Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Cytosolic delivery of antisense oligonucleotides by listeriolysin O-containing liposomes

Abstract

Antisense oligodeoxynucleotides (ODNs) possess great potential as sequence-specific therapeutic agents. Sufficient concentrations of intact ODN must bypass membrane barriers and access the cytosol and nucleus, for ODNs to be therapeutically effective. A cytosolic delivery strategy was designed to improve the efficiency of ODN delivery in bone-marrow-derived macrophages. This liposome-based formulation utilizes listeriolysin O (LLO), the endosomolytic hemolysin from Listeria monocytogenes, to mediate the escape of ODN from endocytic compartments into the cytosol. To monitor the cytosolic delivery of ODN, subcellular trafficking of fluorescently labeled ODNs was visualized using epifluorescence microscopy. The expression of target protein and mRNA after delivery was measured using flow cytometry and Northern blot analysis, respectively. ODN specific for murine intercellular adhesion molecule-1 (ICAM-1) encapsulated in LLO-liposomes was released to the cytosol and trafficked to the nucleus, efficiently and specifically suppressing activation-induced expression of ICAM-1 at both protein and mRNA levels. Delivery without LLO resulted in sequestration of ODN in vesicular compartments leading to little inhibition of ICAM-1 expression, which supports the requirement of LLO for efficient cytosolic delivery using this system. The data clearly demonstrate that LLO-mediated escape of ODN from intracellular vesicles is an effective approach to achieve full therapeutic antisense activity in cultured macrophages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Crooke ST . Therapeutic applications of oligonucleotides. Annu Rev Pharmacol Toxicol 1992; 32: 329–376.

    Article  CAS  PubMed  Google Scholar 

  2. Mahato RI, Takakura Y, Hashida M . Development of targeted delivery systems for nucleic acid drugs. J Drug Target 1997; 4: 337–357.

    Article  CAS  PubMed  Google Scholar 

  3. Juliano RL et al. Antisense pharmacodynamics: critical issues in the transport and delivery of antisense oligonucleotides. Pharm Res 1999; 16: 494–502.

    Article  CAS  PubMed  Google Scholar 

  4. Lebedeva I, Stein C . Antisense oligonucleotides: promise and reality. Annu Rev Pharmacol Toxicol 2001; 41: 403–419.

    Article  CAS  PubMed  Google Scholar 

  5. Chin DJ et al. Rapid nuclear accumulation of injected oligodeoxyribonucleotides. New Biol 1990; 2: 1091–1100.

    CAS  PubMed  Google Scholar 

  6. Leonetti JP et al. Intracellular distribution of microinjected antisense oligonucleotides. Proc Natl Acad Sci USA 1991; 88: 2702–2706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bennett CF et al. Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides. Mol Pharmacol 1992; 41: 1023–1033.

    CAS  PubMed  Google Scholar 

  8. Nestle FO et al. Cationic lipid is not required for uptake and selective inhibitory activity of ICAM-1 phosphorothioate antisense oligonucleotides in keratinocytes. J Invest Dermatol 1994; 103: 569–575.

    Article  CAS  PubMed  Google Scholar 

  9. Dean NM, McKay R . Inhibition of protein kinase C-alpha expression in mice after systemic administration of phosphorothioate antisense oligodeoxynucleotides. Proc Natl Acad Sci USA 1994; 91: 11762–11766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stepkowski SM, Tu Y, Condon TP, Bennett CF . Blocking of heart allograft rejection by intercellular adhesion molecule-1 antisense oligonucleotides alone or in combination with other immunosuppressive modalities. J Immunol 1994; 153: 5336–5346.

    CAS  PubMed  Google Scholar 

  11. Kumasaka T et al. Role of the intercellular adhesion molecule-1 (ICAM-1) in endotoxin-induced pneumonia evaluated using ICAM-1 antisense oligonucleotides, anti-ICAM-1 monoclonal antibodies and ICAM-1 mutant mice. J Clin Invest 1996; 97: 2362–2369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bennett CF et al. An ICAM-1 antisense oligonucleotide prevents and reverses dextran sulfate sodium-induced colitis in mice. J Pharmacol Exp Ther 1997; 280: 988–1000.

