Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Inflammation and adaptive immune responses to adenoviral vectors injected into the brain: peculiarities, mechanisms, and consequences

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

References

  1. Kay MA, Glorioso JC, Naldini L . Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001; 7: 33–40.

    Article  CAS  PubMed  Google Scholar 

  2. Lowenstein PR, Castro MG . Progress and challenges in viral vector-mediated gene transfer to the brain. Curr Opin Mol Ther 2002; 4: 359–371.

    CAS  PubMed  Google Scholar 

  3. Medzhitov R, Janeway Jr CA . Decoding the patterns of self and nonself by the innate immune system. Science 2002; 296: 298–300.

    Article  CAS  PubMed  Google Scholar 

  4. Yewdell JW, Norbury CC, Bennink JR . Mechanisms of exogenous antigen presentation by MHC class I molecules in vitro and in vivo: implications for generating CD8+ T cell responses to infectious agents, tumors, transplants, and vaccines. Adv Immunol 1999; 73: 1–77.

    Article  CAS  PubMed  Google Scholar 

  5. Alcami A . Viral mimicry of cytokines, chemokines and their receptors. Nat Rev Immunol 2003; 3: 36–50.

    Article  CAS  PubMed  Google Scholar 

  6. Alcami A, Koszinowski UH . Viral mechanisms of immune evasion. Immunol Today 2000; 21: 447–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yewdell JW, Hill AB . Viral interference with antigen presentation. Nat Immunol 2002; 3: 1019–1025.

    Article  CAS  PubMed  Google Scholar 

  8. Tortorella D et al. Viral subversion of the immune system. Annu Rev Immunol 2000; 18: 861–926.

    Article  CAS  PubMed  Google Scholar 

  9. Oldstone MB . Travels along the viral-immunobiology highway. Immunol Rev 2002; 185: 54–68.

    Article  CAS  PubMed  Google Scholar 

  10. Zinkernagel RM . On differences between immunity and immunological memory. Curr Opin Immunol 2002; 14: 523–536.

    Article  CAS  PubMed  Google Scholar 

  11. Zinkernagel RM . Uncertainties – discrepancies in immunology. Immunol Rev 2002; 185: 103–125.

    Article  CAS  PubMed  Google Scholar 

  12. Lowenstein PR . Immunology of viral-vector-mediated gene transfer into the brain: an evolutionary and developmental perspective. Trends Immunol 2002; 23: 23–30.

    Article  CAS  PubMed  Google Scholar 

  13. Perry VH . A revised view of the central nervous system microenvironment and major histocompatibility complex class II antigen presentation. J Neuroimmunol 1998; 90: 113–21.

    Article  CAS  PubMed  Google Scholar 

  14. Shirai Y . On the transplantation of the rat sarcoma in adult heterogenous animals. Jpn Med World 1921; 1: 14–15.

    Google Scholar 

  15. Murphy JBS, E . Conditions determining the transplantability of tissues in the brain. J Exp Med 1923; 38: 183–97.

    Article  Google Scholar 

  16. Medawar PB . Immunity to homologous grafted skin. III. The fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 1948; 29: 58–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Byrnes AP, Rusby JE, Wood MJ, Charlton HM . Adenovirus gene transfer causes inflammation in the brain. Neuroscience 1995; 66: 1015–1024.

    Article  CAS  PubMed  Google Scholar 

  18. Wood MJ et al. Immune responses to adenovirus vectors in the nervous system. Trends Neurosci 1996; 19: 497–501.

    Article  CAS  PubMed  Google Scholar 

  19. Byrnes AP, MacLaren RE, Charlton HM . Immunological instability of persistent adenovirus vectors in the brain: peripheral exposure to vector leads to renewed inflammation, reduced gene expression, and demyelination. J Neurosci 1996; 16: 3045–3055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cartmell T et al. Interleukin-1 mediates a rapid inflammatory response after injection of adenoviral vectors into the brain. J Neurosci 1999; 19: 1517–1523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Byrnes AP, Wood MJ, Charlton HM . Role of T cells in inflammation caused by adenovirus vectors in the brain. Gene Therapy 1996; 3: 644–651.

