of alloreactive T cells via ex vivo blockade of the CD40:CD40L costimulatory pathway results in the generation of a potent immune regulatory cell. Blood 2002; 99: 4601–4609.

    CAS  PubMed  Google Scholar 

  253. Marktel S, Magnani Z, Ciceri F et al. Immunologic potential of donor lymphocytes expressing a suicide gene for early immune reconstitution after hematopoietic T-cell-depleted stem cell transplantation. Blood 2003; 101: 1290–1298.

    CAS  PubMed  Google Scholar 

  254. Thomis DC, Marktel S, Bonini C et al. A Fas-based suicide switch in human T cells for the treatment of graft-versus-host disease. Blood 2001; 97: 1249–1257.

    CAS  PubMed  Google Scholar 

  255. Cyster JG . Chemokines and cell migration in secondary lymphoid organs. Science 1999; 286: 2098–2102.

    CAS  PubMed  Google Scholar 

  256. Cooke KR, Yanik G . Acute lung injury after allogeneic stem cell transplantation: is the lung a target of acute graft-versus-host disease? Bone Marrow Transplant 2004; 34: 753–765.

    CAS  PubMed  Google Scholar 

  257. Rossi D, Zlotnik A . The biology of chemokines and their receptors. Annu Rev Immunol 2000; 18: 217–242.

    CAS  PubMed  Google Scholar 

  258. Sallusto F, Palermo B, Lenig D et al. Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur J Immunol 1999; 29: 1617–1625.

    CAS  PubMed  Google Scholar 

  259. Sallusto F, Palermo B, Hoy A, Lanzavecchia A . The role of chemokine receptors in directing traffic of naive, type 1 and type 2 T cells. Curr Top Microbiol Immunol 1999; 246: 123–128, discussion 129.

    CAS  PubMed  Google Scholar 

  260. Murdoch C, Finn A . Chemokine receptors and their role in inflammation and infectious diseases. Blood 2000; 95: 3032–3043.

    CAS  PubMed  Google Scholar 

  261. Lapidot T, Petit I . Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 2002; 30: 973–981.

    CAS  PubMed  Google Scholar 

  262. Papayannopoulou T . Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood 2004; 103: 1580–1585.

    CAS  PubMed  Google Scholar 

  263. Fukuda S, Broxmeyer HE, Pelus LM . Flt3-ligand and the Flt3 receptor regulate hematopoietic cell migration by modulating the SDF-1{alpha}(CXCL12)/CXCR4 axis. Blood 2004; 23 December [Epub ahead of print].

  264. New JY, Li B, Koh WP et al. T cell infiltration and chemokine expression: relevance to the disease localization in murine graft-versus-host disease. Bone Marrow Transplant 2002; 29: 979–986.

    CAS  PubMed  Google Scholar 

  265. Balkwill F . Cancer and the chemokine network. Nat Rev Cancer 2004; 4: 540–550.

    CAS  PubMed  Google Scholar 

  266. Homey B, Muller A, Zlotnik A . Chemokines: agents for the immunotherapy of cancer? Nat Rev Immunol 2002; 2: 175–184.

    CAS  PubMed  Google Scholar 

  267. Forster R, Schubel A, Breitfeld D et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 1999; 99: 23–33.

    CAS  PubMed  Google Scholar 

  268. Sasaki M, Hasegawa H, Kohno M et al. Antagonist of secondary lymphoid-tissue chemokine (CCR ligand 21) prevents the development of chronic graft-versus-host disease in mice. J Immunol 2003; 170: 588–596.

    CAS  PubMed  Google Scholar 

  269. Hildebrandt GC, Corrion LA, Olkiewicz KM et al. Blockade of CXCR3 receptor:ligand interactions reduces leukocyte recruitment to the lung and the severity of experimental idiopathic pneumonia syndrome. J Immunol 2004; 173: 2050–2059.