    CAS  PubMed  Google Scholar 

  13. Stein CA . Controversies in the cellular pharmacology of oligodeoxynucleotides. Ciba Found Symp 1997; 209: 79–89; discussion 89–93.

    CAS  PubMed  Google Scholar 

  14. Butler M, Stecker K, Bennett CF . Cellular distribution of phosphorothioate oligodeoxynucleotides in normal rodent tissues. Lab Invest 1997; 77: 379–388.

    CAS  PubMed  Google Scholar 

  15. Bijsterbosch MK et al. In vivo fate of phosphorothioate antisense oligodeoxynucleotides: predominant uptake by scavenger receptors on endothelial liver cells. Nucleic Acids Res 1997; 25: 3290–3296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Henry SP et al. Correlation of toxicity and pharmacokinetic properties of a phosphorothioate oligonucleotide designed to inhibit ICAM-1. Toxicol Pathol 1999; 27: 95–100.

    Article  CAS  PubMed  Google Scholar 

  17. Lee KD, Oh YK, Portnoy DA, Swanson JA . Delivery of macromolecules into cytosol using liposomes containing hemolysin from Listeria monocytogenes. J Biol Chem 1996; 271: 7249–7252.

    Article  CAS  PubMed  Google Scholar 

  18. Mandal M, Lee KD . Listeriolysin O-liposome-mediated cytosolic delivery of macromolecule antigen in vivo: enhancement of antigen-specific cytotoxic T lymphocyte frequency, activity, and tumor protection. Biochim Biophys Acta 2002; 1563: 7–17.

    Article  CAS  PubMed  Google Scholar 

  19. Geoffroy C, Gaillard JL, Alouf JE, Berche P . Purification, characterization, and toxicity of the sulfhydryl-activated hemolysin listeriolysin O from Listeria monocytogenes. Infect Immun 1987; 55: 1641–1646.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Glomski IJ et al. The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells. J Cell Biol 2002; 156: 1029–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Decatur AL, Portnoy DA . A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science 2000; 290: 992–995.

    Article  CAS  PubMed  Google Scholar 

  22. Dustin ML et al. Induction by IL 1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J Immunol 1986; 137: 245–254.

    CAS  PubMed  Google Scholar 

  23. Goebeler M, Roth J, Kunz M, Sorg C . Expression of intercellular adhesion molecule-1 by murine macrophages is up-regulated during differentiation and inflammatory activation. Immunobiology 1993; 188: 159–171.

    Article  CAS  PubMed  Google Scholar 

  24. Springer TA . Adhesion receptors of the immune system. Nature 1990; 346: 425–434.

    Article  CAS  PubMed  Google Scholar 

  25. Katz SM et al. ICAM-1 antisense oligodeoxynucleotide improves islet allograft survival and function. Cell Transplant 2000; 9: 817–828.

    Article  CAS  PubMed  Google Scholar 

  26. Zeng Y et al. Inhibition of transplant rejection by pretreatment of xenogeneic pancreatic islet cells with anti-ICAM-1 antibodies. Transplantation 1994; 58: 681–689.

    Article  CAS  PubMed  Google Scholar 

  27. Zeng Y et al. Prolongation of human pancreatic islet xenografts by pretreatment of islets with anti-human ICAM-1 monoclonal antibody. Transplant Proc 1994; 26: 1120.

    CAS  PubMed  Google Scholar 

  28. Bennett CF et al. Inhibition of endothelial cell adhesion molecule expression with antisense oligonucleotides. J Immunol 1994; 152: 3530–3539.

    CAS  PubMed  Google Scholar 

  29. Stepkowski SM et al. Protection against allograft rejection with intercellular adhesion molecule-1 antisense oligodeoxynucleotides. Transplantation 1998; 66: 699–707.

    Article  CAS  PubMed  Google Scholar 

  30. Yacyshyn BR et al. A placebo-controlled trial of ICAM-1 antisense oligonucleotide in the treatment of Crohn's disease. Gastroenterology 1998; 114: 1133–1142.

    Article  CAS  PubMed  Google Scholar 

  31. Klimuk SK et al. Enhanced anti-inflammatory activity of a liposomal intercellular adhesion molecule-1 antisense oligodeoxynucleotide in an acute model of contact hypersensitivity. J Pharmacol Exp Ther 2000; 292: 480–488.

