Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Recombinant AAV-mediated gene transfer to the retina: gene therapy perspectives

Abstract

Retinal degenerative diseases such as retinal macular degeneration and retinitis pigmentosa constitute a broad group of diseases that all share one critical feature, the progressive apoptotic loss of cells in the retina. There is currently no effective treatment available by which the course of these disorders can be modified, and visual dysfunction often progresses to total blindness. Gene therapy represents an attractive approach to treating retinal degeneration because the eye is easily accessible and allows local application of therapeutic vectors with reduced risk of systemic effects. Furthermore, transgene expression within the retina and effects of treatments may be monitored by a variety of noninvasive examinations. An increasing number of strategies for molecular treatment of retinal disease rely on recombinant adeno-associated virus (rAAV) as a therapeutic gene delivery vector. Before rAAV-mediated gene therapy for retinal degeneration becomes a reality, there are a number of important requirements that include: (1) evaluation of different rAAV serotypes, (2) screening of vectors in large animals in order to ensure that they mediate safe and long-term gene expression, (3) appropriate regulation of therapeutic gene expression, (4) evaluation of vectors carrying a therapeutic gene in relevant animal models, (5) identification of suitable patients, and finally (6) manufacture of clinical grade vector. All these steps towards gene therapy are still being explored. Outcomes of these studies will be discussed in the order in which they occur, from vector studies to preclinical assessment of the therapeutic potential of rAAV in animal models of retinal degeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Snyder RO . Adeno-associated virus-mediated gene delivery. J Gene Med 1999; 1: 166–175.

    Article  CAS  PubMed  Google Scholar 

  2. Monahan PE, Samulski RJ . AAV vectors: is clinical success on the horizon? Gene Therapy 2000; 7: 24–30.

    Article  CAS  PubMed  Google Scholar 

  3. Xiao W et al. Gene therapy vectors based on adeno-associated virus type 1. J Virol 1999; 73: 3994–4003.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Muramatsu S et al. Nucleotide sequencing and generation of an infectious clone of adeno-associated virus 3. Virology 1996; 221: 208–217.

    Article  CAS  PubMed  Google Scholar 

  5. Chiorini JA et al. Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles. J Virol 1997; 71: 6823–6833.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chiorini JA et al. Cloning and characterization of adeno-associated virus type 5. J Virol 1999; 73: 1309–1319.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Rutledge EA, Halbert CL, Russell DW . Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J Virol 1998; 72: 309–319.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gao GP et al. Rep/Cap gene amplification and high-yield production of AAV in an A549 cell line expressing Rep/Cap. Mol Ther 2002; 5: 644–649.

    Article  CAS  PubMed  Google Scholar 

  9. Bohl D et al. Improvement of erythropoiesis in beta-thalassemic mice by continuous erythropoietin delivery from muscle. Blood 2000; 95: 2793–2798.

    CAS  PubMed  Google Scholar 

  10. Bosch A et al. Long-term and significant correction of brain lesions in adult mucopolysaccharidosis type VII mice using recombinant AAV vectors. Mol Ther 2000; 1: 63–70.

    Article  CAS  PubMed  Google Scholar 

  11. Daly TM et al. Neonatal gene transfer leads to widespread correction of pathology in a murine model of lysosomal storage disease. Proc Natl Acad Sci USA 1999; 96: 2296–2300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elliger SS et al. Elimination of lysosomal storage in brains of MPS VII mice treated by intrathecal administration of an adeno-associated virus vector. Gene Therapy 1999; 6: 1175–1178.

    Article  CAS  PubMed  Google Scholar 

  13. Jung SC et al. Adeno-associated viral vector-mediated gene transfer results in long-term enzymatic and functional correction in multiple organs of Fabry mice. Proc Natl Acad Sci USA 2001; 98: 2676–2681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Snyder RO et al. Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors. Nat Med 1999; 5: 64–70.

    Article  CAS  PubMed  Google Scholar 

  15. Wang B, Li J, Xiao X . Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci USA 2000; 97: 13714–13719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xiao X et al. Full functional rescue of a complete muscle (TA) in dystrophic hamsters by adeno-associated virus vector-directed gene therapy. J Virol 2000; 74: 1436–1442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ali RR et al. Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Hum Mol Genet 1996; 5: 591–594.

