Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

High amount of visceral fat mass is associated with multiple metabolic changes in offspring of type 2 diabetic patients

Abstract

OBJECTIVE:

To investigate the relative contribution of total body fat mass (TFM) and intra-abdominal fat mass (IAFM) to metabolic consequences of obesity in offspring of type 2 diabetic parents.

DESIGN:

Cross-sectional study of 129 nondiabetic offspring of diabetic parents (59 men, 70 women, age 35.7±6.3 y, body mass index 26.2±4.6 kg/m2). Study subjects were grouped according to TFM (assessed with bioelectrical impedance) and IAFM (assessed with CT). Insulin sensitivity was assessed with the euglycemic hyperinsulinemic clamp, insulin secretion with the intravenous glucose tolerance test and energy expenditure with indirect calorimetry. Furthermore, C-reactive protein (CRP) and adiponectin levels were measured.

RESULTS:

Insulin resistance, low rates of oxidative and nonoxidative glucose disposal, high rates of lipid oxidation and reduced energy expenditure during hyperinsulinemia were associated with high IAFM, independently of TFM. Adiponectin level was reduced and CRP level increased in subjects with high IAFM.

CONCLUSIONS:

The metabolic changes relating to obesity are largely attributable to high IAFM, and are present even in normal weight subjects with high IAFM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Carr DB, Utzschneider KM, Hull RL, Kodama K, Retzlaff BM, Brunzell JD, Shofer JB, Fish BE, Knopp RH, Kahn SE . Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome. Diabetes 2004; 53: 2087–2094.

    Article  CAS  PubMed  Google Scholar 

  2. Brochu M, Starling RD, Tchernof A, Matthews DE, Garcia-Rubi E, Poehlman ET . Visceral adipose tissue is an independent correlate of glucose disposal in older obese postmenopausal women. J Clin Endocrinol Metab 2000; 85: 2378–2384.

    CAS  PubMed  Google Scholar 

  3. Ross R, Aru J, Freeman J, Hudson R, Janssen I . Abdominal adiposity and insulin resistance in obese men. Am J Physiol Endocrinol Metab 2002; 282: E657–E663.

    Article  CAS  PubMed  Google Scholar 

  4. Nyholm B, Nielsen MF, Kristensen K, Nielsen S, Ostergard T, Pedersen SB, Christiansen T, Richelsen B, Jensen MD, Schmitz O . Evidence of increased visceral obesity and reduced physical fitness in healthy insulin-resistant first-degree relatives of type 2 diabetic patients. Eur J Endocrinol 2004; 150: 207–214.

    Article  CAS  PubMed  Google Scholar 

  5. Gastaldelli A, Miyazaki Y, Pettiti M, Matsuda M, Mahankali S, Santini E, DeFronzo RA, Ferrannini E . Metabolic effects of visceral fat accumulation in type 2 diabetes. J Clin Endocrinol Metab 2002; 87: 5098–5103.

    Article  CAS  PubMed  Google Scholar 

  6. Tulloch-Reid MK, Hanson RL, Sebring NG, Reynolds JC, Premkumar A, Genovese DJ, Sumner AE . Both subcutaneous and visceral adipose tissue correlate highly with insulin resistance in african americans. Obes Res 2004; 12: 1352–1359.

    Article  CAS  PubMed  Google Scholar 

  7. Kelley DE, Thaete FL, Troost F, Huwe T, Goodpaster BH . Subdivisions of subcutaneous abdominal adipose tissue and insulin resistance. Am J Physiol Endocrinol Metab 2000; 278: E941–E948.

    Article  CAS  PubMed  Google Scholar 

  8. Abate N, Garg A, Peshock RM, Stray-Gundersen J, Grundy SM . Relationships of generalized and regional adiposity to insulin sensitivity in men. J Clin Invest 1995; 96: 88–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ross R, Freeman J, Hudson R, Janssen I . Abdominal obesity, muscle composition, and insulin resistance in premenopausal women. J Clin Endocrinol Metab 2002; 87: 5044–5051.

    Article  CAS  PubMed  Google Scholar 

  10. Johanson EH, Jansson PA, Lonn L, Matsuzawa Y, Funahashi T, Taskinen MR, Smith U, Axelsen M . Fat distribution, lipid accumulation in the liver, and exercise capacity do not explain the insulin resistance in healthy males with a family history for type 2 diabetes. J Clin Endocrinol Metab 2003; 88: 4232–4238.