    CAS  PubMed  Google Scholar 

  32. Beauregard KE, Lee KD, Collier RJ, Swanson JA . pH-dependent perforation of macrophage phagosomes by listeriolysin O from Listeria monocytogenes. J Exp Med 1997; 186: 1159–1163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Anfossi G, Gewirtz AM, Calabretta B . An oligomer complementary to c-myb-encoded mRNA inhibits proliferation of human myeloid leukemia cell lines. Proc Natl Acad Sci USA 1989; 86: 3379–3383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Glover JM et al. Phase I safety and pharmacokinetic profile of an intercellular adhesion molecule-1 antisense oligodeoxynucleotide (ISIS 2302). J Pharmacol Exp Ther 1997; 282: 1173–1180.

    CAS  PubMed  Google Scholar 

  35. Butler M et al. Phosphorothioate oligodeoxynucleotides distribute similarly in class A scavenger receptor knockout and wild-type mice. J Pharmacol Exp Ther 2000; 292: 489–496.

    CAS  PubMed  Google Scholar 

  36. Yu RZ et al. Pharmacokinetics and pharmacodynamics of an antisense phosphorothioate oligonucleotide targeting Fas mRNA in mice. J Pharmacol Exp Ther 2001; 296: 388–395.

    CAS  PubMed  Google Scholar 

  37. Beltinger C et al. Binding, uptake, and intracellular trafficking of phosphorothioate-modified oligodeoxynucleotides. J Clin Invest 1995; 95: 1814–1823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Straubinger RM, Duzgunes N, Papahadjopoulos D . pH-sensitive liposomes mediate cytoplasmic delivery of encapsulated macromolecules. FEBS Lett 1985; 179: 148–154.

    Article  CAS  PubMed  Google Scholar 

  39. Chiang MY et al. Antisense oligonucleotides inhibit intercellular adhesion molecule 1 expression by two distinct mechanisms. J Biol Chem 1991; 266: 18162–18171.

    CAS  PubMed  Google Scholar 

  40. Monia BP, Johnston JF, Sasmor H, Cummins LL . Nuclease resistance and antisense activity of modified oligonucleotides targeted to Ha-ras. J Biol Chem 1996; 271: 14533–14540.

    Article  CAS  PubMed  Google Scholar 

  41. Higgins DE, Shastri N, Portnoy DA . Delivery of protein to the cytosol of macrophages using Escherichia coli K-12. Mol Microbiol 1999; 31: 1631–1641.

    Article  CAS  PubMed  Google Scholar 

  42. Harris RW, Sims PJ, Tweten RK . Kinetic aspects of the aggregation of Clostridium perfringens theta-toxin on erythrocyte membranes. A fluorescence energy transfer study. J Biol Chem 1991; 266: 6936–6941.

    CAS  PubMed  Google Scholar 

  43. Henry SP et al. Evaluation of the toxicity of ISIS 2302, a phosphorothioate oligonucleotide, in a 4-week study in CD-1 mice. Antisense Nucleic Acid Drug Dev 1997; 7: 473–481.

    Article  CAS  PubMed  Google Scholar 

  44. Racoosin EL, Swanson JA . Macropinosome maturation and fusion with tubular lysosomes in macrophages. J Cell Biol 1993; 121: 1011–1020.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Mary O'Riordan at the University of California, Berkeley, for performing RT-PCR to monitor IFN-β mRNA. Additional thanks are extended to Daniel Pothen for careful review of the manuscript, and members of the Lee lab, Daniel Portnoy, and Joel Swanson for support and helpful discussions. This work was supported by the Warner-Lambert/Parke-Davis and H Helfman Pharmacy fellowships, Vahlteich Research Fund at the University of Michigan, and by NIH Grants R29AI42084 and R01AI47173.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathew, E., Hardee, G., Bennett, C. et al. Cytosolic delivery of antisense oligonucleotides by listeriolysin O-containing liposomes. Gene Ther 10, 1105–1115 (2003). https://doi.org/10.1038/sj.gt.3301966

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301966

Keywords

This article is cited by

Search

Quick links