Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Tumor cells cotransduced with B7.1 and γ-IFN induce effective rejection of established parental tumor

Abstract

Genetic modification of tumor cells with the gene for the B7.1 or with the genes for cytokines results in increased tumor cell immunogenicity. In the work reported here, immunization of naive animals with either B7.1 or γ-IFN gene-modified MCA106 tumor cells effectively protects the host from subsequent challenge with parental tumor. The same treatment fails to induce regression of established tumors, although tumor-specific CTL are generated in the tumor-bearing animals. In contrast, a large tumor burden of the MCA106 fibrosarcoma can be successfully eliminated by treatment with MCA106 tumor cells cotransduced with the B7.1 and γ-IFN genes. Antitumor immunity induced by the cotransductants is primarily dependent on CD8+ T cells and partly on CD4+ T cells and NK cells, and the enhanced therapeutic effect may be attributed to the in vivo increase of CTL precursors following treatment. The γ-IFN and B7.1 genes must be expressed on the same tumor cell for optimal therapeutic effect. Our results suggest that tumor vaccines with a potent immunoprotective effect do not necessarily have therapeutic potential and that weakly immunogenic tumors may be rendered highly immunogenic by cotransfection with the genes for B7.1 and γ-IFN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Mueller DL, Jenkins MK, Schwartz RH . Clonal expansion versus functional clonal inactivation: a costimulatory signaling pathway determines the outcome of T cell antigen receptor occupancy Annu Rev Immunol 1989 7: 445–480

    Article  CAS  PubMed  Google Scholar 

  2. Linsley PS, Ledberter JA . The role of the CD28 receptor during T cell responses to antigen Annu Rev Immunol 1993 11: 191–212

    Article  CAS  PubMed  Google Scholar 

  3. Schwartz RH . A cell culture model for T lymphocyte clonal anergy Science 1990 248: 1349–1356

    Article  CAS  PubMed  Google Scholar 

  4. Sharpe AH . Analysis of lymphocyte costimulation in vivo using transgenic and ‘knockout’ mice Curr Opin Immunol 1995 7: 389–395

    Article  CAS  PubMed  Google Scholar 

  5. Schwartz RH . Costimulation of T lymphocytes: the role of CD28, CTLA4, and B7/BB1 in interleukin-2 production and immunotherapy Cell 1992 71: 1065–1068

    Article  CAS  PubMed  Google Scholar 

  6. Chen L, Linsley PS, Hellstrom KE . Costimulation of T cells for tumor immunity Immunol Today 1993 14: 483–486

    Article  CAS  PubMed  Google Scholar 

  7. Chen L et al. Costimulation of antitumor immunity by the B7 counter receptor for the T lymphocyte molecules CD28 and CTLA-4 Cell 1992 71: 1093–1102

    Article  CAS  PubMed  Google Scholar 

  8. Townsend SE, Allison JP . Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells Science 1993 259: 368–370

    Article  CAS  PubMed  Google Scholar 

  9. Ramarathinam L, Castle M, Wu Y, Liu Y . T cell costimulation by B7/BB1 induces CD8 T cell-dependent tumor rejection: an important role of B7/BB1 in the induction, recruitment, and effector function of antitumor T cells J Exp Med 1994 179: 1205–1214

    Article  CAS  PubMed  Google Scholar 

  10. Baskar S et al. Constitutive expression of B7 restores immunogenicity of tumor cells expressing truncated MHC class IImolecules Proc Natl Acad Sci USA 1993 90: 5687–5690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li Y et al. Costimulation of tumor-reactive CD4+ and CD8+ T lymphocytes by B7, a natural ligand for CD28, can be used to treat established mouse melanoma J Immunol 1994 153: 421–428

    CAS  PubMed  Google Scholar 

  12. Chen L et al. Tumor immunogenicity determines the effect of B7 costimulation on T cell-mediated tumor immunity J Exp Med 1994 179: 523–532

    Article  CAS  PubMed  Google Scholar 

  13. Yang G, Hellstrom KE, Hellstrom I, Chen L . Antitumor immunity elicited by tumor cells transfected with B7–2, a second ligand for CD28/CTLA-4 costimulatory molecules J Immunol 1995 154: 2794–2800