    CAS  PubMed  Google Scholar 

  22. Chirmule N et al. Immune responses to adenovirus and adeno-associated virus in humans. Gene Therapy 1999; 6: 1574–1583.

    Article  CAS  PubMed  Google Scholar 

  23. Raper SE et al. A pilot study of in vivo liver-directed gene transfer with an adenoviral vector in partial ornithine transcarbamylase deficiency. Hum Gene Ther 2002; 13: 163–175.

    Article  CAS  PubMed  Google Scholar 

  24. Bruder JT, Kovesdi I . Adenovirus infection stimulates the Raf/MAPK signaling pathway and induces interleukin-8 expression. J Virol 1997; 71: 398–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Borgland SL et al. Adenovirus vector-induced expression of the C-X-C chemokine IP-10 is mediated through capsid-dependent activation of NF-kappaB. J Virol 2000; 74: 3941–3947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bowen GP et al. Adenovirus vector-induced inflammation: capsid-dependent induction of the C–C chemokine RANTES requires NF-kappa B. Hum Gene Ther 2002; 13: 367–379.

    Article  CAS  PubMed  Google Scholar 

  27. Muruve DA, Barnes MJ, Stillman IE, Libermann TA . Adenoviral gene therapy leads to rapid induction of multiple chemokines and acute neutrophil-dependent hepatic injury in vivo. Hum Gene Ther 1999; 10: 965–976.

    Article  CAS  PubMed  Google Scholar 

  28. Tibbles LA et al. Activation of p38 and ERK signaling during adenovirus vector cell entry lead to expression of the C-X-C chemokine IP-10. J Virol 2002; 76: 1559–1568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thomas CE et al. Acute direct adenoviral vector cytotoxicity and chronic but not acute inflammatory responses correlate with decreased vector-mediated transgene expression in the brain. Mol Ther 2001; 3: 36–46.

    Article  CAS  PubMed  Google Scholar 

  30. Thomas CE et al. Adenovirus binding to the coxsackievirus and adenovirus receptor or integrins is not required to elicit brain inflammation but is necessary to transduce specific neural cell types. J Virol 2002; 76: 3452–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thomas CE et al. Peripheral infection with adenovirus causes unexpected long-term brain inflammation in animals injected intracranially with first-generation, but not with high-capacity, adenovirus vectors: toward realistic long-term neurological gene therapy for chronic diseases. Proc Natl Acad Sci USA 2000; 97: 7482–7478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thomas CE et al. Preexisting antiadenoviral immunity is not a barrier to efficient and stable transduction of the brain, mediated by novel high-capacity adenovirus vectors. Hum Gene Ther 2001; 12: 839–846.

    Article  CAS  PubMed  Google Scholar 

  33. Kajiwara K et al. Humoral immune responses to adenovirus vectors in the brain. J Neuroimmunol 2000; 103: 8–15.

    Article  CAS  PubMed  Google Scholar 

  34. Thomas CE et al. Gene transfer into rat brain using adenoviral vectors. In: Gerfen JN, McKay R, Rogawski MA, Sibley DR, Skolnick P. (eds) Current Protocols in Neuroscience, John Wiley and Sons: New York, NY; 2000, pp 4.23.1-4.40.

    Google Scholar 

  35. Roelvink PW et al. Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 1999; 286: 1568–1571.

    Article  CAS  PubMed  Google Scholar 

  36. Wickham TJ . Targeting adenovirus. Gene Ther 2000; 7: 110–114.

    Article  CAS  PubMed  Google Scholar 

  37. Lassmann H . Classification of demyelinating diseases at the interface between etiology and pathogenesis. Curr Opin Neurol 2001; 14: 253–258.

    Article  CAS  PubMed  Google Scholar 

  38. Lucchinetti C et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000; 47: 707–717.

    Article  CAS  PubMed  Google Scholar 

  39. Coesmans M et al. Mechanisms underlying cerebellar motor deficits due to mGluR1-autoantibodies. Ann Neurol 2003; 53: 325–336.

    Article  CAS  PubMed  Google Scholar 

  40. Stuerzebecher S, Martin R . Neuroimmunology of multiple sclerosis and experimental allergic encephalomyelitis. Neuroimaging Clin N Am 2000; 10: 649–68,vii–viii.