    Article  CAS  PubMed  Google Scholar 

  18. Ali RR et al. Adeno-associated virus gene transfer to mouse retina. Hum Gene Ther 1998; 9: 81–86.

    Article  CAS  PubMed  Google Scholar 

  19. Bennett J et al. Stable transgene expression in rod photoreceptors after recombinant adeno-associated virus-mediated gene transfer to monkey retina. Proc Natl Acad Sci USA 1999; 96: 9920–9925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dudus L et al. Persistent transgene product in retina, optic nerve and brain after intraocular injection of rAAV. Vis Res 1999; 39: 2545–2553.

    Article  CAS  PubMed  Google Scholar 

  21. Liang FQ et al. Long-term protection of retinal structure but not function using RAAV. CNTF in animal models of retinitis pigmentosa. Mol Ther 2001; 4: 461–472.

    Article  CAS  PubMed  Google Scholar 

  22. Guy J et al. Reporter expression persists 1 year after adeno-associated virus-mediated gene transfer to the optic nerve. Arch Ophthalmol 1999; 117: 929–937.

    Article  CAS  PubMed  Google Scholar 

  23. Folliot S et al. Sustained tetracycline-regulated transgene expression in vivo in rat ganglion cells using a single type 2 adeno-associated viral vector. J Gene Med 2003; 5: 493–501.

    Article  CAS  PubMed  Google Scholar 

  24. Auricchio A et al. Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum Mol Genet 2001; 10: 3075–3081.

    Article  CAS  PubMed  Google Scholar 

  25. Rabinowitz JE et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 2002; 76: 791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weber M et al. Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery. Mol Ther 2003; 7: 774–781.

    Article  CAS  PubMed  Google Scholar 

  27. Yang GS et al. Virus-mediated transduction of murine retina with adeno-associated virus: effects of viral capsid and genome size. J Virol 2002; 76: 7651–7660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bainbridge JW et al. Stable rAAV-mediated transduction of rod and cone photoreceptors in the canine retina. Gene Therapy 2003; 10: 1336–1344.

    Article  CAS  PubMed  Google Scholar 

  29. Lotery AJ et al. Adeno-associated virus type 5: transduction efficiency and cell-type specificity in the primate retina. Hum Gene Ther 2003; 14: 1663–1671.

    Article  CAS  PubMed  Google Scholar 

  30. Favre D et al. Immediate and long-term safety of recombinant adeno-associated virus injection into the nonhuman primate muscle. Mol Ther 2001; 4: 559–566.

    Article  CAS  PubMed  Google Scholar 

  31. Conrad CK et al. Safety of single-dose administration of an adeno-associated virus (AAV)-CFTR vector in the primate lung. Gene Therapy 1996; 3: 658–668.

    CAS  PubMed  Google Scholar 

  32. Hennig AK et al. Intravitreal gene therapy reduces lysosomal storage in specific areas of the CNS in mucopolysaccharidosis VII mice. J Neurosci 2003; 23: 3302–3307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Acland GM et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 2001; 28: 92–95.

    CAS  PubMed  Google Scholar 

  34. Narfstrom K et al. Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog. Invest Ophthalmol Vis Sci 2003; 44: 1663–1672.

    Article  PubMed  Google Scholar 

  35. Ali RR et al. Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat Genet 2000; 25: 306–310.

    Article  CAS  PubMed  Google Scholar 

  36. Smith AJ et al. AAV-mediated gene transfer slows photoreceptor loss in the RCS rat model of retinitis pigmentosa. Mol Ther 2003; 8: 188–195.

    Article  CAS  PubMed  Google Scholar 

  37. Lau D et al. Retinal degeneration is slowed in transgenic rats by AAV-mediated delivery of FGF-2. Invest Ophthalmol Vis Sci 2000; 41: 3622–3633.

    CAS  PubMed  Google Scholar 

  38. Green ES et al. Two animal models of retinal degeneration are rescued by recombinant adeno-associated virus-mediated production of fgf-5 and fgf-18. Mol Ther 2001; 3: 507–515.

    Article  CAS  PubMed  Google Scholar 

  39. McGee Sanftner LH et al. Glial cell line derived neurotrophic factor delays photoreceptor degeneration in a transgenic rat model of retinitis pigmentosa. Mol Ther 2001; 4: 622–629.

    Article  CAS  PubMed  Google Scholar 

  40. Rivera VM et al. A humanized system for pharmacologic control of gene expression. Nat Med 1996; 2: 1028–1032.

    Article  CAS  PubMed  Google Scholar 

  41. Ye X et al. Regulated delivery of therapeutic proteins after in vivo somatic cell gene transfer. Science 1999; 283: 88–91.

    Article  CAS  PubMed  Google Scholar 

  42. Serguera C et al. Control of erythropoietin secretion by doxycycline or mifepristone in mice bearing polymer-encapsulated engineered cells. Hum Gene Ther 1999; 10: 375–383.

