Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Treatment of bladder carcinomas using recombinant BCG DNA vaccines and electroporative gene immunotherapy

Abstract

Intravesical immunotherapy with live Mycobacterium bovis bacillus Calmette–Guérin (BCG) is the treatment of choice for superficial bladder cancers. Nevertheless, a significant proportion of patients do not respond to this therapy, and adverse effects are common. Here, we report the cloning of recombinant mycobacterial DNA vaccines and demonstrate the ability of multicomponent and multisubunit DNA vaccines to enhance Th1-polarized cytokine-mediated responses as well as effector cell responses. Splenocytes from immunized groups of mice were restimulated in vitro and examined for cytotoxicity against murine bladder tumur (MBT-2) cells. We used four combined recombinant BCG DNA vaccines (poly-rBCG) for electroporative gene immunotherapy (EPGIT) in vivo, and found that tumor growth was significantly inhibited and mouse survival was prolonged. Increased immune cell infiltration and induction of apoptosis were noted after treatment with poly-rBCG alone, with the murine interleukin-12 (mIL-12) vaccine alone, and—most significantly—with the poly-rBCG+mIL-12 vaccine combination. Electroporation of poly-rBCG+mIL-12 resulted in complete tumor eradication in seven of eight mice (P<.01) within 28 days. Thus, EPGIT using multicomponent multisubunit BCG is highly effective in the treatment of bladder cancer. This approach presents new possibilities for the treatment of bladder cancer using recombinant BCG DNA vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

BCG:

bacillus Calmette–Guérin

CBA:

cytometric bead array

CTL:

cytotoxic T lymphocyte

EPGIT:

electroporative gene immunotherapy

FITC:

fluorescein isothiocyanate

H&E:

haematoxylin and eosin

Igk:

immunoglobulin kappa

MBT-2:

murine bladder tumor

poly-rBCG:

four combined recombinant BCG DNA vaccines

TUNEL:

terminal dUTP nick-end labeling

References

  1. Morales A, Eidinger D, Bruce AW . Intracavitary Bacillus Calmette–Guerin in the treatment of superficial bladder tumors. J Urol. 1976;116:180–183.

    Article  CAS  PubMed  Google Scholar 

  2. Vegt PD, Witjes JA, Witjes WP, et al. A randomized study of intravesical mitomycin C, bacillus Calmette–Guerin Tice and bacillus Calmette–Guerin RIVM treatment in pTa-pT1 papillary carcinoma and carcinoma in situ of the bladder. J Urol. 1995;153:929–933.

    Article  CAS  PubMed  Google Scholar 

  3. Lamm DL . Carcinoma in situ. Urol Clin North Am. 1992;19:499–508.

    CAS  PubMed  Google Scholar 

  4. Suzuki S, Shinohara N, Harabayashi T, et al. Complications of bacillus Calmette–Guerin therapy in superficial urothelial cancer: clinical analysis and implications. Int J Clin Oncol. 2002;7:289–293.

    PubMed  Google Scholar 

  5. Patard JJ, Saint F, Velotti F, et al. Immune response following intravesical bacillus Calmette–Guerin instillations in superficial bladder cancer: a review. Urol Res. 1998;26:155–159.

    Article  CAS  PubMed  Google Scholar 

  6. Chin JL, Kadhim SA, Batislam E, et al. Mycobacterium cell wall: an alternative to intravesical bacillus Calmette Guerin (BCG) therapy in orthotopic murine bladder cancer. J Urol. 1996;156:1189–1193.

    Article  CAS  PubMed  Google Scholar 

  7. Morales A, Chin JL, Ramsey EW . Mycobacterial cell wall extract for treatment of carcinoma in situ of the bladder. J Urol. 2001;166:1633–1637.

    Article  CAS  PubMed  Google Scholar 

  8. Shapiro A, Ratliff TL, Oakley DM, et al. Reduction of bladder tumor growth in mice treated with intravesical Bacillus Calmette–Guerin and its correlation with Bacillus Calmette–Guerin viability and natural killer cell activity. Cancer Res. 1983;43:1611–1615.

    CAS  PubMed  Google Scholar 

  9. Kelley DR, Ratliff TL, Catalona WJ, et al. Intravesical bacillus Calmette–Guerin therapy for superficial bladder cancer: effect of bacillus Calmette–Guerin viability on treatment results. J Urol. 1985;134:48–53.

    Article  CAS  PubMed  Google Scholar 

  10. Bohle A, Thanhauser A, Ulmer AJ, et al. Dissecting the immunobiological effects of Bacillus Calmette–Guerin (BCG) in vitro: evidence of a distinct BCG-activated killer (BAK) cell phenomenon. J Urol. 1993;150:1932–1937.

    Article  CAS  PubMed  Google Scholar 

  11. Stricker P, Pryor K, Nicholson T, et al. Bacillus Calmette–Guerin plus intravesical interferon alpha-2b in patients with superficial bladder cancer. Urology. 1996;48:957–961.

