Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Retroviral transfer of a dominant TCR prevents surface expression of a large proportion of the endogenous TCR repertoire in human T cells

Abstract

The latent membrane protein-2 (LMP2) of Epstein–Barr virus is a potential target for T-cell receptor (TCR) gene therapy of Hodgkin lymphoma and nasopharyngeal carcinoma. Here, we modified a human leukocyte antigen-A2-restricted, LMP2-specific TCR to achieve efficient expression following retroviral TCR gene transfer. The unmodified TCR was poorly expressed in primary human T cells, suggesting that it competed inefficiently with endogenous TCR chains for cell surface expression. In order to improve this TCR, we replaced the human constant region with murine sequences, linked the two TCR genes using a self-cleaving 2A sequence and finally, codon optimized the TCR-α-2A-β cassette for efficient translation in human cells. Retroviral transfer of the modified TCR resulted in efficient surface expression and HLA-A2/LMP2 pentamer binding. The transduced cells showed peptide-specific interferon-γ and interleukin-2 production and killed target cells displaying the LMP2 peptide. Importantly, the introduced LMP2-TCR suppressed the cell surface expression of a large proportion of endogenous TCR combinations present in primary human T cells. The design of dominant TCR is likely to improve TCR gene therapy by reducing the risk of potential autoreactivity of endogenous and mispaired TCR combinations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Murray RJ, Kurilla MG, Brooks JM, Thomas WA, Rowe M, Kieff E et al. Identification of target antigens for the human cytotoxic T cell response to Epstein–Barr virus (EBV): implications for the immune control of EBV-positive malignancies. J Exp Med 1992; 176: 157–168.

    Article  CAS  PubMed  Google Scholar 

  2. Tierney RJ, Steven N, Young LS, Rickinson AB . Epstein–Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state. J Virol 1994; 68: 7374–7385.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Herbst H, Dallenbach F, Hummel M, Niedobitek G, Pileri S, Muller-Lantzsch N et al Epstein–Barr virus latent membrane protein expression in Hodgkin and Reed-Sternberg cells. Proc Natl Acad Sci USA 1991; 88: 4766–4770.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Heussinger N, Buttner M, Ott G, Brachtel E, Pilch BZ, Kremmer E et al. Expression of the Epstein–Barr virus (EBV)-encoded latent membrane protein 2A (LMP2A) in EBV-associated nasopharyngeal carcinoma. J Pathol 2004; 203: 696–699.

    Article  CAS  PubMed  Google Scholar 

  5. Niedobitek G, Hansmann ML, Herbst H, Young LS, Dienemann D, Hartmann CA et al. Epstein–Barr virus and carcinomas: undifferentiated carcinomas but not squamous cell carcinomas of the nasopharynx are regularly associated with the virus. J Pathol 1991; 165: 17–24.

    Article  CAS  PubMed  Google Scholar 

  6. Bollard CM, Straathof KC, Huls MH, Leen A, Lacuesta K, Davis A et al. The generation and characterization of LMP2-specific CTLs for use as adoptive transfer from patients with relapsed EBV-positive Hodgkin disease. J Immunother 2004; 27: 317–327.

    Article  PubMed  Google Scholar 

  7. Gottschalk S, Edwards OL, Sili U, Huls MH, Goltsova T, Davis AR et al. Generating CTLs against the subdominant Epstein–Barr virus LMP1 antigen for the adoptive immunotherapy of EBV-associated malignancies. Blood 2003; 101: 1905–1912.

    Article  CAS  PubMed  Google Scholar 

  8. Chamoto K, Tsuji T, Funamoto H, Kosaka A, Matsuzaki J, Sato T et al. Potentiation of tumour eradication by adoptive immunotherapy with T-cell receptor gene-transduced T-helper type 1 cells. Cancer Res 2004; 64: 386–390.