    Article  CAS  PubMed  Google Scholar 

  43. No D, Yao TP, Evans RM . Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc Natl Acad Sci USA 1996; 93: 3346–3351.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gossen M, Bujard H . Tight control of gene expression in mammalian cells by tetracyclin-responsive promoters. Proc Natl Acad Sci USA 1992; 89: 5547–5551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gossen M et al. Transcriptional activation by tetracyclines in mammalian cells. Science 1995; 268: 1766–1769.

    Article  CAS  PubMed  Google Scholar 

  46. Auricchio A et al. Pharmacological regulation of protein expression from adeno-associated viral vectors in the eye. Mol Ther 2002; 6: 238.

    Article  CAS  PubMed  Google Scholar 

  47. Bohl D, Naffakh N, Heard J-M . Long-term control of erythropoietin secretion by doxycycline in mice transplanted with engineered primary myoblasts. Nat Med 1997; 3: 299–305.

    Article  CAS  PubMed  Google Scholar 

  48. Bohl D et al. Control of erythropoietin delivery by doxycyclin in mice after intramuscular injection of adeno-associated vector. Blood 1998; 92: 1512–1517.

    CAS  PubMed  Google Scholar 

  49. Favre D et al. Lack of immune response against the tetracycline-dependent transactivator correlates with long-term doxycycline-regulated transgene expression in nonhuman primates after intramuscular injection of recombinant adeno-associated virus. J Virol 2002; 76: 11605–11611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McGee Sanftner LH et al. Recombinant AAV-mediated delivery of a tet-inducible reporter gene to the rat retina. Mol Ther 2001; 3: 688–696.

    Article  CAS  PubMed  Google Scholar 

  51. Bainbridge JW et al. Hypoxia-regulated transgene expression in experimental retinal and choroidal neovascularization. Gene Therapy 2003; 10: 1049–1054.

    Article  CAS  PubMed  Google Scholar 

  52. Hafezi F et al. Molecular ophthalmology: an update on animal models for retinal degenerations and dystrophies. Br J Ophthalmol 2000; 84: 922–927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Witmer AN et al. Altered expression patterns of VEGF receptors in human diabetic retina and in experimental VEGF-induced retinopathy in monkey. Invest Ophthalmol Vis Sci 2002; 43: 849–857.

    PubMed  Google Scholar 

  54. Behling KC, Surace EM, Bennett J . Pigment epithelium-derived factor expression in the developing mouse eye. Mol Vis 2002; 8: 449–454.

    CAS  PubMed  Google Scholar 

  55. Chader GJ . PEDF: raising both hopes and questions in controlling angiogenesis. Proc Natl Acad Sci USA 2001; 98: 2122–2124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ciulla TA, Danis RP, Harris A . Age-related macular degeneration: a review of experimental treatments. Surv Ophthalmol 1998; 43: 134–146.

    Article  CAS  PubMed  Google Scholar 

  57. Krzystolik MG et al. Prevention of experimental choroidal neovascularization with intravitreal anti-vascular endothelial growth factor antibody fragment. Arch Ophthalmol 2002; 120: 338–346.

    Article  CAS  PubMed  Google Scholar 

  58. O’Reilly MS et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79: 315–328.

    Article  PubMed  Google Scholar 

  59. O’Reilly MS et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88: 277–285.

    Article  PubMed  Google Scholar 

  60. Stellmach V et al. Prevention of ischemia-induced retinopathy by the natural ocular antiangiogenic agent pigment epithelium-derived factor. Proc Natl Acad Sci USA 2001; 98: 2593–2597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Raisler BJ et al. Adeno-associated virus type-2 expression of pigmented epithelium-derived factor or Kringles 1-3 of angiostatin reduce retinal neovascularization. Proc Natl Acad Sci USA 2002; 99: 8909–8914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bainbridge JW et al. Inhibition of retinal neovascularisation by gene transfer of soluble VEGF receptor sFlt-1. Gene Therapy 2002; 9: 320–326.

    Article  CAS  PubMed  Google Scholar 

  63. Auricchio A et al. Inhibition of retinal neovascularization by intraocular viral-mediated delivery of antiangiogenic agents. Mol Ther 2002; 6: 490.

    Article  CAS  PubMed  Google Scholar 

  64. Mori K et al. AAV-mediated gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization. Invest Ophthalmol Vis Sci 2002; 43: 1994–2000.

    PubMed  Google Scholar 

  65. Lai YK et al. Potential long-term inhibition of ocular neovascularisation by recombinant adeno-associated virus-mediated secretion gene therapy. Gene Therapy 2002; 9: 804–813.