    CAS  PubMed  Google Scholar 

  14. Mukherji D, Chakraborty NG . Immunobiology and immuno-therapy of melanoma. Curr Opin Oncol 1995; 7: 175–184

    Article  CAS  PubMed  Google Scholar 

  15. Seliger B, Maeurer MJ, Ferrone S . TAP off-tumors on Immunol Today 1997 18: 292–299

    CAS  PubMed  Google Scholar 

  16. Gattido F, Ruiz-Cabello F . MHC expression of human tumors: its relevance for local tumor growth and metastasis SeminCancer Biol 1991 2: 3–10

    Google Scholar 

  17. Ruiter D, Mattijssen V, Brooecker EB, Ferrone S . MHC antigens in human melanomas Semin Cancer Biol 1991 2: 35–45

    CAS  PubMed  Google Scholar 

  18. Ostrand-Rosenberg S, Cole GA, Nishimura MI, Clements VK . Transfection and expression of syngeneic H-2 genes does not reduce malignancy of H-2 negative teratocarcinoma cells in the autologous host Cell Immunol 1990 128: 152–164

    Article  CAS  PubMed  Google Scholar 

  19. Mandelboim O, Feldman M, Eisenbach L . H-2K double transfectants of tumor cells as antimetastatic cellular vaccines inheterozygous recipients. Implications for the T cell repertoire J Immunol 1992 148: 3666–3673

    CAS  PubMed  Google Scholar 

  20. Xu F, Carlos T, Khokha R, Gorelik E . Reduction of metastatic and adhesion properties and up-regulation of TIMP-1 in BL6 melanoma cells transfected with MHC class I genes Proc Am Assoc Cancer Res 1997 38: 166 (Abstr. 141)

    Google Scholar 

  21. Ostrand-Rosenberg S, Clements VK, Armstrong T, Pulaski B . Immunotherapy with class II-transfected tumor cells. Proc Am Assoc Cancer Res. 1997; 38: 346 (Abstr 2318)

  22. Yim JH, Marti W, Norton JA, Tsung K . Expression and antitumor effect of I-Ak by gene transfer into Sal sarcoma cells using a non-cytolytic recombinant vaccinia virus Proc Am Assoc Cancer Res 1997 38: 12 (Abstr. 79)

    Google Scholar 

  23. Dar MM et al. Immunological memory induced by genetically transduced tumor cells Ann Surg Oncol 1996 3: 247–254

    Article  CAS  PubMed  Google Scholar 

  24. Raes G et al. Immunogenization of a murine T-cell lymphoma via transfection with interferon-gamma Leukemia 1995 9 (Suppl.1): S121–S127

    Google Scholar 

  25. Lurquin C et al. Structure of the gene of tum- transplantation antigen p91A: the mutated exon encodes a peptide recognized with Ld by cytolytic T cells Cell 1989 58: 293–303

    Article  CAS  PubMed  Google Scholar 

  26. Hellstrom KE, Hellstrom I . Principles of tumor immunity: tumor antigens. In: De Vita VT Jr, Hellman S, Rosenberg SA (eds). Biologic Therapy of Cancer JB Lippincott Co: Philadelphia, 1991, p35

  27. Houghton AN . Cancer antigens: immune recognition of self and altered self J Exp Med 1994 180: 1–4

    Article  CAS  PubMed  Google Scholar 

  28. Boon T et al. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol 1994; 12: 337–365

    Article  CAS  PubMed  Google Scholar 

  29. Shu S, Rosenberg SA . Adoptive immunotherapy of newly induced murine sarcomas Cancer Res 1985 45: 1657–1662

    CAS  PubMed  Google Scholar 

  30. Liu Y, Janeway C . Cells that present both specific ligand and costimulatory activity are the most efficient inducers of clonal expansion of normal CD4 T cells. Proc Natl Acad Sci USA 1992; 89: 3845–3849

