Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Strategies for CNS-directed gene delivery: in vivo gene transfer to the brain using SV40-derived vectors

Abstract

Gene transfer to the central nervous system (CNS) has been approached using various vectors. Recombinant SV40-derived vectors (rSV40s) transduce neurons and microglia effectively in vitro, so we tested rSV40s gene transfer to the CNS in vivo, and characterized the distribution, duration and cell types transduced. We used rSV40s carrying Human Immunodeficiency Virus Type 1 Net protein (HIV-1 Nef) with a C-terminal FLAG epitope tag as a marker, and another with Cu/Zn superoxide dismutase (SOD1). Rats were given vectors stereotaxically, either intraparenchymally into the caudate-putamen (CP) or into the lateral ventricle (LV). FLAG expression was studied for 3 months by immunostaining serial brain sections. After intraparenchymal administration, numerous transgene-expressing cells were seen, many as far as 4 mm from the injection site. Transgene expression remained strong throughout the 3-month study period. Coimmunostaining for lineage markers showed that neurons and, more rarely, microglial cells were tranduced, except astrocytes and oligodendroglia. After injection into the LV, high levels of transgene expression were detected throughout the frontal cortex by Western analysis. Systemic mannitol-induced hyperosmolarity further augmented LV transgene delivery. SV40-derived vectors may, thus, be useful for long-term gene expression in the brain, whether locally by intraparenchymal administration or diffusely by intraventricular injection, with or without mannitol.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Betz AL, Shakui P, Davidson BL . Gene transfer to rodent brain with recombinant adenoviral vectors: effects of infusion parameters, infectious titer, and virus concentration on transduction volume. Exp Neurol 1998; 150: 136–142.

    Article  CAS  Google Scholar 

  2. Akli S, Caillaud C, Vigne E, Stratford-Perricaudet LD, Poenaru L, Perricaudet M et al. Transfer of a foreign gene into the brain using adenovirus vectors. Nat Genet 1993; 3: 224–228.

    Article  CAS  Google Scholar 

  3. Wu P, Phillips MI, Bui J, Terwilliger EF . Adeno-associated virus vector-mediated transgene integration into neurons and other nondividing cell targets. J Virol 1998; 72: 5919–5926.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. McCown TJ, Xiao X, Li J, Breese GR, Samulski RJ . Differential and persistent expression patterns of CNS gene transfer by an adeno-associated virus (AAV) vector. Brain Res 1996; 713: 99–107.

    Article  CAS  Google Scholar 

  5. Naldini L, Blomer U, Gage FH, Trono D, Verma IM . Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 1996; 93: 11382–11388.

    Article  CAS  Google Scholar 

  6. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  Google Scholar 

  7. Mandel RJ, Rendahl KG, Spratt SK, Snyder RO, Cohen LK, Leff SE . Characterization of intrastriatal recombinant adeno-associated virus-mediated gene transfer of human tyrosine hydroxylase and human GTP-cyclohydrolase I in a rat model of Parkinson's disease. J Neurosci 1998; 18: 4271–4284.

    Article  CAS  Google Scholar 

  8. Watson DJ, Kobinger GP, Passini MA, Wilson JM, Wolfe JH . Targeted transduction patterns in the mouse brain by lentivirus vectors pseudotyped with VSV, Ebola, Mokola, LCMV, or MuLV envelope proteins. Mol Ther 2002; 5: 528–537.

    Article  CAS  Google Scholar 

  9. Latchman DS, Coffin RS . Viral vectors for gene therapy in Parkinson's disease. Rev Neurosci 2001; 12: 69–78.

    Article  CAS  Google Scholar 

  10. Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science 2000; 290: 767–773.

    Article  CAS  Google Scholar 

  11. Bosch A, Perret E, Desmaris N, Trono D, Heard JM . Reversal of pathology in the entire brain of mucopolysaccharidosis type VII mice after lentivirus-mediated gene transfer. Hum Gene Therapy 2000; 11: 1139–1150.

    Article  CAS  Google Scholar 

  12. Daly TM, Vogler C, Levy B, Haskins ME, Sands MS . Neonatal gene transfer leads to widespread correction of pathology in a murine model of lysosomal storage disease. Proc Natl Acad Sci USA 1999; 96: 2296–2300.

    Article  CAS  Google Scholar 

  13. Taylor RM, Wolfe JH . Decreased lysosomal storage in the adult MPS VII mouse brain in the vicinity of grafts of retroviral vector-corrected fibroblasts secreting high levels of beta-glucuronidase. Nat Med 1997; 3: 771–774.

    Article  CAS  Google Scholar 

  14. Skorupa AF, Fisher KJ, Wilson JM, Parente MK, Wolfe JH . Sustained production of beta-glucuronidase from localized sites after AAV vector gene transfer results in widespread distribution of enzyme and reversal of lysosomal storage lesions in a large volume of brain in mucopolysaccharidosis VII mice. Exp Neurol 1999; 160: 17–27.