    Article  CAS  PubMed  Google Scholar 

  12. Luo Y, Chen X, Downs TM, et al. IFN-alpha 2B enhances Th1 cytokine responses in bladder cancer patients receiving Mycobacterium bovis bacillus Calmette–Guerin immunotherapy. J Immunol. 1999;162:2399–2405.

    CAS  PubMed  Google Scholar 

  13. Clinton SK, Canto E, O'Donnell MA . Interleukin-12. Opportunities for the treatment of bladder cancer. Urol Clin North Am. 2000;27:147–155.

    Article  CAS  PubMed  Google Scholar 

  14. Stavropoulos NE, Hastazeris K, Filiadis I, et al. Intravesical instillations of interferon in the prophylaxis of high risk superficial bladder cancer–results of a controlled prospective study. Scand J Urol Nephrol. 2002;36:218–222.

    Article  CAS  PubMed  Google Scholar 

  15. O'onnell MA, DeWolf WC . Bacillus Calmette–Guerin immunotherapy for superficial bladder cancer. New prospects for an old warhorse. Surg Oncol Clin N Am. 1995;4:189–202.

    Article  Google Scholar 

  16. Alexandroff AB, Jackson AM, O’onnell MA, et al. BCG immunotherapy of bladder cancer: 20 years on. Lancet. 1999;353:1689–1694.

    Article  CAS  PubMed  Google Scholar 

  17. Zlotta AR, Van Vooren JP, Denis O, et al. What are the immunologically active components of bacille Calmette–-Guerin in therapy of superficial bladder cancer? Int J Cancer. 2000;87:844–852.

    Article  CAS  PubMed  Google Scholar 

  18. Lamm DL, Riggs DR, DeHaven JI, et al. Immunotherapy of murine bladder cancer by irradiated tumor vaccine. J Urol. 1991;145:195–198.

    Article  CAS  PubMed  Google Scholar 

  19. Nawrocki S, Mackiewicz A . Genetically modified tumor cell vaccines—where we are today. Cancer Treatment Rev. 1999;25:29–46.

    Article  CAS  Google Scholar 

  20. Brandau S, Bohle A . Therapy of bladder cancer with BCG: the mechanism behind a successful immunotherapy. Mod Asp Immunobiol. 2001;2:37–41.

    Google Scholar 

  21. Smith HA, Klinman DM . The regulation of DNA vaccines. Curr Opin Biotechnol. 2001;12:299–303.

    Article  CAS  PubMed  Google Scholar 

  22. Widera G, Austin M, Rabussay D, et al. Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J Immunol. 2000;164:4635–4640.

    Article  CAS  PubMed  Google Scholar 

  23. Wang HL, Tsai LY, Lee EH . Corticotropin-releasing factor produces a protein synthesis-dependent long-lasting potentiation in dentate gyrus neurons. J Neurophysiol. 2000;83:343–349.

    Article  CAS  PubMed  Google Scholar 

  24. Morimura M, Ishiko O, Sumi T, et al. Angiogenesis in adipose tissues and skeletal muscles with rebound weight-gain after diet-restriction in rabbits. Int J Mol Med. 2001;8:499–503.

    CAS  PubMed  Google Scholar 

  25. Gujral JS, Bucci TJ, Farhood A, et al. Mechanism of cell death during warm hepatic ischemia–reperfusion in rats: apoptosis or necrosis? Hepatology. 2001;33:397–405.

    Article  CAS  PubMed  Google Scholar 

  26. Delogu G, Li A, Repique C, et al. DNA vaccine combinations expressing either tissue plasminogen activator signal sequence fusion proteins or ubiquitin-conjugated antigens induce sustained protective immunity in a mouse model of pulmonary tuberculosis. Infect Immun. 2002;70:292–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Elliger SS, Elliger CA, Lang C, et al. Enhanced secretion and uptake of -glucuronidase improves adeno-associated viral-mediated gene therapy of mucopolysaccharidosis type VII mice. Mol Ther. 2002;5:617–626.

    Article  CAS  PubMed  Google Scholar 

  28. Velaz-Faircloth M, Cobb AJ, Horstman AL, et al. Protection against Mycobacterium avium by DNA vaccines expressing mycobacterial antigens as fusion proteins with green fluorescent protein. Infect Immun. 1999;67:4243–4250.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kalat M, Kupcu Z, Schuller S, et al. In vivo plasmid electroporation induces tumor antigen-specific CD8+ T-cell responses and delays tumor growth in a syngeneic mouse melanoma model. Cancer Res. 2002;62:5489–5494.

    CAS  PubMed  Google Scholar 

  30. Nishi T, Dev SB, Yoshizato K, et al. Treatment of cancer using pulsed electric field in combination with chemotherapeutic agents or genes. Hum Cell. 1997;10:81–86.