    Article  CAS  PubMed  Google Scholar 

  11. Salmenniemi U, Ruotsalainen E, Pihlajamäki J, Vauhkonen I, Kainulainen S, Punnonen K, Vanninen E, Laakso M . Multiple abnormalities in glucose and energy metabolism and coordinated changes in levels of adiponectin, cytokines, and adhesion molecules in subjects with metabolic syndrome. Circulation 2004; 110: 3842–3848.

    Article  CAS  PubMed  Google Scholar 

  12. Alberti KG, Zimmet PZ . Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998; 15: 539–553.

    Article  CAS  PubMed  Google Scholar 

  13. Galvin P, Ward G, Walters J, Pestell R, Koschmann M, Vaag A, Martin I, Best JD, Alford F . A simple method for quantitation of insulin sensitivity and insulin release from an intravenous glucose tolerance test. Diabet Med 1992; 9: 921–928.

    Article  CAS  PubMed  Google Scholar 

  14. DeFronzo RA, Tobin JD, Andres R . Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 1979; 237: E214–E223.

    CAS  PubMed  Google Scholar 

  15. Lehto M, Tuomi T, Mahtani MM, Widen E, Forsblom C, Sarelin L, Gullström M, Isomaa B, Lehtovirta M, Hyrkk A, Kanninen T, Orho M, Manley S, Turner RC, Brettin T, Kirby A, Thomas J, Duyk G, Lander E, Taskinen MR, Group L . Characterization of the MODY3 phenotype. Early-onset diabetes caused by an insulin secretion defect. J Clin Invest 1997; 99: 582–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ferrannini E . The theoretical bases of indirect calorimetry: a review. Metabolism 1988; 37: 287–301.

    Article  CAS  PubMed  Google Scholar 

  17. Fuller NJ, Elia M . Potential use of bioelectrical impedance of the ‘whole body’ and of body segments for the assessment of body composition: comparison with densitometry and anthropometry. Eur J Clin Nutr 1989; 43: 779–791.

    CAS  PubMed  Google Scholar 

  18. Chowdhury B, Sjostrom L, Alpsten M, Kostanty J, Kvist H, Lofgren R . A multicompartment body composition technique based on computerized tomography. Int J Obes Relat Metab Disord 1994; 18: 219–234.

    CAS  PubMed  Google Scholar 

  19. Hawk PB, Oser BL, Summerson WH . In Practical Physiological Chemistry. Blakiston: Philadelphia; 1947.

    Google Scholar 

  20. Allison DB, Heo M, Kaplan N, Martin ER . Sibling-based tests of linkage and association for quantitative traits. Am J Hum Genet 1999; 64: 1754–1763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Misra A, Vikram NK . Clinical and pathophysiological consequences of abdominal adiposity and abdominal adipose tissue depots. Nutrition 2003; 19: 457–466.

    Article  PubMed  Google Scholar 

  22. Ruderman NB, Schneider SH, Berchtold P . The ‘metabolically-obese,’ normal-weight individual. Am J Clin Nutr 1981; 34: 1617–1621.

    Article  CAS  PubMed  Google Scholar 

  23. LeRoith D . Beta-cell dysfunction and insulin resistance in type 2 diabetes: role of metabolic and genetic abnormalities. Am J Med 2002; 113 (Suppl 6A): 3S–11S.

    Article  CAS  PubMed  Google Scholar 

  24. Kelley DE, Mandarino LJ . Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes 2000; 49: 677–683.

    Article  CAS  PubMed  Google Scholar 

  25. Perseghin G . Pathogenesis of obesity and diabetes mellitus: insights provided by indirect calorimetry in humans. Acta Diabetol 2001; 38: 7–21.

    Article  CAS  PubMed  Google Scholar 

  26. McGarry JD . Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2002; 51: 7–18.

    Article  CAS  PubMed  Google Scholar 

  27. Nielsen S, Guo Z, Johnson CM, Hensrud DD, Jensen MD . Splanchnic lipolysis in human obesity. J Clin Invest 2004; 113: 1582–1588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Klein S . The case of visceral fat: argument for the defense. J Clin Invest 2004; 113: 1530–1532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lafontan M, Berlan M . Do regional differences in adipocyte biology provide new pathophysiological insights? Trends Pharmacol Sci 2003; 24: 276–283.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partly supported by grants to ML from the Academy of Finland (project 77299), the Diabetes Research Foundation, the Kuopio University Hospital (EVO Grant no. 5194) and the European Union (QLG1-CT-1999-00674).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Laakso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salmenniemi, U., Ruotsalainen, E., Vänttinen, M. et al. High amount of visceral fat mass is associated with multiple metabolic changes in offspring of type 2 diabetic patients. Int J Obes 29, 1464–1470 (2005). https://doi.org/10.1038/sj.ijo.0803041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803041

Keywords

This article is cited by

Search

Quick links