Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Enhanced transgene expression in primitive hematopoietic progenitor cells and embryonic stem cells efficiently transduced by optimized retroviral hybrid vectors

Abstract

Oncoretroviral vectors have been successfully used in gene therapy trials, yet low transduction rates and loss of transgene expression are still major obstacles for their application. To overcome these problems we modified the widely used Moloney murine leukemia virus-derived retroviral vector pMX by replacing the 3′LTR with the spleen focus-forming virus LTR and inserting the woodchuck hepatitis B virus post-translational regulatory element. To compare requirements crucial for efficient transgene expression, we generated the hybrid retroviral vectors pMOWS and pOWS that harbor the complete murine embryonic stem cell virus (MESV)-leader sequence or a shortened MESV-leader not comprising primer binding site (PBS) and splice donor (SD). Applying these retroviral vectors significantly augmented transgene expression in hematopoietic cell lines and progenitor cells. For transduction of murine embryonic stem (ES) cells the retroviral vector pMOWS that harbors the MESV-PBS and -SD was superior resulting in 65% green fluorescent protein (GFP) expressing ES cells. Surprisingly, in murine and human primitive hematopoietic progenitor cells (HPC), the highest efficiency of up to 66% GFP expressing cells was achieved with pOWS, a retroviral vector that retains the negative regulatory element coinciding with the MoMuLV-PBS. In summary our hybrid retroviral vectors facilitate significantly improved transgene expression in multipotent cells and thus possess great potential for reconstituting genes in primary cells of disease models, as well as for gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cavazzano-Calvo M. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease Science 2000 288: 669 669

    Article  Google Scholar 

  2. Daly G., Chernajovsky Y. . Recent developments in retroviral-mediated gene transduction Mol Ther 2000 2: 423 423

    Article  CAS  PubMed  Google Scholar 

  3. Onishi M. et al. Applications of retrovirus-mediated expression cloning Exp Hematol 1996 24: 324 324

    CAS  PubMed  Google Scholar 

  4. Soudais C. et al. Stable and functional lymphoid reconstitution of common cytokine receptor γ chain deficient mice by retroviral-mediated gene transfer Blood 2000 95: 3071 3071

    CAS  PubMed  Google Scholar 

  5. Baum C. et al. Novel retroviral vectors for efficient expression of the multidrug resistance (mdr-1) gene in early hematopoietic cells J Virol 1995 69: 7541 7541

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Klug C.A., Cheshier S., Weissman I.L. . Inactivation of a GFP retrovirus occurs at multiple levels in long-term repopulating stem cells and their differentiated progeny Blood 2000 96: 894 894

    CAS  PubMed  Google Scholar 

  7. Cherry S.R. et al. Retroviral expression in embryonic stem cells and hematopoietic stem cells Mol Cell Biol 2000 20: 7419 7419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grez M., Akgün E., Hilberg F., Ostertag W. . Embryonic stem cell virus, a recombinant murine retrovirus with expression in embryonic stem cells Proc Natl Acad Sci USA 1990 87: 9202 9202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kempler G. et al. Characterization of the Moloney murine leukemia virus stem cell- specific repressor binding site Virology 1993 193: 690 690

    Article  CAS  PubMed  Google Scholar 

  10. Loh T.P., Sievert L.L., Scott R.W. . Evidence for a stem cell-specific repressor of Moloney murine leukemia virus expression in embryonal carcinoma cells Mol Cell Biol 1990 10: 4045 4045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baum C. et al. The potent enhancer activity of the polycythemic strain of spleen focus-forming virus in hematopoietic cells is governed by a binding site for Sp1 in the upstream control region and by a unique enhancer core motif, creating an exclusive target for PEBP/CBF J Virol 1997 71: 6323 6323

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hildinger M. et al. FMEV vectors: both retroviral long terminal repeat and leader are important for high expression in transduced hematopoietic cells Gene Therapy 1998 5: 1575 1575

    Article  CAS  PubMed  Google Scholar 

  13. Hildinger M., Abel K.L., Ostertag W., Baum C. . Design of 5’untranslated sequences in retroviral vectors developed for medical use J Virol 1999 73: 4083 4083

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zufferey R., Donello J.E., Trono D., Hope T.J. . Woodchuck hepatitis virus post-transcriptional regulatory element enhances expression of transgenes delivered by retroviral vectors J Virol 1999 73: 2886 2886

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Schambach A. et al. Context dependence of different modules for post-transcriptional enhancement of gene expression from retroviral vectors Mol Ther 2000 2: 435 435

    Article  CAS  PubMed  Google Scholar 

  16. Krall W.J. et al. Increased levels of spliced RNA account for augmented expression from the MFG retroviral vector in hematopoietic cells Gene Therapy 1995 3: 37 37

