Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Free testosterone plasma levels are negatively associated with the intima-media thickness of the common carotid artery in overweight and obese glucose-tolerant young adult men

Abstract

OBJECTIVE: To evaluate the relation between free testosterone (FT) levels and the intima-media thickness of the common carotid artery (IMT-CCA) in overweight and obese glucose-tolerant (NGT) young adult men.

DESIGN: Cross-sectional study of FT and IMT-CCA in obese men.

SUBJECTS: A total of 127 overweight and obese NGT male individuals, aged 18–45 y.

MEASUREMENTS: FT plasma levels; IMT-CCA, as measured by high-resolution B-mode ultrasound imaging; central fat accumulation, as evaluated by waist circumference; body composition, as measured by bioimpedance analysis; insulin resistance, as calculated by homeostatic model assessment (HOMAIR); systolic and diastolic blood pressure; and fasting concentrations of glucose, insulin, and lipids.

RESULTS: IMT-CCA was positively correlated with age, body mass index (BMI), fat mass (FM), waist circumference, and fasting glucose concentrations, and inversely associated with FT levels. After multivariate analysis, IMT-CCA maintained an independent association with BMI, FM, and FT levels. This study indicates that IMT-CCA is negatively associated with FT levels, independent of age, total body fat, central fat accumulation, and fasting glucose concentrations in overweight and obese NGT patients.

CONCLUSION: Hypotestosteronemia may accelerate the development of atherosclerosis and increase the risk for CHD in obese men.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. De Pergola G . The adipose tissue metabolism: role of testosterone and dehydroepiandrosterone. Int J Obes Relat Metab Disord 2000; 2: S59–S63.

    Article  Google Scholar 

  2. Jockenhovel F, Blum WF, Vogel E, Englaro P, Muller-Wieland D, Reinwein D, Rascher W, Krone W . Testosterone substitution normalizes elevated serum leptin levels in hypogonadal men. J Clin Endocrinol Metab 1997; 82:2510–2513.

    Article  CAS  Google Scholar 

  3. De Pergola G, Xu X, Yang SM, Giorgino R, Bjorntorp P . Up-regulation of androgen receptor binding in male rat fat pad adipose precursor cells exposed to testosterone: study in a whole cell assay system. J Steroid Biochem Mol Biol 1990; 37:553–558.

    Article  CAS  Google Scholar 

  4. Xu X, De Pergola G, Bjorntorp P . Testosterone increases lipolysis and the number of beta-adrenoceptors in male rat adipocytes. Endocrinology 1991; 128:379–382.

    Article  CAS  Google Scholar 

  5. Xu X, De Pergola G, Eriksson PS, Fu L, Carlsson B, Yang S, Eden S, Bjorntorp P . Postreceptor events involved in the up-regulation of beta-adrenergic receptor mediated lipolysis by testosterone in rat white adipocytes. Endocrinology 1993; 132: 1651–1657.

    Article  CAS  Google Scholar 

  6. Marin P, Oden B, Bjorntorp P . Assimilation and mobilization of triglycerides in subcutaneous abdominal and femoral adipose tissue in vivo in men: effects of androgens. J Clin Endocrinol Metab 1995; 80: 239–243.

    CAS  Google Scholar 

  7. Marin P, Lonn L, Anderrsson B, Oden B, Olbe L, Bengtsson BA, Bjorntorp P . Assimilation of triglycerides in subcutaneous and intraabdominal adipose tissues in vivo in men: effects of testosterone. J Clin Endocrinol Metab 1996; 81:1018–1022.

    CAS  PubMed  Google Scholar 

  8. Phillips GB, Pinkernell BH, Jing Y . The association of hypotestosteronemia with coronary artery disease in men. Arterioscler Thromb 1994; 14:701–706.

    Article  CAS  Google Scholar 

  9. Crouse III JR, Craven TE, Hagaman AP, Bond MG . Associations of coronary disease with segment specific intimal-medial thickening of the extracranial carotid artery. Circulation 1995; 92: 1141–1147.

    Article  Google Scholar 

  10. Pignoli P, Tremoli E, Poli A, Oreste P, Paoletti R . Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation 1986; 74:1399–1406.

    Article  CAS  Google Scholar 

  11. Salonen JT, Salonen R . Ultrasonographically assessed carotid morphology and the risk of coronary heart disease. Arterioscler Thromb 1991; 11:1245–1249.

    Article  CAS  Google Scholar 

  12. Hodis HN, Mack WJ, LaBree L, Selzer RH, Liu C-R, Liu C-H, Azen SP . The role of carotid arterial intima-media thickness in predicting clinical coronary events. Ann Intern Med 1998; 128: 262–269.

    Article  CAS  Google Scholar 

  13. O'Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson Jr SK . Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. N Eng J Med 1999; 340:14–22.

    Article  CAS  Google Scholar 

  14. Ebrahim S, Papacosta O, Whincup P, Wannamethee G, Walker M, Nicolaides AN, Dhanjil S, Griffin M, Belcaro G, Rumley A, Lowe GD . Carotid plaque, intima media thickness, cardiovascular disease in men and women: The British Regional Heart Study. Stroke 1999; 30: 841–850.

    Article  CAS  Google Scholar 

  15. Mack WJ, LaBree L, Liu C-R, Liu C-H, Selzer RH, Hodis HN . Correlations between measures of atherosclerosis change using carotid ultrasonography and coronary angiography. Atherosclerosis 2000; 150:371–379.

    Article  CAS  Google Scholar 

  16. Salonen JT, Salonen R . Ultrasound B-mode imaging in observational studies of atherosclerotic progression. Circulation 1993; 87 (Suppl II): 56–65.