    CAS  PubMed  Google Scholar 

  31. Rols MP, Delteil C, Golzio M, et al. In vivo electrically mediated protein and gene transfer in murine melanoma. Nat Biotechnol. 1998;16:168–171.

    Article  CAS  PubMed  Google Scholar 

  32. Cayeux S, Beck C, Aicher A, et al. Tumor cells cotransfected with interleukin-7 and B7.1 genes induce CD25 and CD28 on tumor-infiltrating T lymphocytes and are strong vaccines. Eur J Immunol. 1995;25:2325–2331.

    Article  CAS  PubMed  Google Scholar 

  33. Wakimoto H, Abe J, Tsunoda R, et al. Intensified antitumor immunity by a cancer vaccine that produces granulocyte-macrophage colony-stimulating factor plus interleukin 4. Cancer Res. 1996;56:1828–1833.

    CAS  PubMed  Google Scholar 

  34. Kato K, Okumura K, Yagita H . Immunoregulation by B7 and IL-12 gene transfer. Leukemia. 1997;11:572–576.

    Article  PubMed  Google Scholar 

  35. Thanhauser A, Bohle A, Schneider B, et al. The induction of bacillus-Calmette–Guerin-activated killer cells requires the presence of monocytes and T-helper type-1 cells. Cancer Immunol Immunother. 1995;40:103–108.

    Article  CAS  PubMed  Google Scholar 

  36. Kuromatsu I, Matsuo K, Takamura S, et al. Induction of effective antitumor immune responses in a mouse bladder tumor model by using DNA of an antigen from mycobacteria. Cancer Gene Ther. 2001;8:483–490.

    Article  CAS  PubMed  Google Scholar 

  37. Geluk A, van Meijgaarden KE, Franken KL, et al. Identification of major epitopes of Mycobacterium tuberculosis AG85B that are recognized by HLA-A*0201-restricted CD8+ T cells in HLA-transgenic mice and humans. J Immunol. 2000;165:6463–6471.

    Article  CAS  PubMed  Google Scholar 

  38. Bennett SR, Carbone FR, Karamalis F, et al. Help for cytotoxic-T-cell responses is mediated by CD40 signaling. Nature. 1998;393:478–480.

    Article  CAS  PubMed  Google Scholar 

  39. Ridge JP, Di Rosa F, Matzinger P . A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature. 1998;393:474–478.

    Article  CAS  PubMed  Google Scholar 

  40. Korsmeyer SJ . Regulators of cell death. Trends Genet. 1995;11:101–105.

    Article  CAS  PubMed  Google Scholar 

  41. Reed JC . Bcl-2 and the regulation of programmed cell death. J Cell Biol. 1994;124:1–6.

    Article  CAS  PubMed  Google Scholar 

  42. Burke P, DeNardo SJ, Miers LA, et al. Cilengitide targeting of v 3 integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res. 2002;62:4263–4272.

    CAS  PubMed  Google Scholar 

  43. Cree IA, Nurbhai S, Milne G, et al. Cell death in granulomata: the role of apoptosis. J Clin Pathol. 1987;40:1314–1319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Molloy A, Laochumroonvorapong P, Kaplan G . Apoptosis, but not necrosis, of infected monocytes is coupled with killing of intracellular bacillus Calmette–Guerin. J Exp Med. 1994;180:1499–1509.

    Article  CAS  PubMed  Google Scholar 

  45. Cavallo F, Di Carlo E, Butera M, et al. Immune events associated with the cure of established tumors and spontaneous metastases by local and systemic interleukin 12. Cancer Res. 1999;59:414–421.

    CAS  PubMed  Google Scholar 

  46. Yamashita YI, Shimada M, Hasegawa H, et al. Electroporation-mediated interleukin-12 gene therapy for hepatocellular carcinoma in the mice model. Cancer Res. 2001;61:1005–1012.

    CAS  PubMed  Google Scholar 

  47. Lohr F, Lo DY, Zaharoff DA, et al. Effective tumor therapy with plasmid-encoded cytokines combined with in vivo electroporation. Cancer Res. 2001;61:3281–3284.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Science Council (NSC91-2314-B-016-097) and the Shuyuan Education and Academic Promotion Foundation. We thank professor Luke S Chang, Chun-Hsiung Huang, Ming-Kun Lai, and Guang-Huan Sun for their insightful comments. We are grateful to Dr Shan-Chih Lee and Ms Wen-Yi Ma for their technical assistance, Dr Lu Bie for the discussion with statistical analyses, Dr Jah-Fu Shyue for the microscope operation, and the staff of the National Defense Medical Center of Animal Center for assistance with the care of animals under challenging conditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dah-Shyong Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CF., Chang, SY., Hsieh, DS. et al. Treatment of bladder carcinomas using recombinant BCG DNA vaccines and electroporative gene immunotherapy. Cancer Gene Ther 11, 194–207 (2004). https://doi.org/10.1038/sj.cgt.7700658

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700658

Keywords

This article is cited by

Search

Quick links