    CAS  PubMed  Google Scholar 

  270. Murai M, Yoneyama H, Harada A et al. Active participation of CCR5(+)CD8(+) T lymphocytes in the pathogenesis of liver injury in graft-versus-host disease. J Clin Invest 1999; 104: 49–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Wysocki CA, Burkett SB, Panoskaltsis-Mortari A et al. Differential roles for CCR5 expression on donor T cells during graft-versus-host disease based on pretransplant conditioning. J Immunol 2004; 173: 845–854.

    CAS  PubMed  Google Scholar 

  272. Welniak LA, Wang Z, Sun K et al. An absence of CCR5 on donor cells results in acceleration of acute graft-versus-host disease. Exp Hematol 2004; 32: 318–324.

    CAS  PubMed  Google Scholar 

  273. Moore MA . Cytokine and chemokine networks influencing stem cell proliferation, differentiation, and marrow homing. J Cell Biochem Suppl 2002; 38: 29–38.

    PubMed  Google Scholar 

  274. Petrovic A, Alpdogan O, Willis LM et al. LPAM (alpha 4 beta 7 integrin) is an important homing integrin on alloreactive T cells in the development of intestinal graft-versus-host disease. Blood 2004; 103: 1542–1547.

    CAS  PubMed  Google Scholar 

  275. MacDonald KP, Rowe V, Filippich C et al. Donor pretreatment with progenipoietin-1 is superior to granulocyte colony-stimulating factor in preventing graft-versus-host disease after allogeneic stem cell transplantation. Blood 2003; 101: 2033–2042.

    CAS  PubMed  Google Scholar 

  276. Fry TJ, Sinha M, Milliron M et al. Flt3 ligand enhances thymic-dependent and thymic-independent immune reconstitution. Blood 2004; 104: 2794–2800.

    CAS  PubMed  Google Scholar 

  277. Rossi S, Blazar BR, Farrell CL et al. Keratinocyte growth factor preserves normal thymopoiesis and thymic microenvironment during experimental graft-versus-host disease. Blood 2002; 100: 682–691.

    CAS  PubMed  Google Scholar 

  278. Mackall CL, Fry TJ, Bare C et al. IL-7 increases both thymic-dependent and thymic-independent T-cell regeneration after bone marrow transplantation. Blood 2001; 97: 1491–1497.

    CAS  PubMed  Google Scholar 

  279. Panoskaltsis-Mortari A, Taylor PA, Rubin JS et al. Keratinocyte growth factor facilitates alloengraftment and ameliorates graft-versus-host disease in mice by a mechanism independent of repair of conditioning-induced tissue injury. Blood 2000; 96: 4350–4356.

    CAS  PubMed  Google Scholar 

  280. Krijanovski OI, Hill GR, Cooke KR et al. Keratinocyte growth factor separates graft-versus-leukemia effects from graft-versus-host disease. Blood 1999; 94: 825–831.

    CAS  PubMed  Google Scholar 

  281. Yunusov MY, Georges GE, Storb R et al. FLT3 ligand promotes engraftment of allogeneic hematopoietic stem cells without significant graft-versus-host disease. Transplantation 2003; 75: 933–940.

    CAS  PubMed  Google Scholar 

  282. Grzegorzewski KJ, Komschlies KL, Jacobsen SE et al. Mobilization of long-term reconstituting hematopoietic stem cells in mice by recombinant human interleukin 7. J Exp Med 1995; 181: 369–374.

    CAS  PubMed  Google Scholar 

  283. Abdul-Hai A, Or R, Slavin S et al. Stimulation of immune reconstitution by interleukin-7 after syngeneic bone marrow transplantation in mice. Exp Hematol 1996; 24: 1416–1422.