    Google Scholar 

  17. Huang Y., Wimler K.M., Carmichael G.G. . Intronless mRNA transport elements may affect multiple steps of pre-mRNA processing EMBO J 1999 18: 1642 1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pear W.S., Nolan G.P., Scott M.L., Baltimore D. . Production of high-titer helper-free retroviruses by transient transfection Proc Natl Acad Sci USA 1993 90: 8392 8392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Robbins P.B. et al. Consistent, persistent expression from modified retroviral vectors in murine hematopoietic stem cells Proc Natl Acad Sci USA 1998 95: 10182 10182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Laker C. et al. Host cis-mediated extinction of a retrovirus permissive for expression in embryonal stem cells during differentiation J Virol 1998 72: 339 339

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Robbins P.B. et al. Increased probability of expression from modified retroviral vectors in embryonal stem cells and embryonal carcinoma cells J Virol 1997 71: 9466 9466

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Osborne C.S. et al. Amelioration of retroviral vector silencing in locus control region beta-globin-transgenic mice and transduced F9 embryonic cells J Virol 1999 73: 5490 5490

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lei H. et al. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells Development 1996 122: 3195 3195

    CAS  PubMed  Google Scholar 

  24. Silke J. et al. Complex demethylation patterns at Sp1 binding sites in F9 embryonal carcinoma cells FEBS Lett 1995 370: 170 170

    Article  CAS  PubMed  Google Scholar 

  25. Glimm H. et al. Efficient serum-free retroviral gene transfer into primitive human hematopoietic progenitor cells by a defined high-titer, nonconcentrated vector-containing medium Hum Gene Ther 1998 9: 771 771

    Article  CAS  PubMed  Google Scholar 

  26. Dorrell C. et al. Expansion of human cord blood CD34+ CD38− cells in ex vivo culture during retroviral transduction without a corresponding increase in SCID repopulating cell (SRC) frequency: dissociation of SRC phenotype and function Blood 2000 95: 102 102

    CAS  PubMed  Google Scholar 

  27. Briones J. et al. Retroviral gene transfer into human hematopoietic cells: an in vitro kinetic study Haematologica 1999 84: 483 483

    CAS  PubMed  Google Scholar 

  28. Flasshove M. et al. Type and position of promoter elements in retroviral vectors have substantial effects on the expression level of an enhanced green fluorescent protein reporter gene J Cancer Res Clin Oncol 2000 126: 391 391

    Article  CAS  PubMed  Google Scholar 

  29. Fehse B. et al. CD34 splice variant: an attractive marker for selection of gene-modified cells Mol Ther 2000 1: 448 448

    Article  CAS  PubMed  Google Scholar 

  30. Limon A. et al. High-titer retroviral vectors containing the enhanced green fluorescent protein gene for efficient expression in hematopoietic cells Blood 1997 90: 3316 3316

    CAS  PubMed  Google Scholar 

  31. Wahlers M. et al. Influence of multiplicity of infection and protein stability on retroviral vector-mediated gene expression in hematopoietic cells Gene Ther 2001 8: 477 477

    Article  CAS  PubMed  Google Scholar 

  32. Arai T., Takada M., Ui M., Iba H. . Dose-dependent transduction of vesicular stomatitis virus G protein-pseudotyped retrovirus vector into human solid tumor cell lines and murine fibroblasts Virology 1999 260: 109 109

    Article  CAS  PubMed  Google Scholar 

  33. Chida D., Miura O., Yoshimura A., Miyajima A. . Role of cytokine signaling molecules in eryhtroid differentiation of mouse fetal liver hematopoietic cells: functional analysis of signaling molecules by retrovirus-mediated expression Blood 1999 93: 1567 1567

    CAS  PubMed  Google Scholar 

  34. Klingmüller U. et al. Identification of a novel pathway important for proliferation and differentiation of primary erythroid progenitors Proc Natl Acad Sci USA 1997 94: 3016 3016

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wu H. et al. Inactivation of erythropoietin leads to defects in cardiac morphogenesis Development 1999 126: 3597 3597

    CAS  PubMed  Google Scholar 

  36. Wu H. et al. Functional interaction of erythropoietin and stem cell factor receptors is essential for erythroid colony formation Proc Natl Acad Sci USA 1997 94: 1806 1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Christopher Baum (Heinrich-Pette-Institut für Experimentelle Virology und Immunologie, Universität Hamburg) for providing the retroviral vector pSFβ1, Dr Michael Nassal (Department of Internal Medicine II, University Hospital Freiburg) for supplying the woodchuck hepatitis virus vector pCWT, and Dr Albrecht Müller for providing antibodies against Ter119 and Gr1 and helpful advice with murine hematopoietic cell cultures. We are indebted to Dr Ira Swameye for helpful discussion, Melanie Wickert for technical assistance, and Dr Frank Reuss and Dr Randy Cassada for critically reading the manuscript. This work was supported by Sonderforschungsbereich 364 (Deutsche Forschungsgemeinschaft).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ketteler, R., Glaser, S., Sandra, O. et al. Enhanced transgene expression in primitive hematopoietic progenitor cells and embryonic stem cells efficiently transduced by optimized retroviral hybrid vectors. Gene Ther 9, 477–487 (2002). https://doi.org/10.1038/sj.gt.3301653

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301653

Keywords

This article is cited by

Search

Quick links