    Article  CAS  Google Scholar 

  31. Baskar S et al. Major histocompatibility complex class II+B7-1+ tumor cells are potent vaccines for stimulating tumor rejection in tumor-bearing mice J Exp Med 1995 181: 619–629

    Article  CAS  PubMed  Google Scholar 

  32. Schoenberger S et al. Efficient direct priming of tumor-specific cytotoxic T lymphocytes in vivo by an engineered APC Cancer Res 1998 58: 3094–3100

    CAS  PubMed  Google Scholar 

  33. Harding FA, Allison JP . CD28-B7 interactions allow the induction of CD8+ cytotoxic T lymphocytes in the absence of exogenous help J Exp Med 1993 177: 1791–1796

    Article  CAS  PubMed  Google Scholar 

  34. Nandi D, Gross JA, Allison JP . CD28-mediated costimulation is necessary for optimal proliferation of murine NK cells J Immunol 1994 152: 3361–3369

    CAS  PubMed  Google Scholar 

  35. Chen PW, Ananthaswamy HM . Rejection of K1735 murine melanoma in syngeneic hosts requires expression of MHC class I antigens and either class II antigens or IL-2 J Immunol 1993 151: 244–255

    CAS  PubMed  Google Scholar 

  36. Yang S, Darrow TL, Seigler HF . Generation of primary tumor specific CTL from autologous and HLA class I-matched allogeneic PBLs by B7 gene modified melanoma cells Cancer Res 1997 57: 1561–1568

    CAS  PubMed  Google Scholar 

  37. Iezzi G, Protti MP, Rugarli C, Bellone M . B7.1 expression on tumor cells circumvents the need of professional antigen presentation for in vitro propagation of cytotoxic T cell lines Cancer Res 1996 56: 11–15

    CAS  PubMed  Google Scholar 

  38. Fenton R, Turcovski-Corrales SM, Taub DD . Induction ofmelanoma antigen-specific cytotoxic T lymphocytes in vitro bystimulation with B7-expressing human melanoma cell J lines J Immunother 1998 21: 95–108

    Article  CAS  PubMed  Google Scholar 

  39. Cayeux S et al. Influence of gene-modified (IL-1, IL-4, and B7) tumor cell vaccines on tumor antigen presentation J Immunol 1997 158: 2834–2841

    CAS  PubMed  Google Scholar 

  40. Armstrong TD, Clements VK, Ostrand-Rosenberg S . MHC class II-transfected tumor cells directly present antigen to tumor-specific CD4+ T lymphocytes J Immunol 1998 160: 661–666

    CAS  PubMed  Google Scholar 

  41. Maric M et al. Maturation of cytotoxic T lymphocytes against a B7-transfected nonmetastatic tumor: a critical role of costimulation by B7 on both tumor and host antigen-presenting cells Cancer Res 1998 58: 3376–3384

    CAS  PubMed  Google Scholar 

  42. Huang AYC et al. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens Science 1994 264: 961–965

    Article  CAS  PubMed  Google Scholar 

  43. Freeman GJ et al. Structure, expression, and T cell costimulatory activity of the murine homologue of the human b lymphocyte activation antigen B7 J Exp Med 1991 174: 625–631

    Article  CAS  PubMed  Google Scholar 

  44. Lewis JA . Biological assays for interferons. In: Clemens MJ, Morris AG, Gearing AJH (eds). Lymphokines and Interferons: A Practical Approach IRL Press: Washington DC, 1987, p73

  45. Widmer MB, Voice RF, Conlon PJ, Grabstein KH . Precursor frequency and lytic specificity of interleukin 2 and interleukin 4-responsive murine lymphocytes Transplantation 1990 49: 743–748

    Article  CAS  PubMed  Google Scholar 

  46. Taswell C . Limiting dilution assays for the determination of immunocompetent cell frequencies J Immunol 1981 126: 1614–1619

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Vervaert, C., Seigler, H. et al. Tumor cells cotransduced with B7.1 and γ-IFN induce effective rejection of established parental tumor. Gene Ther 6, 253–262 (1999). https://doi.org/10.1038/sj.gt.3300820

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300820

Keywords

This article is cited by

Search

Quick links