    CAS  PubMed  Google Scholar 

  284. Gallucci S, Matzinger P . Danger signals: SOS to the immune system. Curr Opin Immunol 2001; 13: 114–119.

    CAS  PubMed  Google Scholar 

  285. Srivastava P . Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2002; 2: 185–194.

    CAS  PubMed  Google Scholar 

  286. Pardoll DM . Spinning molecular immunology into successful immunotherapy. Nat Rev Immunol 2002; 2: 227–238.

    CAS  PubMed  Google Scholar 

  287. Goral J, Shenoy S, Mohanakumar T, Clancy Jr J . Antibodies to 70 and 90 kD heat shock proteins are associated with graft-versus-host disease in peripheral blood stem cell transplant recipients. Clin Exp Immunol 2002; 127: 553–559.

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Balkhy HH, Heinzel FP . Endotoxin fails to induce IFN-gamma in endotoxin-tolerant mice: deficiencies in both IL-12 heterodimer production and IL-12 responsiveness. J Immunol 1999; 162: 3633–3638.

    CAS  PubMed  Google Scholar 

  289. Wang JH, Doyle M, Manning BJ et al. Cutting edge: bacterial lipoprotein induces endotoxin-independent tolerance to septic shock. J Immunol 2003; 170: 14–18.

    CAS  PubMed  Google Scholar 

  290. Yadavalli GK, Auletta JJ, Gould MP et al. Deactivation of the innate cellular immune response following endotoxic and surgical injury. Exp Mol Pathol 2001; 71: 209–221.

    CAS  PubMed  Google Scholar 

  291. West MA, Heagy W . Endotoxin tolerance: a review. Crit Care Med 2002; 30: S64–S73.

    CAS  PubMed  Google Scholar 

  292. Shlomchik WD, Couzens MS, Tang CB et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 1999; 285: 412–415.

    CAS  PubMed  Google Scholar 

  293. Cooke KR, Gerbitz A, Crawford JM et al. LPS antagonism reduces graft-versus-host disease and preserves graft-versus-leukemia activity after experimental bone marrow transplantation. J Clin Invest 2001; 107: 1581–1589.

    CAS  PubMed  PubMed Central  Google Scholar 

  294. Roux E, Helg C, Dumont-Girard F et al. Analysis of T-cell repopulation after allogeneic bone marrow transplantation: significant differences between recipients of T-cell depleted and unmanipulated grafts. Blood 1996; 87: 3984–3992.

    CAS  PubMed  Google Scholar 

  295. Koc ON, Peters C, Aubourg P et al. Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp Hematol 1999; 27: 1675–1681.

    CAS  PubMed  Google Scholar 

  296. Awaya N, Rupert K, Bryant E et al. Failure of adult marrow-derived stem cells to generate marrow stroma after successful hematopoietic stem cell transplantation. Exp Hematol 2002; 30: 937–942.

    PubMed  Google Scholar 

  297. Wu BY, Guo KY, Song CY et al. Mixed chimera converted into full donor chimera with powerful graft-versus-leukemia effects but no graft-versus-host disease after non T cell-depleted HLA-mismatched peripheral blood stem cell transplantation. Bone Marrow Transplant 2000; 26: 691–693.

    CAS  PubMed  Google Scholar 

  298. Montagna D, Locatelli F, Moretta A et al. T lymphocytes of recipient origin may contribute to the recovery of specific immune response toward viruses and fungi in children undergoing cord blood transplantation. Blood 2004; 103: 4322–4329.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the important work of clinicians and basic science researchers whose efforts were not included in this review due to space limitations. In addition, we would like to thank Drs Pavan Reddy and David Porter for their critical review of this paper. Dr Auletta's research is supported by grants from the NIH (AI 57801) and the Center for Stem Cell and Regenerative Medicine at Case Western Reserve University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J J Auletta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auletta, J., Lazarus, H. Immune restoration following hematopoietic stem cell transplantation: an evolving target. Bone Marrow Transplant 35, 835–857 (2005). https://doi.org/10.1038/sj.bmt.1704966

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1704966

Keywords

This article is cited by

Search

Quick links