    CAS  PubMed  Google Scholar 

  41. Matyszak MK, Perry VH . A comparison of leucocyte responses to heat-killed bacillus Calmette-Guerin in different CNS compartments. Neuropathol Appl Neurobiol 1996; 22: 44–53.

    Article  CAS  PubMed  Google Scholar 

  42. Matyszak MK, Perry VH . Bacillus Calmette-Guerin sequestered in the brain parenchyma escapes immune recognition. J Neuroimmunol 1998; 82: 73–80.

    Article  CAS  PubMed  Google Scholar 

  43. Stevenson PG, Austyn JM, Hawke S . Uncoupling of virus-induced inflammation and anti-viral immunity in the brain parenchyma. J Gen Virol 2002; 83: 1735–1743.

    Article  CAS  PubMed  Google Scholar 

  44. Stevenson PG, Bangham CR, Hawke S . Recruitment, activation and proliferation of CD8+ memory T cells in an immunoprivileged site. Eur J Immunol 1997; 27: 3259–3268.

    Article  CAS  PubMed  Google Scholar 

  45. Stevenson PG, Freeman S, Bangham CR, Hawke S . Virus dissemination through the brain parenchyma without immunologic control. J Immunol 1997; 159: 1876–1884.

    CAS  PubMed  Google Scholar 

  46. Stevenson PG, Hawke S, Sloan DJ, Bangham CR . The immunogenicity of intracerebral virus infection depends on anatomical site. J Virol 1997; 71: 145–151.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Newman TA et al. T-cell- and macrophage-mediated axon damage in the absence of a CNS-specific immune response: involvement of metalloproteinases. Brain 2001; 124: 2203–2214.

    Article  CAS  PubMed  Google Scholar 

  48. Harling-Berg CJ, Park TJ, Knopf PM . Role of the cervical lymphatics in the Th2-type hierarchy of CNS immune regulation. J Neuroimmunol 1999; 101: 111–127.

    Article  CAS  PubMed  Google Scholar 

  49. Cserr HF et al. Afferent and efferent arms of the humoral immune response to CSF-administered albumins in a rat model with normal bloodbrain barrier permeability. J Neuroimmunol 1992; 41: 195–202.

    Article  CAS  PubMed  Google Scholar 

  50. Carson MJ, Reilly CR, Sutcliffe JG, Lo D . Disproportionate recruitment of CD8+ T cells into the central nervous system by professional antigen-presenting cells. Am J Pathol 1999; 154: 481–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fischer HG, Bielinsky AK . Antigen presentation function of brain-derived dendriform cells depends on astrocyte help. Int Immunol 1999; 11: 1265–1274.

    Article  CAS  PubMed  Google Scholar 

  52. Fischer HG, Bonifas U, Reichmann G . Phenotype and functions of brain dendritic cells emerging during chronic infection of mice with Toxoplasma gondii. J Immunol 2000; 164: 4826–4834.

    Article  CAS  PubMed  Google Scholar 

  53. Fischer HG, Reichmann G . Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J Immunol 2001; 166: 2717–2726.

    Article  CAS  PubMed  Google Scholar 

  54. Lowe J et al. Microglial cells in human brain have phenotypic characteristics related to possible function as dendritic antigen presenting cells. J Pathol 1989; 159: 143–149.

    Article  CAS  PubMed  Google Scholar 

  55. Matyszak MK, Perry VH . The potential role of dendritic cells in immune-mediated inflammatory diseases in the central nervous system. Neuroscience 1996; 74: 599–608.

    Article  CAS  PubMed  Google Scholar 

  56. McMenamin PG . Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations. J Comp Neurol 1999; 405: 553–562.

    Article  CAS  PubMed  Google Scholar 

  57. Santambrogio L et al. Developmental plasticity of CNS microglia. Proc Natl Acad Sci USA 2001; 98: 6295–6300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Serafini B, Columba-Cabezas S, Di Rosa F, Aloisi F . Intracerebral recruitment and maturation of dendritic cells in the onset and progression of experimental autoimmune encephalomyelitis. Am J Pathol 2000; 157: 1991–2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vanderlugt CL, Miller SD . Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol 2002; 2: 85–95.