    Article  CAS  PubMed  Google Scholar 

  66. Phelan JK, Bok D . A brief review of retinitis pigmentosa and the identified retinitis pigmentosa genes. Mol Vis 2000; 6: 116–124.

    CAS  PubMed  Google Scholar 

  67. Chang GQ, Hao Y, Wong F . Apoptosis: final common pathway of photoreceptor death in rd, rds, and rhodopsin mutant mice. Neuron 1993; 11: 595–605.

    Article  CAS  PubMed  Google Scholar 

  68. Chaum E . Retinal neuroprotection by growth factors: a mechanistic perspective. J Cell Biochem 2003; 88: 57–75.

    Article  CAS  PubMed  Google Scholar 

  69. LaVail MM et al. Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest Ophthalmol Vis Sci 1998; 39: 592–602.

    CAS  PubMed  Google Scholar 

  70. Tao W et al. Encapsulated cell-based delivery of CNTF reduces photoreceptor degeneration in animal models of retinitis pigmentosa. Invest Ophthalmol Vis Sci 2002; 43: 3292–3298.

    PubMed  Google Scholar 

  71. Liang FQ et al. Aav-mediated delivery of ciliary neurotrophic factor prolongs photoreceptor survival in the rhodopsin knockout mouse. Mol Ther 2001; 3: 241–248.

    Article  CAS  PubMed  Google Scholar 

  72. Bok D et al. Effects of adeno-associated virus-vectored ciliary neurotrophic factor on retinal structure and function in mice with a P216L rds/peripherin mutation. Exp Eye Res 2002; 74: 719–735.

    Article  CAS  PubMed  Google Scholar 

  73. Schlichtenbrede FC et al. Intraocular gene delivery of ciliary neurotrophic factor results in significant loss of retinal function in normal mice and in the Prph2(Rd2/Rd2) model of retinal degeneration. Gene Therapy 2003; 10: 523–527.

    Article  CAS  PubMed  Google Scholar 

  74. Schlichtenbrede FC et al. Long-term evaluation of retinal function in Prph2Rd2/Rd2 mice following AAV-mediated gene replacement therapy. J Gene Med 2003; 5: 757–764.

    Article  CAS  PubMed  Google Scholar 

  75. Schlichtenbrede FC et al. Improvement of neuronal visual responses in the superior colliculus in Prph2(Rd2/Rd2) mice following gene therapy. Mol Cell Neurosci 2004; 25: 103–110.

    Article  CAS  PubMed  Google Scholar 

  76. Sarra GM et al. Gene replacement therapy in the retinal degeneration slow (rds) mouse: the effect on retinal degeneration following partial transduction of the retina. Hum Mol Genet 2001; 10: 2353–2361.

    Article  CAS  PubMed  Google Scholar 

  77. Gal A et al. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet 2000; 26: 270–271.

    Article  CAS  PubMed  Google Scholar 

  78. Vollrath D et al. Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk. Proc Natl Acad Sci USA 2001; 98: 12584–12589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Thompson DA, Gal A . Vitamin A metabolism in the retinal pigment epithelium: genes, mutations, and diseases. Prog Retin Eye Res 2003; 22: 683–703.

    Article  CAS  PubMed  Google Scholar 

  80. Thompson DA et al. Genetics and phenotypes of RPE65 mutations in inherited retinal degeneration. Invest Ophthalmol Vis Sci 2000; 41: 4293–4299.

    CAS  PubMed  Google Scholar 

  81. Lorenz B et al. Early-onset severe rod–cone dystrophy in young children with RPE65 mutations. Invest Ophthalmol Vis Sci 2000; 41: 2735–2742.

    CAS  PubMed  Google Scholar 

  82. Dejneka NS et al. In utero gene therapy rescues vision in a murine model of congenital blindness. Mol Ther 2004; 9: 182–188.

    Article  CAS  PubMed  Google Scholar 

  83. Cao W et al. In vivo protection of photoreceptors from light damage by pigment epithelium-derived factor. Invest Ophthalmol Vis Sci 2001; 42: 1646–1652.

    CAS  PubMed  Google Scholar 

  84. Dawson DW et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 1999; 285: 245–248.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge Robin Ali for critically reading and editing the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolling, F. Recombinant AAV-mediated gene transfer to the retina: gene therapy perspectives. Gene Ther 11 (Suppl 1), S26–S32 (2004). https://doi.org/10.1038/sj.gt.3302366

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302366

Keywords

This article is cited by

Search

Quick links