    Article  CAS  Google Scholar 

  15. Strayer DS, Pomerantz RJ, Yu M, Rosenzweig M, Bouhamdan M, Yurasov S et al. Efficient gene transfer to hematopoietic progenitor cells using SV40-derived vectors. Gene Therapy 2000; 7: 886–895.

    Article  CAS  Google Scholar 

  16. Strayer DS . SV40 as an effective gene transfer vector in vivo. J Biol Chem 1996; 271: 24741–24746.

    CAS  PubMed  Google Scholar 

  17. Strayer DS, Kondo R, Milano J, Duan LX . Use of SV40-based vectors to transduce foreign genes to normal human peripheral blood mononuclear cells. Gene Therapy 1997; 4: 219–225.

    Article  CAS  Google Scholar 

  18. Cordelier P, Calarota SA, Pomerantz RJ, Xiaoshan J, Strayer DS . Inhibition of HIV-1 in the central nervous system by IFN-alpha2 delivered by an SV40 vector. J Interferon Cytokine Res 2003; 23: 477–488.

    Article  CAS  Google Scholar 

  19. Cordelier P, Van Bockstaele E, Calarota SA, Strayer DS . Inhibiting AIDS in the central nervous system: gene delivery to protect neurons from HIV. Mol Ther 2003; 7: 801–810.

    Article  CAS  Google Scholar 

  20. Cordelier P, Strayer D . Using gene delivery to protect HIV-susceptible CNS cells: inhibiting HIV replication in microglia. Virus Res 2006; 118: 87–97.

    Article  CAS  Google Scholar 

  21. Yang Y, Haecker SE, Su Q, Wilson JM . Immunology of gene therapy with adenoviral vectors in mouse skeletal muscle. Hum Mol Genet 1996; 5: 1703–1712.

    Article  CAS  Google Scholar 

  22. Yang Y, Su Q, Grewal IS, Schilz R, Flavell RA, Wilson JM . Transient subversion of CD40 ligand function diminishes immune responses to adenovirus vectors in mouse liver and lung tissues. J Virol 1996; 70: 6370–6377.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cao H, Koehler DR, Hu J . Adenoviral vectors for gene replacement therapy. Viral Immunol 2004; 17: 327–333.

    Article  CAS  Google Scholar 

  24. Kaplitt MG, Leone P, Samulski RJ, Xiao X, Pfaff DW, O'Malley KL et al. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet 1994; 8: 148–154.

    Article  CAS  Google Scholar 

  25. Davidson BL, Stein CS, Heth JA, Martins I, Kotin RM, Derksen TA et al. Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci USA 2000; 97: 3428–3432.

    Article  CAS  Google Scholar 

  26. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM . Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 11854–11859.

    Article  CAS  Google Scholar 

  27. Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S et al. Recombinant AAV viral vectors pesudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 2004; 10: 302–317.

    Article  CAS  Google Scholar 

  28. Fu H, Muenzer J, Samulski RJ, Breese G, Sifford J, Zeng X et al. Self-complementary adeno-associated virus serotype 2 vector: global distribution and broad dispersion of AAV-mediated transgene expression in mouse brain. Mol Ther 2003; 6: 911–917.

    Article  Google Scholar 

  29. Passini MA, Wolfe JH . Widespread gene delivery and structure-specific patterns of expression in the brain after intraventricular injections of neonatal mice with an adeno-associated virus vector. J Virol 2001; 75: 12382–12392.

    Article  CAS  Google Scholar 

  30. Miller DG, Adam MA, Miller AD . Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 1990; 10: 4239–4242.

    Article  CAS  Google Scholar 

  31. Blomer U, Naldini L, Kafri T, Trono D, Verma IM, Gage FH . Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol 1997; 71: 6641–6649.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Duan YY, Wu J, Zhu JL, Liu SL, Ozaki I, Strayer DS et al. Gene therapy for human alpha1-antitrypsin deficiency in an animal model using SV40-derived vectors. Gastroenterology 2004; 127: 1222–1232.

    Article  CAS  Google Scholar 

  33. Strayer DS, Milano J . SV40 mediates stable gene transfer in vivo. Gene Therapy 1996; 3: 581–587.

    CAS  PubMed  Google Scholar 

  34. Strayer DS, Zern MA, Chowdhury JR . What can SV40-derived vectors do for gene therapy? Curr Opin Mol Ther 2002; 4: 313–323.

    CAS  PubMed  Google Scholar 

  35. Sauter BV, Parashar B, Chowdhury NR, Kadakol A, Ilan Y, Singh H et al. A replication-deficient rSV40 mediates liver-directed gene transfer and a long-term amelioration of jaundice in gunn rats. Gastroenterology 2000; 119: 1348–1357.

    Article  CAS  Google Scholar 

  36. Cordelier P, Morse B, Strayer DS . Targeting CCR5 with SiRNAs: using recombinant SV40-derived vectors to protect macrophages and microglia from R5-tropic HIV. Oligonucleotides 2003; 13: 281–294.