    Article  CAS  PubMed  Google Scholar 

  9. Clay TM, Custer MC, Sachs J, Hwu P, Rosenberg SA, Nishimura MI . Efficient transfer of a tumour antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumour reactivity. J Immunol 1999; 163: 507–513.

    CAS  PubMed  Google Scholar 

  10. Clay TM, Nishimura MI . Retroviral transfer of T-cell receptor genes into human peripheral blood lymphocytes. Methods Mol Biol 2003; 215: 227–234.

    CAS  PubMed  Google Scholar 

  11. Cooper LJ, Kalos M, Lewinsohn DA, Riddell SR, Greenberg PD . Transfer of specificity for human immunodeficiency virus type 1 into primary human T lymphocytes by introduction of T-cell receptor genes. J Virol 2000; 74: 8207–8212.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Engels B, Noessner E, Frankenberger B, Blankenstein T, Schendel DJ, Uckert W . Redirecting human T lymphocytes toward renal cell carcinoma specificity by retroviral transfer of T cell receptor genes. Hum Gene Ther 2005; 16: 799–810.

    Article  CAS  PubMed  Google Scholar 

  13. Fujio K, Misaki Y, Setoguchi K, Morita S, Kawahata K, Kato I et al. Functional reconstitution of class II MHC-restricted T cell immunity mediated by retroviral transfer of the alpha beta TCR complex. J Immunol 2000; 165: 528–532.

    Article  CAS  PubMed  Google Scholar 

  14. Heemskerk MH, Hoogeboom M, de Paus RA, Kester MG, van der Hoorn MA, Goulmy E et al. Redirection of antileukemic reactivity of peripheral T lymphocytes using gene transfer of minor histocompatibility antigen HA-2-specific T-cell receptor complexes expressing a conserved alpha joining region. Blood 2003; 102: 3530–3540.

    Article  CAS  PubMed  Google Scholar 

  15. Heemskerk MH, Hoogeboom M, Hagedoorn R, Kester MG, Willemze R, Falkenburg JH . Reprogramming of virus-specific T cells into leukemia-reactive T cells using T cell receptor gene transfer. J Exp Med 2004; 199: 885–894.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kessels HW, Wolkers MC, van den Boom MD, van der Valk MA, Schumacher TN . Immunotherapy through TCR gene transfer. Nat Immunol 2001; 2: 957–961.

    Article  CAS  PubMed  Google Scholar 

  17. Morgan RA, Dudley ME, Yu YY, Zheng Z, Robbins PF, Theoret MR et al. High efficiency TCR gene transfer into primary human lymphocytes affords avid recognition of melanoma tumour antigen glycoprotein 100 and does not alter the recognition of autologous melanoma antigens. J Immunol 2003; 171: 3287–3295.

    Article  CAS  PubMed  Google Scholar 

  18. Morris EC, Tsallios A, Bendle GM, Xue SA, Stauss HJ . A critical role of T cell antigen receptor-transduced MHC class I-restricted helper T cells in tumour protection. Proc Natl Acad Sci USA 2005; 102: 7934–7939.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Schaft N, Willemsen RA, de Vries J, Lankiewicz B, Essers BW, Gratama JW et al. Peptide fine specificity of anti-glycoprotein 100 CTL is preserved following transfer of engineered TCR alpha beta genes into primary human T lymphocytes. J Immunol 2003; 170: 2186–2194.

    Article  CAS  PubMed  Google Scholar 

  20. Stanislawski T, Voss RH, Lotz C, Sadovnikova E, Willemsen RA, Kuball J et al. Circumventing tolerance to a human MDM2-derived tumour antigen by TCR gene transfer. Nat Immunol 2001; 2: 962–970.

    Article  CAS  PubMed  Google Scholar 

  21. Tahara H, Fujio K, Araki Y, Setoguchi K, Misaki Y, Kitamura T et al. Reconstitution of CD8+ T cells by retroviral transfer of the TCR alpha beta-chain genes isolated from a clonally expanded P815-infiltrating lymphocyte. J Immunol 2003; 171: 2154–2160.