    Google Scholar 

  17. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 1997; 20: 1183–1197.

  18. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC . Homeostatic model assessment: insulin resistance and β-cell function from fasting glucose and insulin concentrations in man. Diabetologia 1985; 28:412–419.

    Article  CAS  Google Scholar 

  19. De Pergola G, Giorgino F, Cospite MR, Giagulli VA, Cignarelli M, Ferri G, Giorgino R . Relation between sex hormones and serum lipoprotein and lipoprotein(a) concentrations in premenopausal obese women. Arterioscler Thromb 1993; 13:675–679.

    Article  CAS  Google Scholar 

  20. De Mitrio V, De Pergola G, Vettor R, Marino R, Sciaraffia M, Pagano C, Scaraggi FA, Di Lorenzo L, Giorgino R . Plasma plasminogen activator inhibitor-1 (PAI-1) is associated with plasma leptin, irrespective of body mass index, body fat mass, and plasma insulin and metabolic parameters in premenopausal women. Metabolism 1999; 48:960–964.

    Article  CAS  Google Scholar 

  21. Heitmann BL . Prediction of body water and fat in adult Danes from measurement of electrical impedance. A validation study. Int J Obes Relat Metab Disord 1990; 14:789–802.

    CAS  Google Scholar 

  22. Willeit J, Kiechl S . Prevalence and risk factors of asymptomatic extra-cranial carotid artery atherosclerosis: a population-based study. Arterioscler Thromb 1993; 13:661–668.

    Article  CAS  Google Scholar 

  23. Abate N, Haffner SM, Garg A, Peshock RM, Grundy SM . Sex steroid hormones, upper body obesity, and insulin resistance. J Clin Endocrinol Metab 2002; 87:4522–4527.

    Article  CAS  Google Scholar 

  24. Levine SA, Likoff WB . The therapeutic value of testosterone propionate in angina pectoris. N Engl J Med 1943; 229:770–772.

    Article  Google Scholar 

  25. Lesser MA . Testosterone propionate therapy in one hundred cases of angina pectoris. J Clin Endocrinol 1946; 6:549–557.

    Article  CAS  Google Scholar 

  26. Webb CM, Adamson DL, de Ziegler D, Colins P . Effect of acute testosterone on myocardial ischemia in men with coronary artery disease. Am J Cardiol 1999; 83:437–439.

    Article  CAS  Google Scholar 

  27. Jaffe MD . Effect of testosterone cypionate on postexercise ST segment depression. Br Heart J 1977; 39:1217–1222.

    Article  CAS  Google Scholar 

  28. Webb CM, McNeill JG, Hayward CS, de Zeigler D, Collins P . Effects of testosterone on coronary vasomotor regulation in men with coronary heart disease. Circulation 1999; 100:1690–1696.

    Article  CAS  Google Scholar 

  29. Ong PJL, Patrizi G, Chong WCF, Webb CM, Hayward CS, Collins P . Testosterone enhances flow-mediated brachial artery reactivity in men with coronary artery disease. Am J Cardiol 2000; 85: 269–272.

    Article  CAS  Google Scholar 

  30. Kang SM, Jang Y, Kim JY, Chung N, Cho SY, Chae JS, Lee JH . Effect of oral administration of testosterone on brachial arterial vasoreactivity in men with coronary artery disease. Am J Cardiol 2002; 89:862–864.

    Article  CAS  Google Scholar 

  31. English KM, Jones RD, Jones TH, Morice AH, Channer KS . Testosterone acts as a coronary vasodilator by a calcium antagonistic action. J Endocrinol Invest 2002; 25:455–458.

    Article  CAS  Google Scholar 

  32. Deenadayalu VP, White RE, Stallone JN, Gao X, Garcia AJ . Testosterone relaxes coronary arteries by opening thge large-conductance, calcium-activated potassium channel. Am J Physiol (Heart Circ Physiol) 2001; 281: 1720–1727.

    Article  Google Scholar 

  33. Mukherjee TK, Dinh H, Chaudhuri G, Nathan L . Testosterone attenuates expression of vascular cell adhesion molecule-1 by conversion to estradiol by aromatase in endothelial cells: implications in atherosclerosis. Porc Natl Acad Sci USA 2002; 99: 4055–4060.

    Article  CAS  Google Scholar 

  34. Chambless LE, Heiss G, Folsom AR, Rosamond W, Szklo M, Sharrett AR, Clegg LX . Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987–1993. Am J Epidemiol 1997; 146:483–494.

    Article  CAS  Google Scholar 

  35. De Pergola G, Ciccone M, Pannacciulli N, Modugno M, Sciaraffia M, Minenna A, Rizzon P, Giorgino R . Lower insulin sensitivity as an independent risk factor for carotid wall thickening in normotensive, non-diabetic, non-smoking normal weight and obese premenopausal women. Int J Obes Relat Metab Disord 2000; 24:825–829.

    Article  CAS  Google Scholar 

  36. Ciccone M, Vettor R, Pannacciulli N, Minenna A, Bellacicco M, Rizzon P, Giorgino R, De Pergola G . Plasma leptin is independently associated with the intima-media thickness of the common carotid artery. Int J Obes Relat Metab Disord 2001; 25:805–810.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G De Pergola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Pergola, G., Pannacciulli, N., Ciccone, M. et al. Free testosterone plasma levels are negatively associated with the intima-media thickness of the common carotid artery in overweight and obese glucose-tolerant young adult men. Int J Obes 27, 803–807 (2003). https://doi.org/10.1038/sj.ijo.0802292

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0802292

Keywords

This article is cited by

Search

Quick links