    Article  CAS  Google Scholar 

  37. Anderson DW, Cordelier P, Strayer DS, Schneider JS . Viral gene delivery of GAD antisense genes to basal ganglia output neurons promoters behavioral recovery in a rat Parkinson model. Movement Dis 2002; 17: S58.

    Article  Google Scholar 

  38. Agrawal L, Louboutin JP, Reyes BA, Van Bockstaele EJ, Strayer DS . Antioxidant enzyme gene delivery to protect from HIV-1 gp120-induced neuronal apoptosis. Gene Therapy 2006; 13: 1645–1656.

    Article  CAS  Google Scholar 

  39. Burger C, Nguyen FN, Deng J, Mandel RJ . Systemic mannitol-induced hyperosmolarity amplifies rAAV2-mediated striatal transduction to a greater extent than local co-infusion. Mol Ther 2005; 11: 327–331.

    Article  CAS  Google Scholar 

  40. Ghodsi A, Stein C, Derksen T, Martins I, Anderson RD, Davidson BL . Systemic hyperosmolarity improves beta-glucuronidase distribution and pathology in murine MPS VII brain following intraventricular gene transfer. Exp Neurol 1999; 160: 109–116.

    Article  CAS  Google Scholar 

  41. McKee HJ, Strayer DS . Immune responses against SIV envelope glycoprotein, using recombinant SV40 as a vaccine delivery vector. Vaccine 2002; 20: 3613–3625.

    Article  CAS  Google Scholar 

  42. Pelkmans L, Kartenbeck J, Helenius A . Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the E.R. Nat Cell Biol 2001; 3: 473–483.

    Article  CAS  Google Scholar 

  43. Pelkmans L, Puntener D, Helenius A . Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 2002; 296: 535–539.

    Article  CAS  Google Scholar 

  44. Chen Y, Norkin LC . Extracellular simian virus 40 transmits a signal that promotes virus enclosure within caveolae. Exp Cell Res 1999; 10: 83–90.

    Article  Google Scholar 

  45. Yamada M, Kasamatsu H . Role of nuclear pore complex in simian virus 40 nuclear targeting. J Virol 1993; 67: 119–130.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Anderson HA, Chen Y, Norkin LC . Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol Biol Cell 1996; 7: 1825–1834.

    Article  CAS  Google Scholar 

  47. Desmaris N, Bosch A, Salaun C, Petit C, Prevost MC, Tordo N et al. Production and neurotropism of lentivirus vectors pseudotyped with lyssavirus envelope glycoproteins. Mol Ther 2001; 4: 149–156.

    Article  CAS  Google Scholar 

  48. Mazarakis ND, Azzouz M, Rohll JB, Ellard FM, Wilkes FJ, Olsen AL et al. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum Mol Genet 2001; 10: 2109–2121.

    Article  CAS  Google Scholar 

  49. Alisky JM, Hughes SM, Sauter SL, Jolly D, Dubensky Jr TW, Straber PD et al. Transduction of murine cerebellar neurons with recombinant FIV and AAV5 vectors. Neuroreport 2000; 11: 2669–2673.

    Article  CAS  Google Scholar 

  50. Frampton Jr AR, Goins WF, Nakano K, Burton EA, Glorioso JC . HSV trafficking and development of gene therapy vectors with applications in the nervous system. Gene Therapy 2005; 12: 891–901.

    Article  CAS  Google Scholar 

  51. Strayer DS . Gene therapy using SV40-derived vectors: what does the future hold? J Cell Physiol 1999; 181: 375–384.

    Article  CAS  Google Scholar 

  52. Strayer DS, Lamothe M, Wei D, Milano J, Kondo R . Generation of recombinant SV40 vectors for gene transfer. SV40 protocols. In: Raptis L (ed). Methods in Molecular Biology,vol. 165. Humana Press: Totowa, NJ, 2001, pp 103–117.

    Google Scholar 

  53. Paxinos G, Watson C . The Rat Brain in Stereotaxic Coordinates, 2nd edn. Academic Press: New York, 1986.

    Google Scholar 

  54. Rouger K, Louboutin JP, Villanova M, Cherel Y, Fardeau M . X-linked vacuolated myopathy: TNF-alpha and IFN-gamma expression in muscle fibers with MHC class I on sarcolemma. Am J Pathol 2001; 158: 355–359.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grants MH70287, MH69122 and AI48244. We appreciate the encouragements and advice of several colleagues in formulating and executing these studies: Drs Kathy Kopnisky, Roger J Pomerantz and Diane Rausch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-P Louboutin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louboutin, JP., Reyes, B., Agrawal, L. et al. Strategies for CNS-directed gene delivery: in vivo gene transfer to the brain using SV40-derived vectors. Gene Ther 14, 939–949 (2007). https://doi.org/10.1038/sj.gt.3302939

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302939

Keywords

This article is cited by

Search

Quick links