    Article  CAS  PubMed  Google Scholar 

  22. Xue SA, Gao L, Hart D, Gillmore R, Qasim W, Thrasher A et al. Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene-transduced human T cells. Blood 2005; 106: 3062–3067.

    Article  CAS  PubMed  Google Scholar 

  23. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314: 126–129.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Heemskerk MH, Hagedoorn RS, van der Hoorn MA, van der Veken LT, Hoogeboom M, Kester MG et al. Efficiency of T-cell receptor expression in dual-specific T cells is controlled by the intrinsic qualities of the TCR chains within the TCR–CD3 complex. Blood 2007; 109: 235–243.

    Article  CAS  PubMed  Google Scholar 

  25. Sommermeyer D, Neudorfer J, Weinhold M, Leisegang M, Engels B, Noessner E et al. Designer T cells by T cell receptor replacement. Eur J Immunol 2006; 36: 3052–3059.

    Article  CAS  PubMed  Google Scholar 

  26. Cohen CJ, Zhao Y, Zheng Z, Rosenberg SA, Morgan RA . Enhanced antitumour activity of murine-human hybrid T-Cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res 2006; 66: 8878–8886.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Scholten KB, Kramer D, Kueter EW, Graf M, Schoedl T, Meijer CJ et al. Codon modification of T cell receptors allows enhanced functional expression in transgenic human T cells. Clin Immunol 2006; 119: 135–145.

    Article  CAS  PubMed  Google Scholar 

  28. Engels B, Cam H, Schuler T, Indraccolo S, Gladow M, Baum C et al. Retroviral vectors for high-level transgene expression in T lymphocytes. Hum Gene Ther 2003; 14: 1155–1168.

    Article  CAS  PubMed  Google Scholar 

  29. Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF et al. Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat Biotechnol 2004; 22: 589–594.

    Article  CAS  PubMed  Google Scholar 

  30. Gao L, Bellantuono I, Elsasser A, Marley SB, Gordon MY, Goldman JM et al. Selective elimination of leukemic CD34(+) progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood 2000; 95: 2198–2203.

    CAS  PubMed  Google Scholar 

  31. Sadovnikova E, Jopling LA, Soo KS, Stauss HJ . Generation of human tumour-reactive cytotoxic T cells against peptides presented by non-self HLA class I molecules. Eur J Immunol 1998; 28: 193–200.

    Article  CAS  PubMed  Google Scholar 

  32. Sadovnikova E, Stauss HJ . Peptide-specific cytotoxic T lymphocytes restricted by nonself major histocompatibility complex class I molecules: reagents for tumour immunotherapy. Proc Natl Acad Sci USA 1996; 93: 13114–13118.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Cohen CJ, Li YF, El-Gamil M, Robbins PF, Rosenberg SA, Morgan RA . Enhanced antitumour activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res 2007; 67: 3898–3903.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kuball J, Dossett ML, Wolfl M, Ho WY, Voss RH, Fowler C et al. Facilitating matched pairing and expression of TCR-chains introduced into human T-cells. Blood 2007; 109: 2331–2338.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Weber KS, Donermeyer DL, Allen PM, Kranz DM . Class II-restricted T cell receptor engineered in vitro for higher affinity retains peptide specificity and function. Proc Natl Acad Sci USA 2005; 102: 19033–19038.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Leukaemia Research Fund, UK and by the EU-funded ATTACK project. HJS and ECM are consultants for Cell Medica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H J Stauss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hart, D., Xue, SA., Thomas, S. et al. Retroviral transfer of a dominant TCR prevents surface expression of a large proportion of the endogenous TCR repertoire in human T cells. Gene Ther 15, 625–631 (2008). https://doi.org/10.1038/sj.gt.3303078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3303078

Keywords

This article is cited by

Search

Quick links