    Article  CAS  PubMed  Google Scholar 

  60. Tompkins SM, Fuller KG, Miller SD . Theiler's virus-mediated autoimmunity: local presentation of CNS antigens and epitope spreading. Ann N Y Acad Sci 2002; 958: 26–38.

    Article  CAS  PubMed  Google Scholar 

  61. Hart DN, Fabre JW . Demonstration and characterization of Ia-positive dendritic cells in the interstitial connective tissues of rat heart and other tissues, but not brain. J Exp Med 1981; 154: 347–361.

    Article  CAS  PubMed  Google Scholar 

  62. McMenamin MM et al. A gamma34.5 mutant of herpes simplex 1 causes severe inflammation in the brain. Neuroscience 1998; 83: 1225–1237.

    Article  CAS  PubMed  Google Scholar 

  63. Greber UF, Willetts M, Webster P, Helenius A . Stepwise dismantling of adenovirus 2 during entry into cells. Cell 1993; 75: 477–486.

    Article  CAS  PubMed  Google Scholar 

  64. Maione D et al. An improved helper-dependent adenoviral vector allows persistent gene expression after intramuscular delivery and overcomes preexisting immunity to adenovirus. Proc Natl Acad Sci USA 2001; 98: 5986–5991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Molinier-Frenkel V et al. Immune response to recombinant adenovirus in humans: capsid components from viral input are targets for vector-specific cytotoxic T lymphocytes. J Virol 2000; 74: 7678–7682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Smith CA, Woodruff LS, Kitchingman GR, Rooney CM . Adenovirus-pulsed dendritic cells stimulate human virus-specific T-cell responses in vitro. J Virol 1996; 70: 6733–6740.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kafri T et al. Cellular immune response to adenoviral vector infected cells does not require de novo viral gene expression: implications for gene therapy. Proc Natl Acad Sci USA 1998; 95: 11377–11382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang Y, Ertl HC, Wilson JM . MHC class I-restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E1-deleted recombinant adenoviruses. Immunity 1994; 1: 433–442.

    Article  CAS  PubMed  Google Scholar 

  69. Yang Y et al. Immune responses to viral antigens versus transgene product in the elimination of recombinant adenovirus-infected hepatocytes in vivo. Gene Therapy 1996; 3: 137–144.

    PubMed  Google Scholar 

  70. Yang Y et al. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA 1994; 91: 4407–4411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yang Y, Wilson JM . Clearance of adenovirus-infected hepatocytes by MHC class I-restricted CD4+ CTLs in vivo. J Immunol 1995; 155: 2564–2570.

    CAS  PubMed  Google Scholar 

  72. Wadsworth SC, Zhou H, Smith AE, Kaplan JM . Adenovirus vector-infected cells can escape adenovirus antigen-specific cytotoxic T-lymphocyte killing in vivo. J Virol 1997; 71: 5189–5196.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Guidotti LG, Chisari FV . Non-cytolytic control of viral infections by the innate and adaptive immune response. Annu Rev Immunol 2001; 19: 65–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Board of Governors at Cedars-Sinai Medical Center for their vision and very generous creation and funding of the GTRI. We would also like to thank Dr. Shlomo Melmed for his strong support of our program, Ms. Cheryl Cathcart for her first class administrative support, Mr. Danny Malaniak for his enthusiasm in dealing with the creation of a new place, Mrs. Semone Muslar for her excellent secretarial skills, and Mr. Nelson Jovel for the skillful and top quality editing and preparation of the figures and manuscript for publication. Work in the GTRI is funded by the NIH grants 1 RO1 NS42893 01 (to PRL), 1 RO1 NS44556 01 (to MGC) and U54 4 NS04-5309 (to PRL).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowenstein, P., Castro, M. Inflammation and adaptive immune responses to adenoviral vectors injected into the brain: peculiarities, mechanisms, and consequences. Gene Ther 10, 946–954 (2003). https://doi.org/10.1038/sj.gt.3302048

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302048

This article is cited by

Search

Quick links